CASA - Structured Design of a Specification Language
for Intelligent Agents

Stephan Flake and Christian Geiger

C-LAB VIS (Visual Interactive Systems)
Fuerstenallee 11, 33102 Paderborn, Germany
{fl ake, chris}@-1ab.de
WWW home pagehtt p: // ww. c-1 ab. de/vi s

Abstract. The interest in agent based technologies in the sense oibdisd
computing is continuously increasing in academic and indlgesearch and
development. But the concentration of research in distihes has lead to a
lack of consensus regarding basic concepts of agent thedryhair relation to
the development of agent systems and applications. Thibgageen theory and
practice has been recognized and many research groupsdodhe relation of
formal specification methods for agent properties to thégdesf practical multi
agent systems (MAS). In this paper we describe the desigrinaplémentation
of CASA, a multi agent specification language that builds orexisting formal
agent specification approach [13] and extends it by condepts concurrent
logic programming. With CASA it is possible to design agewith complex
behavior patterns (e.g. parallel strategies, speculativgputations). Application
areas of CASA agents are manufacturing systems, robotitsnéelligent user
interfaces.

1 Introduction

Agent-based technology in the sense of distributed comgisi growing dramatically
in many directions. From a design point of view agents prewadnatural metaphor
for conceptualizing and building a wide range of complex pater systems. These
systems contain many passive objects but also many actmpauents which can best
be described by the notion of agents. Agent-based systtaretiire distinguishes micro
and macro views. The micro view considers the local behadi@n individual agent
whereas its environment and interaction is investigatetiérmacro view.

From an implementation point of view the existence of sgditiaries or dedicated
programming languages that provide data and control stresfor describing and ma-
nipulating agent specific properties allows a straight fmdvimplementation of the
designed models. Also, there is considerable work on fdmimgl notions in MAS (e.g.
commitments, capabilities, know how). Advanced logicsgolaen temporal and modal
logic that capture essential agent properties like coecay, time dependent behavior
or inconsistent states are under development. Well knownipation techniques like
Z are applied to formally capture all aspects of such systé&wen well-known verifica-
tion methods like model checking have been successfullijeapim the agent oriented
domain.

A major criticism of much of the formal work is, that only l#tadvice is given
how to apply theoretical results to practical realizatidds the practical side there is a
significant number of prototype implementations, some @sking to solve real world

problems [1] like flight allocation, manufacturing resoeiialocation and information
retrieval in large databases. These practical approaclsfiynfollow an ad-hoc ap-
proach building systems from scratch. Due to the complexitthe developed code
implemented systems often lack an underlying sound theory.

In addition, as reported by Nwana in [11], a couple of new eptein recent MAS
research seems to reinvent the wheel. There is already edangunt of relevant and
first class literature published in traditional Al, systesasidn, parallel computing, and
software engineering which directly apply to the principlef agent-based systems.
Summarizing, the design of a MAS should be based on the follpwrinciples: (1)
transformation from theoretical phase to practical reaion, (2) regard and, if possi-
ble, reuse well-known concepts from related fields, (3) m#ble and flexible design
approach that is efficiently realized.

The work presented in this paper describes CASA, a multiteggerification lan-
guage, and its efficient implementation. The design of CAS strongly inspired by
the proposed principles and followed a structured desigmageh consisting of the
consecutive design phases of specification, modellindppneing and validation. The
structure of the remainder mainly follows these phaseserAdescribing some basic
concepts of MAS in general and the well-known BDI approacipanticular we de-
scribe the micro level specification of CASA agents basedhenBDI specification
language AgentSpeak [13] extended by concepts taken frocuceent logic program-
ming [15]. The next section describes the modelling of CA$Ards and concentrates
on the transformation of the (semi-)formal concepts to adgton language for a
MAS. Our current prototype implementation which is usingsérg Java-libraries is
described thereafter. We conclude with some examples ¢ne¢ ss a first validation
and the description of future work in this area.

2 Basics of Multi Agent Systems

Agents are characterized as a set of concurrent objectgydotially according to spe-
cific incoming messages and perceived events. On a higherijkisn level these ob-
jects have complex internal states and act according ttegtes. Properties of agents
are autonomy, reactive / pro-active behaviour and stradtaressages for communica-
tion. A metaphor for explaining their functionality can @gscertain mental capabil-
ities (e.g. beliefs, goals, desires, intentions) to theseobjects. Many approaches
of agent architectures exist in the Al-literature (see i)l a significant part of these
is based on Rao’s and Georgeff's BDI-approach [12, 13] inciwlsigents have beliefs,
desires or goals and build intentions to achieve their goalsieans of plans. For the
purpose of our work the following naive view of agents is sifnt (see Fig. 1).

