
Agent-Based Modeling for Holonic Manufacturing Systems with
Fuzzy Control

Stephan Flake�, Christian Geiger�, Georg Lehrenfeld��, Wolfgang Mueller�, Volker Paelke�

C–LAB�, Heinz-Nixdorf-Institut��

Fuerstenallee 11
33102 Paderborn, Germany

Abstract

Agent-based systems technologies are of emerging inter-
est in the specification and implementation of complex sys-
tems. This article introduces the CASA agent development
system which seamlessly combines the BDI (Belief Desire
Intention) approach with the FIPA agent communication
language standard and an integrated specification of fuzzy
controllers. The behavior of agents is defined by strate-
gies which basically correspond to extended guarded horn
clauses with priorities. The presented concepts are intro-
duced by an example from Computer Integrated Manufac-
turing (CIM). The example gives the specification of a fuzzy
controller for a manufacturing station in the context of a
holonic manufacturing system (HMS).

1 Introduction

Agent-based systems technologies in the sense of dis-
tributed computing is an area of emerging interest in the
domain of complex systems design. The agent-based
paradigm can be seen as a real enhancement of the object-
oriented paradigm where objects become autonomous,
proactive, and perceptive with respect to their environ-
ments. Meanwhile, a large number of commercial agent
management systems are available or are currently under
development. Examples are Odysee, Aglets, Voyager[7],
Mecca [1]. They support various facilities like implemen-
tation of mobile and secure agents mostly dedicated to spe-
cific applications such as e-commerce and travel assistance.

In the general field of agent-based systems we can iden-
tify two major diverging directions, agent theory and indus-
trial applications. On the one hand there is considerable
work on formalization of multi-agent systems, e.g., com-
mitments, capabilities, know-how. Advanced logics which

capture essential properties of agents like concurrency, time
dependent behavior or inconsistent states are under devel-
opment. Formal specification techniques like Z are applied
to formally capture those systems. In addition, as reported
by Nwana in [9], a couple of new concepts in recent multi-
agent system research seem to reinvent the wheel. There is
already a large amount of relevant and first class literature
published in traditional AI, soft computing, parallel com-
puting, and software engineering which directly apply to
the principles of agent-based systems. On the other hand,
there exists a number of successful implementations dedi-
cated to tackle real-world problems like flight control, man-
ufacturing resource allocation, and information retrieval in
large databases. Latter ones mostly follow an ad-hoc ap-
proach building systems from scratch. Due to the com-
plexity of the developed code implemented systems often
lack an underlying sound theory. Recent work based on
Rao’s and Georgeff’s BDI architecture seems to success-
fully bridge the gap between industry and theory by provid-
ing a formal agent specification language for an already im-
plemented multi-agent systems. Based on this cross fertil-
ization a sound combination of a formal description and an
implementation framework has been developed by AgentS-
peak(L) [11].

Agent-based systems literature distinguishes micro and
macro views. The micro view considers the local behav-
ior of an individual agent whereas its environment and in-
teraction is investigated in the macro view. This article
presents CASA. CASA is a multi-agent system based on
the BDI architecture and AgentSpeak(L) [10, 11] extented
by priorities, hierarchical rules with speculative computa-
tions, deep guards, and the integration of fuzzy controllers.
The CASA specification language defines a multi-agent
systems by means of goals, plans, local knowledge, and
meta knowledge. In this article, we focus our investigation
on the CASA micro view, i.e., modeling and execution of

agent strategies. Strategies are defined by rules with com-
plex context-sensitive tests. The parallel, event-based eval-
uation of strategies with priorities is defined by extended
guarded horn clauses. Fuzzy controllers are integrated in
the definition of local beliefs (facts). We present our ap-
proach by means of a realistic example, a so–called holonic
manufacturing system (HMS) [14]. The example investi-
gates the interaction of autonomous robotic vehicles mov-
ing parts between different manufacturing stations (milling,
drilling, washing). We have chosen this example since it
gives an ideal application scenario for our purpose combin-
ing agent-oriented behavior with fuzzy strategies. Existing
works [6, 15] have already demonstrated the applicability of
fuzzy technologies (fuzzy linear programming, fuzzy Petri-
Nets, fuzzy rule bases, etc) in this area.

In the remainder of this paper we first introduce the basic
principles of holonic manufacturing systems with an exam-
ple. For the example we give a specification of the basic
behavior of the main components with an integrated fuzzy
controller. Thereafter, we outline the basic concepts of the
CASA system and sketch the definition of the fuzzy con-
troller by means of the CASA specification language. The
paper closes with a brief overview of the implementation
and a short summary.

