CASA - Structured Design of a Specification Language
for Intelligent Agents

Stephan Flake and Christian Geiger

C-LAB VIS (Visua Interactive Systems), Paderborn, Germany
E-mail: {f| ake, chri s}@-1 ab. de, http://www.c-lab.de/vis

1 Introduction

Agent based technologies in the sense of distributed computing becomes increasingly
relevant in academic and industrial research and development. Our multi agent sys-
tem CASA focuses on the specification of complex plans that describe the behavior
of agents. The design of CASA is based on concepts from concurrent logic program-
ming that were used to extend the well known BDI agent approach AgentSpeak(L) [2].
Rao’s AgentSpeak(L) is a specification language similar to horn clauses and can be
viewed as an abstraction of an implemented BDI system. Our work is based on the as-
sumption that AgentSpeak(L) demonstrates a successful reengineering approach of an
implemented multi agent system that is now given a formal specification. By extend-
ing this specification with new features for complex plans it was possible to derive an
efficient implementation that supports these new features.

2 Design of the CASA Specification Language

Specification: CASA agents perceive events/messages and select relevant plans with
individual weights for handling these events/messages. Plans are modeled as clauses
with additional guard predicates for testing the applicability of the clause (applicable
plans). Such guard predicates may be arbitrary complex, i.e., the reduction of a guard
may include the evaluation of another plan (deep guards). Such complex speculative
computations may also include communicative acts with other agents. Based on the
contextual conditions in guard predicates different plan types can be distinguished: re-
active plansonly have simple tests as guards, deliberative plansallow speculative com-
putations within an agent and communicative plans allow to communicate with other
agents. CASA uses a hierarchy for plan selection (reactive > deliberative > commu-
nicative). An agent can execute several plans at a time and elements of a single plan
can be processed sequentially or in parallel. Additionally, plans can be suspended by
other plans and have a special exception section if an applicable executed plan fails.
The features of a CASA agent are formally defined based on extended guarded horn
clauses and the cycle of operation is specified by an abstract interpreter. For ease of use
we developed a simple textual format that allows an efficient modeling.

Modeling: The textual CASA definition format defines the initial agent state and is
divided into four sections: First, functions for selecting events, plans, and intentions
at run time execution have to be declared. Initial goals of the agent are declared in the



second section. Each of these goals will be instantiated together with an applicable plan.
For parallel plan execution a multistack data structure is used to handle the instantiated
plans (named as intentions) as separate entities. Initial facts and plans are listed in the
third and fourth section.

events eyent selection
el e3
e - - : plans

A relevant plans
head matches event

! DelibStructure CommStructure :
: any applicable no any applicable no any applicable |
. reactive plans? deliberative plans? communicative plans?) |
: yes i yes i yes :

applicable plans
uards succeeded!

. intention selection
execution |-
’/ \‘ 11 12 13

messages actions add to multistack <——— plan selection

Fig.1. CASA Interpreter Cycle

Handling speculative computations is one of the major aspects of the abstract CASA
interpreter. Speculative computations appear in the context test for relevant plans when-
ever guards of deliberative or communicative plans have to be checked. Two indepen-
dent additional components are introduced in order to manage speculative computa-
tions: the DelibStructure (resp. CommStructure) is holding elements composed of a
goal and all relevant deliberative (resp. communicative) plans to check. For each of
these elements a new instance of the interpreter is generated and executed in parallel to
the other cycles. The operational semantics of the CASA interpreter are best described
by means of the interpreter cycle shown in Figure 1.

Implementation: CASA is implemented with JDK 1.1.8, integrating modules of M.
Huber’s JAM library. A parser written in JavaCC reads the textual CASA specification,
sets the initial state of CASA agents and starts the execution on the CASA interpreter.
CASA agents are integrated into the MECCA framework, an agent management system
that implements the FIPA ACL standard.

Validation: As a first case study we presented a simple application taken from holonic
manufacturing [1]. Future work will concentrate on the development of visual tools for
the design of CASA agents and the application in the area of flexible manufacturing
systems and intelligent user interfaces.

References

1. S. Fleke, Ch. Geiger, G. Lehrenfeld, W. Muéller, V. Paelke. Agent-Based Modeling for
Holonic Manufacturing Systems with Fuzzy Control. NAFIPS 99, New York, 1999.

2. A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logica Computable Language. 7th
European Workshop on Modeling Autonomous Agents in a Multi-Agent World, Eindhoven, The
Netherlands, 1996.