Each agent has got a knowledge base in which the agent'sdbateestored. Beliefs
can be seen as facts or data describing the agent’s modet efdHd. Plans provide
strategies for possible behaviour in form of rules. To aghi@gent specific goals, cer-
tain strategies are activated based on available datef{fetind incoming messages
(from other agents) as well as events generated by the ughe @ystem. Executing
these strategies results in certain actions which may gemaew messages or change
the agent’s environment. The control mechanism is an esdigde in which incom-
ing messages and relevant events are observed. This riesalp®ssible update of the
knowledge base (if new information is available) and thes@n of suitable strategies
in order to fulfill the agent’'s goals. Agent behaviour is oftmodeled by operational
means [13]. Based on definitions for plans, beliefs, godts,an abstract interpreter

intention

generates
controls message

message

&s\ ~
reads ©

events/ '~
actions

-
- control

Fig. 1. Naive Agent View

defines the control cycle running in each agent. Strategéeedescribed declaratively in
terms of clauses or rules similar to horn clauses or prodactiles. Additional tests as
preconditions ensure the applicability in a given context.

2.1 BDl agents

Within the MAS community, the BDI model [12] has come to be gibly the best
known and best studied model of agency. Perhaps the mostetiimgpreason is that
this model combines a respectable philosophical model ofampractical reasoning
[3], a number of well designed implemented systems [1] amdrs¢successful applica-
tions (e.g. factory process control, business processdiagnosis systems). Finally, an
elegant abstract logical framework has been developedérages as theoretical foun-
dation and allows to relate this model to other computatiomadels of concurrency
[14]. Beliefs, desires and intentions are an essentialgfatie state description of a
complex system viewed from a high abstraction level. Theppse of the BDI model
of agents is to characterize entities using these anthrogunit notions as a sound
formal base. Specification, analysis and verification ofretl agents then becomes
possible. If these concepts are realized as efficient data@mtrol structures they may
form the core components for systems that learn, can hamchbasistent and uncertain
information and adapt dynamically to a changing environimen

However, it is generally concerned that there exists a gapdsn those powerful
BDI logics and practical system implementations. Follayv[t0] one reason is that
the logical formalisms used to define the models do not haveparational model to
support them. Recent work to overcome this problem can baratga in two major
directions. One is to define BDI models using a suitable ligiermalism that allows
to represent mental states and that has operational pressiduse the logic as knowl-
edge representation formalism. Mora et al., for examplénele the notions of belief,
desires and intentions using extended logic programmih@)Ean extension of logic
programming with a second, explicit negation. This allotws éxplicit representation
of negative information based on a well founded semanti@k [1

Another approach is to extend existing BDI logics with agprate operational
models so that agent theories become computational. Sctejgkesentation of a BDI
logic follows this approach [14]. Rao also took this apptoac[13] where he defines
a proof procedure for the propositional version of his BOJito He presented Agent-
Speak(L), a formal agent description language for an ajrgadlemented MAS. Based
on this reengineering effort a practical and useful comtixnaof formal description and
implementation framework has been achieved.

AgentSpeak(L) allows the specification of an agent in a datile notation sim-
ilar to horn clauses used in logic programming languages HROLOG. An agent's

behavior (i.e. plans) and its knowledge are completely aeakly described using this
notation. Plans in AgentSpeak(L) refer to horn clausesdhatriggered by an event.
Rao identified the following differences to conventionatrolauses: there are differ-
ent types of conditions that allow both, a goal directed addta driven activation of

plans. Plans are event based and context sensitive, i.ex¢eation of a plan needs the
activation by an event and the successful evaluation otiadail context conditions. Fi-

nally, the execution of a plan can be suspended and an aggrex@eute more than one
plan at a time. The description of AgentSpeak(L) is simitethte semantics of guarded
horn clauses used in concurrent logic programming langubiige Concurrent Prolog

[15]. We used these clauses as base for the specification 8AC#gents. Therefore
we will begin the specification section with a brief desddptof the main concepts of
Concurrent Prolog.