2 Holonic Manufacturing with CASA

This section first introduces the example of a holonic
manufacturing system. Thereafter, we outline the CASA
system and the embedding of a fuzzy controller specifica-
tion on the basis of that example.

2.1 Holonic Manufacturing

Our example specifies the holonic manufacturing system
(HMS) introduced by the IMS Initiative1 TC 5 [14]. An
HMS is based on the notion of a holon which denotes a
building block of a system for complex production lines.
Hierarchically composed holons cooperate along the lines
of basic rules to achieve a goal or objective. A single holon
is understood as an autonomous co-operative building block
which mostly consists of a information processing and a
physical part. Holonic system structure is based on the prin-
ciples of self-similarity and self-configuration which form
self-adaptable and thus fault-tolerant networks of holons.

Our HMS example is composed of a set of different sta-
tions and a transport system as it is given by the virtual
3D model in Figure 1. The different manufacturing sta-
tions transform parts: milling, drilling, and washing. Addi-

1IMS (Intelligent Manufacturing Systems) is an industry-led interna-
tional research & development program to develop the next generation of
manufacturing and processing technologies with currently over 250 com-
panies and over 200 research institutions participating.

Figure 1. Screenshot of an HMS 3D Simula-
tion

tional input and output stations are for primary system input
and output. The complete transport system consists of a set
of HTSs (Holonic Transport Systems). An HTS is an au-
tonomous vehicle which moves parts between stations. An
HTS

1. is idle until it receives a request for delivery from a
stationsi

2. sends the distancedi from its current position tosi
3. moves tosi on notification of acceptance fromsi
4. takes the part from the output and moves it to its desti-

nation2

5. moves to a parking position and returns to Step 1.

Stations have an input and output buffer for incoming and
outgoing part. Once having located one part at the output a
station

1. broadcasts a request for delivery to all HTSs
2. receives distancesdi from idle HTSs for a specific time

period
3. returns to Step 1 if no HTS replies
4. computes the most appropriate HTS from all received

distance valuesdi and their reliability factorri
5. notifies that HTS for its acceptance and notifies other

HTSs for their rejection

The distancedi is computed as the sum of subpaths from
HTS i to the calling station. The reliability factorri is a
cumulative value which is continuously computed from the
estimated arrival time and the real arrival time.

In our example, we implement the computation of Step
4 by means of a fuzzy controller which is given by the fol-
lowing table. The table defines the acceptance for delivery
as a function of distancedi and reliabilityri for anHTSi.

dinri low medium high

near medium high high
close medium medium high

reachable low medium high
far low low high

2Without loss of generality we can presume that the destination for the
part can be easily retrieved from the part itself, i.e., weight, shape, etc.

2.2 CASA

CASA is a multi-agent system combining the BDI3 agent
micro view with the FIPA ACL [2] macro view for specifi-
cation, prototyping, and validation of agents [5].

CASA is based on three design principles. Firstly, we
considered well known approaches in multi-agent systems
which seamlessly combine theory and practice. We there-
fore selected Rao’s AgentSpeak(L) [11] as a semi-formal
base for micro level specification. Secondly, we tried to
reuse well known existing concepts from other domains as
far as possible, i.e., concurrent logic programming [12] and
fuzzy logic [4]. Lastly, we implemented our systems by
the reuse of available libraries and frameworks. The current
implementation intergrates parts of the JAM! agent archi-
tecture [8] and the MECCA agent management frame work
[1] and combines it with our internal fuzzy library.

generates

selects

message message

reads
control

events

input

uses

actions

output

intention

beliefs strategies

controls

generates

Figure 2. Micro View of an Agent

The specification of the behavior of a CASA agent is
formally based on guarded horn clauses [13] which are ex-
tended by concepts for events and actions derived from the
BDI (Beliefs Desire Intention) approach. A CASA agent
has individual control over its behavior. Its internal state
is composed of current sets of beliefs, strategies, and in-
tentions (cf. Figure 2). Beliefs are a representation of the
agent’s local world model and basically compare to facts
in logic programming. Intentions are partially instantiated
strategies which are currently executed by an agent.

A CASA agent continuously observes its environment.
Based on this observations it performs actions which send
messages and modify beliefs. The behavior of an agent
is basically defined by specifying strategies (resp. plans).
Strategies compare to clauses in logic programming. A
CASA agent strategy is formally defined as an extended
guarded horn clause of form

H ! G1:::Gn j B1:::Bm(p):

whereH is the head,Gi are guards,Bj are predicates as
body goals, andp defines a priority.

The head of a CASA strategy describes the event the
agent must perceive in order to execute the plan. The guard

3Beliefs Desire Intention

elements may consist of any number of predicates and mes-
sages which are processed sequentially or in parallel. Ad-
ditionally, a priority (or weight) allows to choose between
different applicable strategies.

Based on the type of the guards different strategies are
distinguished. If all guards are simple tests, the strategy
is considered as reactive. If goals are also elements in the
strategy’s guards the strategy is deliberative because the
evaluation of the guard requires a speculative computation
which evaluates other strategies in order to reduce the goal
(multi level plans). If the context test also requires the
communication between agents, the strategy is described
as communicative. Actions are not allowed in guards. If
multiple strategies can be applied for a given event reac-
tive strategies have a higher priority than deliberative strate-
gies. Communicative strategies have lowest priority when
the agent chooses an applicable strategy.

During execution, an agent can suspend currently exe-
cuting strategies and resume suspended ones by using spe-
cial operations for suspending / resuming.

Figure 3. CASA Execution Cycle

The operational semantics of a CASA agent can be best
described by means of an abstract interpreter as it is given in
Figure 3. The interpreter manages the execution of all agent
activities in an interpretation loop. The operation of the
agent interpreter is controlled by three functions that con-
trol event selection, plan selection, and intention selection.
By modifying their implementation, the system can be eas-
ily tailored the different operational semantics for various
other applications.

The interpretation starts with the selection of an incom-
ing event. In a second step, a set of relevant plans which are
appropriate for processing the selected event are identified.

The preconditions of all relevant plans are checked against
the facts stored in the agent’s beliefs to extract the set of
applicable plans, i.e., plans whose preconditions are satis-
fied. One applicable plan from that set as the pursued strat-
egy is selected. That plan becomes instantiated as an inten-
tion on the multistack. The multistack concept allowseach
agent to investigate several plans in parallel and to instan-
tiate new (sub)intention. Finally, the interpreter selects an
intention from the multistack and executes it starting from
the top element. Execution can result in either a direct ac-
tion, the generation of an event, or the instantiation of new
(sub)intentions. Thereafter, the interpreter advances to pro-
cess the next event.

The definition of a CASA agent is implemented by the
means of the CASA specification language. In this article,
we focus our interest on the specification of facts and plans.
They are defined along the lines of the following patterns.

FACTS:
FACT <id> <list of values>;
...

PLAN: {
NAME: <string>;
DESCRIPTION: <string>;
GOAL: ACHIEVE <relation>;
TYPE: <REACTIVE

| DELIBERATIVE
| COMMUNICATIVE>;

PRECONDITION: <list of conditions>;
BODY: <list of actions>;
FAILURE: <list of actions>;
PRIORITY: <numeric value>;
}

Facts simply associate list of data values with an identi-
fier. A plan basically gives a definition of a guarded horn
clause. In addition to the definition of the body a list of
failures can be defined which are elaborated when the eval-
uation of the body fails. The individual plan elements goals,
preconditions, the body and failures are given by the speci-
fication of control structures like par, seq, if-then-else, wait.
Definition of messages and new subgoals are supported.

For CASA fuzzy controllers we extended the syntax of
the fact definition section. Controller definitions are pre-
ceded by keyword FUZZY. A controller definition covers
the specification of input and output variables, fuzzy sets,
and rules over the specified fuzzy set. The following de-
scription sketches the definition of the fuzzy controller of
the holonic transport system which was introduced in the
previous subsection.

FUZZY controller {
INPUT: in1, in2;
OUTPUT: out;

SETDEFINITION{
set: dist_near; 0; 0; 0; 2;
set: dist_close; 0; 2; 5; 7;

set: dist_reachable;5; 7; 8; 10;
set: dist_far; 8;10;max;max;
set: reliab_low; ...
...
}
RULEDEFINITION {
IF in1 == dist_near & in2 == reliab_low

THEN out = accept_medium;
IF in1 == dist_near & in2 == reliab_medium

THEN out = accept_high;
IF in1 == dist_near & in2 == reliab_high

THEN out = accept_high;
...
}

}

The controller has two input variables for crisp data. The
fuzzy sets define functions for mapping of crisp to fuzzy
data which are applied in the rule definitions. The above
rules directly correspond to the table of the previous sub-
section which defines the HMS station fuzzy controller. The
fuzzy controller is invoked by a station agent with the iden-
tifier and two crisp values as it is given in the following
example.

$ACCEPT = DEFUZZIFICATE controller, 15.4, 0.8;

The crisp values are defuzzified by the sets, rules are
evaluated, a fuzzified value between 0 and 1 is returned and
assigned to the variable ACCEPT. In our example, the sta-
tion calls the defuzzification with crisp values for each HTS.
The HTS with the highest ACCEPT value is finally notified
for acceptance of the delivery.