3 Specification of CASA agents

The specification defines a CASA agent by means of goals, [atiefs, actions, mes-
sages, and intentions. In this article, we focus our ingasibn on the CASA micro
view, i.e. modelling and execution of agent plans. Thesegé#ae defined by rules with
complex context-sensitive tests. The parallel, eveneth@saluation of plans with pri-
orities is defined by extended guarded horn clauses.

3.1 Guarded Horn Clauses

Concurrent Prolog is a concurrent logic programming laggya5] and was developed
by E. Shapiro during 1985-1989. It provides a process ceeaeémantics and was im-
plemented as a subset (Flat Concurrent Prolog) on multiggsmr architectures. The
language easily can handle infinite computations typicattie modelling of reactive

systems. The language incorporates guarded-commanctimdeism, data-flow like

synchronization, and a commitment mechanisms. A ConcuResiog program is a

finite set ofGuarded Horn Clauses (GHC).

H Gl,GQ, ---aGn | 317327---73771
~~

Head Guard Body

The operator " separates the guard from the body and is catleximit opera-
tor. The head and body elements define processes with argurfiibetsomponents of
the guard define test conditions related to constraintsiigatead’s arguments should
satisfy. Declaratively, the commit operator is read just la conjunctionH is true if
theG’s and B’s are true. The abstract computation model of ConcurresibBrand its
derivates is established by process interpretation ofdaésdorming the resolvent. The
goals are regarded as an asynchrorpasess network. The concurrent processes com-
municate and synchronize via shared logical variablesrdaup to an asynchronous
communication model. When several clauses are applicableca, the commit opera-
tor ‘|" acts as a control primitive ensuring that clause seled@arried out in a mutual
exclusive manner. The potential for parallelism offeredclguse selection might be
considered as some form of restricted OR-parallelism. Maduation of a guard;
may result in a complex computation(; is not unifiable with a fact but with the head

of another GHC. Suchleep guards relate to PROLOG's backtracking mechanism but
can hardly be implemented efficiently on parallel architess.

The concepts of concurrent logic languages received signifiattention in the 80's
and several parallel programming languages based on ttieas were implemented,
e.g. FCP or Strand. Concurrent constraint programmingiages and multi-paradigm
programming languages like Oz or AKL inherited many ideasfithese approaches.
Such languages often build the implementation base fori auggint systems.

3.2 Basic Definitions of CASA Agents

The specification of CASA agents is based on AgentSpeak(uyy@d Horn Clauses
and several extensions. The complete specification [6]rsdfxe definition of beliefs,
goals, actions, messages, events, plans and agents. lalltheifig we focus on the
definition of plans and agents and will describe the othemelgs only briefly and
informally.

Beliefs: Beliefs compare to facts in logic programming. If two fae{s) andb(s) are
processed sequentially this is written&s); b(s). A concurrent execution is de-
noted asu(t), b(s).

Goals: A goal g(s) represents the states an agent wants to achieve in the.fliheee
are two different types of goals. A te&j(s) simply looks for a belief in the agent’s
knowledge base that unifies with the test. A deep d¢@l) is a goal in the PRO-
LOG sense and needs the reduction of one or more strategies.

Actions, Messages, EventsAn actiona(t) refers to a basic behavior block the agent
can perform to modify its environment. Messages are spacténs with a given
structure including sender, receiver, type, and contéan &ction from other agents,
the system or the user can be perceived by an agent, thisymsteetion is denoted
as anevent.

Plans: The behavior of an agent is basically defined by specifyingtegies (resp.
plans). A planP is formally defined as aextended guarded horn clause of form

P: H+— Gy...Gy | By...Bn(p).

in which H is the head(, are guards3; are predicates as body goals, gnd
defines a priority.

The head of a CASA strategy describes the event the agentparcsgive in order
to execute the plan. The guard elements may consist of anpeuaf tests, goals
and messages which are processed sequentially (sepayatédl or in parallel
(separated by ",”). Additionally, a priority (or weight)lailvs to choose between
different applicable strategies. The prioriy) of a plan denotes its importance for
the agent.

Based on the type of the guards different strategies armglisshed. If all guards
are simple tests, the strategy is consideredeastive. If goals are also elements
in the strategy’s guards the strategydiberative, because the evaluation of the
guard requires a speculative computation which evaludtes strategies in order
to reduce the goal (multi level plans). If the context tesbalequires the com-
munication between agents, the strategy is describembrasunicative. Actions
are not allowed in guards. If multiple strategies can beiafdpleactive strategies
take precedence over deliberative strategies. Commiwrecatategies have lowest
priority. During run time, an agent can suspend executingteggies and resume
suspended ones by using special operations for suspendiagming.

3.3 Execution Cycle of a CASA Agent
A CASA agent is described by a tuple

(Bel, Plans, M sg, Act, RunTime(Evt, Int, AM sg, AAct, Se, Sp, Si))

Bel, Plans, M sg, Act are sets with elements representing the agent’s beliafiss pl
actions and messages. The structdre:T"ime(...) describes a component that defines
the state of execution in each agent at run time. This strectonsists of a set of cur-
rently perceived eventdjut), a set of intentionsi{ut, i.e., strategies that are currently
pursued by the agent), a subset of messages / actidvis ¢, A Act) that are processed
in the current execution cycle and a number of selectiontfans (S, Sp, S;).

The operational semantics of a CASA agent can be best dedcbiyp means of
an abstract interpreter as it is visually given in Figure Be Tnterpreter manages the
execution of all agent activities in an interpretation lodjpe operation of the agent
interpreter is controlled by three functions that contnadre selection, plan selection,
and intention selection. By modifying their implementatithe system can be easily
tailored the different operational semantics for variotieeoapplications.

events

event selection plans
el g3 ed
e2 | ST __ _ _ _ p2 Pl
P5 P6
next P2P5P6 | relevant plans
event
P2 P5 applicable plans

plan selection

intention selection
execution E E

11 12 13

. intention multistack
messages actions

Fig. 2. CASA Execution Cycle

The interpretation starts with the selection of an incoméwgnt. All perceived
events are stored and the selection functprselects a suitable element. In a second
step, a set of relevant plans which are appropriate for pgicg the selected event are
identified. Arelevant plan is defined by a plan which head matches the selected event.
The preconditions of all relevant plans are checked ag#iestacts / plans stored in
the agent’s beliefs base. This test can include the evaluafiother strategies, e.g. if a
precondition is a goal of another strategy. This is realtzgdenerating a correspond-
ing event that is processed in one of the next execution syéleelevant plan which
preconditions are all satisfiable is calledapplicable plan. The agent uses the selec-
tion function.S,, to select one applicable plan from the set of all applicatdes This
plan is processed as the pursued strategy and becomediatsiias an intention on

the multistack. If the event that triggered the plan was geted by the agent itself (as
a consequence of a former execution cycle) the plan is pustiecthe intention stack
that generated the event. If the event was generated froen agfents, the environment
or the user, the selected applicable plan is stored as a nemtion on the multistack.

The multistack concept allows each agent to investigateraéplans in parallel and
to instantiate new (sub)intentions. Finally, the intetprselects an intention by means
of the selection functiory; from the multistack and executes it starting from the top
element. Execution can result in either a direct actiongireeration of an event, or the
instantiation of new (sub)intentions. Thereafter, thelpteter advances to process the
next event or continues to process the existing intentiorthe multistack.

The interpreter and the basic definitions (formally destin [6]) served as base
for the modelling phase that will be described in the nextisac

3.4 CASA Specification Language

The CASA specification language is syntactically definedilaimy to the agent lan-
guage JAM [8], but the semantics differ with respect to theartying CASA interpreter
model. The language elements are briefly described in thafivlg:

Basic Elements: Expressions in the CASA specification language refer to-Girder
terms of the formal CASA specification. An expression can b&reable, a constant
(a string or a number), a function call (e.g. calculation@mparative operations),
or a relation. A relation simply associates a list of dataigalwith an identifier.

Facts: Facts correspond to the beliefs of the formal CASA specificafA fact is de-
fined with the keyword FACT followed by a relation.

Goals: The two different types of goals are handled in the followiveys: Syntacti-
cally a test is introduced by the keywords EXISTS FACT foléahby a relation.
The agent’s knowledge base is checked if the specified fabttve given argu-
ment values exists and returns TRUE if that fact could be doleep goals are
introduced by the keyword ACHIEVE followed by a relation aagriority value.
The relation name specifies the goal to achieve and theaglatguments represent
call-by-value-and-result parameters for relevant plans.