3 Implementation

CASA’s micro level view is implemented in Java with
JDK 1.1.2 integrating modules of the JAM! library [8]. A
compiler written in JavaCC parses CASA programs and
executes them on the CASA interpreter. CASA agents
are integrated in the MECCA framework [1]. MECCA is
an agent mangement system which implements the FIPA
ACL (Agent Communication Language) standard [2]. An
integrated CASA agent reads and writes messages/events
through a specific communication adaptor from/to the in-
ternal message transport channel of the MECCA system.
This allows CASA agents to communicate with any FIPA
compliant agent via the MECCA framework as it shown in
Figure 4.

4 Summary and Outlook

We have introduced the agent-based modeling and val-
idation environment CASA for complex systems design.
CASA combines the BDI agent approach with the FIPA
ACL standard. It seamlessly integrates specification and in-
vocation of fuzzy controllers in an agent-based systems. We

Figure 4. CASA Architecture

have introduced CASA by the example of a holonic man-
ufacturing system which addresses future concepts in the
field of complex CIM systems. Since holonic manufactur-
ing systems are based on the principles of self-configurable
networks with self-similar components this example pro-
vides an ideal application for our purpose. Additionally,
it serves well for the application of fuzzy technologies.

This article gives our preliminary results and first ex-
perience in the application of CASA. This work presented
herein provides a promising starting point for future inves-
tigation in this field. Future works will additionally focus
on the completion of the CASA implementation as well as
on other applications in the fields of manufacturing systems
and 3D computer graphics.

Acknowledgements

The work described in this article is funded by the DFG-
Schwerpunktprogramm 1064 “Integration von Techniken
der Softwarespezifikation fuer Ingenieurwissenschaftliche
Anwendungen”. We would like to thanks Christoph Scha-
effer, FhG IPA Stuttgart, for his cooperation with the 3D
simulation of the holonic transport system.

References

[1] B. Bauer, D. Steiner. MECCA - System Reference Manual.
(Internal Documentation) Siemens, Munich, 1998.

[2] FIPA 97 Specification - Part 2: Agent Communication Lan-
guage.FIPA - Foundation for Intelligent Physical Agents,
Geneva, Switzerland, 1997.

[3] C. Geiger, G. Lehrenfeld. The Application of Concurrent
Fuzzy Prolog in the Field of Flexible Manufacturing Systems.
Proc. of the PAP, Practical Applications of Prolog, London,
UK, 1994

[4] C. Geiger, G. Lehrenfeld, A. Weber. Concurrent Object Ori-
ented Modeling of Fuzzy Strategies.Proc. of the IEEE Con-
ference on Fuzzy Systems, Orlando, USA, 1996.

[5] C. Geiger. Rapid Prototyping of interactive 3D animations.
PhD Thesis, Paderborn University, September 1998 (in ger-
man).

[6] B. Grabot. A decision support system for variable routings in
manufacturing systems.Fuzzy Set and Systems, 58:87 - 104,
1993.

[7] J. Kiniry, D. Zimmerman.A Hands-On Look at Java Mobile
Agents.IEEE Internet Computing, Vol. 1, No. 4, July 1997.

[8] J.M. Huber. JAM - A BDI-theoretic Mobile Agent Archi-
tecture.Proceedings of the Third International Conference on
Autonomous Agents, Seattle, Washington, May 1-5,1999.

[9] H. Nwana, D. Ndumu. A Perspective on Software Agents
Research. (To appear).Knowledge Engineering Review, Cam-
bridge University Press, Cambridge, 1999.

[10] A.S. Rao, M.P. Georgeff. Modeling Rational Agents within
BDI-Architecture.Tech. Report 64, Australian Artificial Intel-
ligence Institute, Melbourne, Australia, February 1996.

[11] A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Log-
ical Computable Language.7th European Workshop on Mod-
eling Autonomous Agents in a Multi-Agent World, Eindhoven,
The Netherlands, 1996.

[12] E. Shapiro. Concurrent Prolog - A Progess Report.IEEE
Computer, 19 (5), August, 1986.

[13] E. Shapiro. The Family of Concurrent Logic Programming
Languages.ACM Surveys, 21(3) 1989.

[14] E. Westkaemper, M. Hoepf, C. Schaeffer. Holonic Manufac-
turing Systems (HMS) - Test Case 5.Proceedings of Holonic
Manufacturing SystemsLake Tahoe, CA, 9-16 February 1994.

[15] H. Zimmermann.Fuzzy Set Theory - and its Applications.
Kluwer Academic Publishers, 2nd, revised edition, 1991