Actions: There are a number of pre-defined CASA actions availablefa.gnanipu-
lating the agent’s knowledge base or assigning values tabhlas. For any other ac-
tion which is not pre-defined in CASA additional functionseasily be declared.
Additional functions have to be introduced by the keywordd2UTE followed by
an identifier representing the action and a list of arguments

Messages:Messages are special actions; they are inter-agent opesatnd therefore
concern both the agent’s micro and macro view. CASA has somegfined mes-
sage types to specify messages like REQUEST, INFORM, or REPhese key-
words are followed by a list of arguments declaring a messaggver, a message
label, and the content of the message.

Plans: CASA plans correspond to extended guarded horn clauseslukxsa the for-
mal CASA specification. They are defined along the lines ofalewing patterns:

PLAN:
{ NAME: <string>;
DESCRI PTI ON: <string>;
GQAL: ACHI EVE <rel ati on>;

TYPE: <REACTI VE | DELI BERATI VE | COVMUNI CATI VE>;

PRECONDI TI ON: <l ist of conditions>;

BODY: <list of actions>;
FAl LURE: <list of actions>;
PRI ORI TY: <nuneric val ue>;

}

In addition to the five plan sections which directly refer h@ tomponents of ex-
tended guarded horn clauses we have defined a section fomialfg describing
the plan, a section for specifying a plan type, and a failectisn. The failure sec-
tion is executed when errors occur during run time executfahe plan body. Only
some actions are allowed in this section, e.g. assignmenariables in order to
achieve a consistent state before dropping the plan. Dudéttar readability the
elements to execute in parallel are explicitly declared RARALLEL section (in-
stead of using commas), while sequences are still simplgragd by semicolons.
Some additional pre-defined structures are available imIpbalies to support easy
specification development, e.g. IF-THEN-ELSE or WHILE#ds0

With these language elements it is possible to specify a tmmitial state of CASA
agents. Each agent specification is composed of four maiioeec

FUNCTI ONS: EVENTSELECT: <sel ection function>;
PLANSELECT: <sel ection function>;
| NTENTI ONSELECT: <sel ection function>;

GOALS: ACHI EVE <rel ation> : <nuneric val ue>;

FACTS: FACT <rel ati on>;

PLANS: PLAN {...}

Three selection functions have to be declared in the firgiseof an agent speci-
fication. The selection functions depend on the agent agpbic, i.e., agent developers
provide these functions to their agents in a function lijaranitial deep goals are defined
in the second section. These goals will be instantiatedethay with an applicable plan
— in the multistack as separate intentions. Initial facessamply listed in the third sec-
tion and added to the agent’s knowledge base. Lastly a selefant plans has to be
defined in order to achieve the goals which are perceived ast®wuring run time
execution. The plans are stored in the agent’s plan library.

3.5 Refined Operational Semantics and Speculative Calcuians in CASA

We have refined the abstract interpreter, as it is desiraldistinguish between different
types of perceived events (so far all events were processeelagoals). Events get an
additional type tag, so that it can now be distinguished betwnew goals, new facts,
new plans, suspend / resume events and replies. New fagbéaarstare directly inserted
into the according components. Suspend / resume eventgpliekronly have effect on
single intentions and can therefore be directly passedaanhitistack. Only for new
goals it is necessary to find an applicable plan and instargimew (sub)intention. In
the following we focus on the run time execution of new goal€CASA agents and
present central aspects of modelling speculative calonisit

events i
event selection
el g3 e4: ACHIEVE goal
e2 Can't achieve goal(e plans
no no
relevant plans
Select complete element e fron
Complete element | yes _| » 1o ucture Any applicable_Y&S Add e4 together with
in CommStructure? . 1 - - " .
communicative plans in e? ‘ Any applicable reactive pIansF. relevant deliberative
no | plans to DelibStructur
no yes
Complete element yes Select complete element e fron

— | DelibStructure. Any applicable | yes
deliberative plans in e?

ino

Add goal(e) together with
relevant communicative plan
to CommStructure

- i

intention selection
\ intention multistack

messages actions

in DelibStructure? applicable plans

plan selection

@

Fig. 3. Refined CASA Interpreter Cycle

Speculative calculations appear when a subgaala precondition of a plan has to
be tested (deep guards). In order to achigve new goal event has to be generated and
eventually some actions have to be performed. The inteapmdel is refined with two
independent components responsible for speculative lediloos: Each element in the
DelibStructureis composed of a goal event and all relevant deliberativestia check.
Similarly an element in th€ommStructureis composed of a goal event and all relevant
communicative plans. The operational semantics are bastibed by means of the
cycle shown in Figure 3. When no applicable reactive plaed@und for a new goal,

a new element — composed of the goal and all relevant detibegaans — is added to
the DelibStructure. An element in the DelibStructure igigaibe complete, when all
its relevant plans are checked, i.e. the according plarggditions have been tested.
When there is at least one applicable plan in such a comgketeecat, the interpreter
cycle is continued with plan selection and intention ingtion. Otherwise all relevant
communicative plans have to be checked in the CommStrudturally, when even no
applicable communicative plan can be found, the new godt banachieved and an
exception has to be raised. It is important to notice thaDxeibStructure, the Comm-
Structure and the interpreter cycle operate independantlyelements in the two ad-
ditional components are usually not completed before séveunds of the interpreter
cycle have passed.

3.6 Implementation

CASA's micro level view is implemented in Java with JDK 1.1afegrating modules
of the JAM library [8]. A parser written in JavaCC reads CAS#esification programs,
sets the initial state of CASA agents and starts the exatwoticthe CASA interpreter.

10

CASA agents are integrated into the MECCA framework [2]. MEZCis an agent man-
agement system which implements the FIPA ACL (Agent Comuation Language)
standard [4]. A CASA agent writes messages through a speoifitnunication adap-
tor to the internal message transport channel of the MECGegy. This adaptor is
also reading incoming messages from the transport chacolerting messages into
appropriate CASA events and forwards them to the CASA agdm.adaptor allows
CASA agents to communicate with any FIPA compliant agentweeMECCA frame-
work as it is shown in Figure 4.

CASA agent FIPA FIPA
| agont | - | agent
4adagtor7 ‘

I

\ Internal Message Transport |

Agent Manage-
Facilitator ment System

MECCA

Fig. 4. CASA Agent connected to MECCA

3.7 A Sample CASA Agent

In this section we present a sample CASA agent which was asifpart of a MAS
that is simulating a color sorting assembly buffer (CSAB)doloring car bodies. Each
station and roboter of the CSAB is represented by an own alyethtis paper we focus
on the tasks of a transport roboter. In the correspondingjfegegion file we have listed
the robot’s strategies to achieve certain goals, e.g.ngedti order to deliver, moving to
the body depot, or determining the most appropriate destimatation. The following
CASA code fragment is describing the central part of the #gjepecification:

FUNCTI ONS: EVENTSELECT: Event _O destFirst;
PLANSELECT: Pl an_Hi ghestPriority;
| NTENTI ONSELECT: Intention_Hi ghestPriority;

QOALS: ACHI EVE transport : 1.0;

FACTS: -

FACT order Agent "order Manager";

PLAN:

{ NAME: "Master Plan";

GOAL: ACHI EVE transport;
TYPE: REACT!I VE;
BODY: GETFACT nyld $id;

WHI LE TEST (TRUE) {

PARALLEL

{ ACH EVE get Order $nr $bodyType $color : 1.0; }
{ ACH EVE gotoDepot : 1.0; }

IF TEST (!= $nr "none") {

11

PARALLEL
{ ACHI EVE | oadRobot $bodyType $bodyNunber :1.0;}
{ ACHI EVE findDestination $col or $destLine :1.0;}
/1 success: nove to $destLine and unl oad
/1 else: send order back

}

}
PRI ORI TY: 1. 0;
}

The specification defines a top-level goal "transport” andgpropriate master plan
to achieve this goal. When the master plan is executed, aesebgoals have to be
achieved, some of them even in parallel, e.g. the subgoat©tgler” and "gotoDepot”.
Each time after this subgoal is achieved a parameter valcieeisked in order to find
out whether an order can be transported or not. The follo@A§A code is a fragment
of the possible plans to achieve the subgoal "getOrder”:

PLAN:

{ NAME: "taking | ocal order"”;
GOAL: ACHI EVE get Order $nr $bodyType $col or;
TYPE: REACTI VE;
PRECONDI TI ON: GETFACT order $nr $bodyType $col or;
BODY: EXECUTE printLine "taking order " $nr;
FAI LURE: ASSI GN $nr "none";
PRIORITY: 2.0;

}

PLAN:

{ NAME: "requesting orderAgent";
GOAL: ACHI EVE get Order $nr $bodyType $col or;
TYPE: COVMUNI CATI VE;

PRECONDI TI ON: GETFACT order Agent $or der Agent ;
REQUEST $order Agent "getOrder” : 1.0;
CGETREPLY $nr $bodyType $col or;

BODY: EXECUTE printLine "received order " $nr;
FAI LURE: ASSI GN $nr "none";
PRI ORI TY: 6.0;

According to the CASA interpreter model the reactive plaohecked first. When
there is no order in the agent’s knowledge base, the GETFA€Gondition fails and
the plan is not applicable. The communicative plan is onlysidered when the pre-
condition of the reactive plan is false. When the communiegilan’s precondition is
checked, the agent will get a new order from the "order agentequest within a reply
message. After execution of one of the plans the variablesifigpd in the ACHIEVE-
action of the invoking intention are automatically updates they are interpreted as
call-by-value-and-result parameters.

4 Summary and Outlook

We have described the design of the agent specification éysgCASA, its efficient
realization and the integration in the agent managementewaork MECCA. CASA
combines the BDI agent approach with concepts from conotitogic programming

12

and allows the design of complex agent strategies. Baselteogiéments of the CASA
specification a description language was designed thawslto textually specify a
multi agent system on a high abstraction level. This desorips efficiently executed
using the CASA programming environment. First examplekuofe simple applications
taken from holonic manufacturing [5]. Future work will cardrate on the development
of visual tools for the design of CASA agents and the apphbcan the area of flexible
manufacturing systems and intelligent user interfaces.

References

1. Agent Web Pages: http://www.agentlink.org, http://weswumbc.edu/agents

2. B. Bauer, D. Steiner. MECCA - System Reference Manuaiternal Documentation)
Siemens, Munich, 1998.

3. M. E. Bratman. Intentions., Plans, and Practical Reallanvard University Press, Cam-
bridge, USA, 1987.

4. FIPA 97 Specification - Part 2: Agent Communication Larmgud|PA - Foundation for
Intelligent Physical Agents, Geneva, Switzerland, 1997.

5. S. Flake, Ch. Geiger, G. Lehrenfeld, W. Mueller, V. Paelkgent-Based Modeling for
Holonic Manufacturing Systems with Fuzzy Control, NAFIPS, 18th International Con-
ference of the North American Fuzzy Information Processing Society, New York, USA, June
10-12, 1999.

6. C. Geiger. Rapid Prototyping of interactive 3D animagid?hD Thesis, Paderborn University,
September 1998 (in German).

7. J. Kiniry, D. Zimmerman.A Hands-On Look at Java Mobile AtgelEEE Internet Comput-
ing, Vol. 1, No. 4, July 1997.

8. J.M. Huber. JAM - A BDI-theoretic Mobile Agent Architects Proceedings of the Third
International Conference on Autonomous Agents, Seattle, Washington, USA, May 1-5, 1999.

9. J. Mueller et. al. Chapter Belief Desire Intentidntelligent Agents V. Agent Theories, Ar-
chitectures, and Languages. 5th International Workshop, ATAL 98, Paris, France, Ju@8.
Springer LNAI 1555.

10. M. Mora et. al. BDI Models and Systems: Bridging the GAfelligent Agents V. Agent
Theories, Architectures, and Languages. 5th International Workshop, ATAL 98, Paris, France,
July 1998. Springer LNAI 1555.

11. H.Nwana, D. Ndumu. A Perspective on Software Agents &eke(To appearKnowledge
Engineering Review, Cambridge University Press, Cambridge, USA, 1999.

12. A.S. Rao, M.P. Georgeff. Modeling Rational Agents witBiDI-Architecture.Tech. Report
64, Australian Artificial Intelligence Institute, MelbournAustralia, February 1996.

13. A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in a LdgBamputable Languagé&th
European Workshop on Modeling Autonomous Agents in a Multi-Agent World, Eindhoven,
The Netherlands, 1996.

14. K. Schild. On the Relationship Between BDI Logics anch8&d Logics of Concurrency.
Intelligent Agents V. Agent Theories, Architectures, and Languages. 5th International Work-
shop, ATAL 98, Paris, France, July 1998. Springer LNAI 1555.

15. E. Shapiro. The Family of Concurrent Logic ProgrammimgduagesACM Surveys, 21(3)
1989.

