
CASA - Structured Design of a Specification Language
for Intelligent Agents

Stephan Flake and Christian Geiger

C-LAB VIS (Visual Interactive Systems)
Fuerstenallee 11, 33102 Paderborn, Germany

{flake, chris}@c-lab.de
WWW home page:http://www.c-lab.de/vis

Abstract. The interest in agent based technologies in the sense of distributed
computing is continuously increasing in academic and industrial research and
development. But the concentration of research in distinctniches has lead to a
lack of consensus regarding basic concepts of agent theory and their relation to
the development of agent systems and applications. This gapbetween theory and
practice has been recognized and many research groups focuson the relation of
formal specification methods for agent properties to the design of practical multi
agent systems (MAS). In this paper we describe the design andimplementation
of CASA, a multi agent specification language that builds on an existing formal
agent specification approach [13] and extends it by conceptsfrom concurrent
logic programming. With CASA it is possible to design agentswith complex
behavior patterns (e.g. parallel strategies, speculativecomputations). Application
areas of CASA agents are manufacturing systems, robotics and intelligent user
interfaces.

1 Introduction

Agent-based technology in the sense of distributed computing is growing dramatically
in many directions. From a design point of view agents provide a natural metaphor
for conceptualizing and building a wide range of complex computer systems. These
systems contain many passive objects but also many active components which can best
be described by the notion of agents. Agent-based systems literature distinguishes micro
and macro views. The micro view considers the local behaviorof an individual agent
whereas its environment and interaction is investigated inthe macro view.

From an implementation point of view the existence of special libraries or dedicated
programming languages that provide data and control structures for describing and ma-
nipulating agent specific properties allows a straight forward implementation of the
designed models. Also, there is considerable work on formalizing notions in MAS (e.g.
commitments, capabilities, know how). Advanced logics based on temporal and modal
logic that capture essential agent properties like concurrency, time dependent behavior
or inconsistent states are under development. Well known specification techniques like
Z are applied to formally capture all aspects of such systems. Even well-known verifica-
tion methods like model checking have been successfully applied in the agent oriented
domain.

A major criticism of much of the formal work is, that only little advice is given
how to apply theoretical results to practical realizations. On the practical side there is a
significant number of prototype implementations, some addressing to solve real world

2

problems [1] like flight allocation, manufacturing resource allocation and information
retrieval in large databases. These practical approaches mostly follow an ad-hoc ap-
proach building systems from scratch. Due to the complexityof the developed code
implemented systems often lack an underlying sound theory.

In addition, as reported by Nwana in [11], a couple of new concepts in recent MAS
research seems to reinvent the wheel. There is already a large amount of relevant and
first class literature published in traditional AI, system design, parallel computing, and
software engineering which directly apply to the principles of agent-based systems.
Summarizing, the design of a MAS should be based on the following principles: (1)
transformation from theoretical phase to practical realization, (2) regard and, if possi-
ble, reuse well-known concepts from related fields, (3) extendable and flexible design
approach that is efficiently realized.

The work presented in this paper describes CASA, a multi agent specification lan-
guage, and its efficient implementation. The design of CASA was strongly inspired by
the proposed principles and followed a structured design approach consisting of the
consecutive design phases of specification, modelling, prototyping and validation. The
structure of the remainder mainly follows these phases. After describing some basic
concepts of MAS in general and the well-known BDI approach inparticular we de-
scribe the micro level specification of CASA agents based on the BDI specification
language AgentSpeak [13] extended by concepts taken from concurrent logic program-
ming [15]. The next section describes the modelling of CASA agents and concentrates
on the transformation of the (semi-)formal concepts to a description language for a
MAS. Our current prototype implementation which is using existing Java-libraries is
described thereafter. We conclude with some examples that serve as a first validation
and the description of future work in this area.

2 Basics of Multi Agent Systems

Agents are characterized as a set of concurrent objects acting locally according to spe-
cific incoming messages and perceived events. On a higher description level these ob-
jects have complex internal states and act according to strategies. Properties of agents
are autonomy, reactive / pro-active behaviour and structured messages for communica-
tion. A metaphor for explaining their functionality can assign certain mental capabil-
ities (e.g. beliefs, goals, desires, intentions) to these active objects. Many approaches
of agent architectures exist in the AI-literature (see [9])and a significant part of these
is based on Rao’s and Georgeff’s BDI-approach [12, 13] in which agents have beliefs,
desires or goals and build intentions to achieve their goalsby means of plans. For the
purpose of our work the following naive view of agents is sufficient (see Fig. 1).

Each agent has got a knowledge base in which the agent’s beliefs are stored. Beliefs
can be seen as facts or data describing the agent’s model of the world. Plans provide
strategies for possible behaviour in form of rules. To achieve agent specific goals, cer-
tain strategies are activated based on available data (beliefs) and incoming messages
(from other agents) as well as events generated by the user orthe system. Executing
these strategies results in certain actions which may generate new messages or change
the agent’s environment. The control mechanism is an endless cycle in which incom-
ing messages and relevant events are observed. This resultsin a possible update of the
knowledge base (if new information is available) and the selection of suitable strategies
in order to fulfill the agent’s goals. Agent behaviour is often modeled by operational
means [13]. Based on definitions for plans, beliefs, goals, etc. an abstract interpreter

3

generates

selects

message message

reads
control

events

input

uses

actions

output

intention

beliefs strategies

controls

generates

Fig. 1.Naive Agent View

defines the control cycle running in each agent. Strategies are described declaratively in
terms of clauses or rules similar to horn clauses or production rules. Additional tests as
preconditions ensure the applicability in a given context.

2.1 BDI agents

Within the MAS community, the BDI model [12] has come to be possibly the best
known and best studied model of agency. Perhaps the most compelling reason is that
this model combines a respectable philosophical model of human practical reasoning
[3], a number of well designed implemented systems [1] and several successful applica-
tions (e.g. factory process control, business process, fault diagnosis systems). Finally, an
elegant abstract logical framework has been developed thatserves as theoretical foun-
dation and allows to relate this model to other computational models of concurrency
[14]. Beliefs, desires and intentions are an essential partof the state description of a
complex system viewed from a high abstraction level. The purpose of the BDI model
of agents is to characterize entities using these anthropomorphic notions as a sound
formal base. Specification, analysis and verification of rational agents then becomes
possible. If these concepts are realized as efficient data and control structures they may
form the core components for systems that learn, can handle inconsistent and uncertain
information and adapt dynamically to a changing environment.

However, it is generally concerned that there exists a gap between those powerful
BDI logics and practical system implementations. Following [10] one reason is that
the logical formalisms used to define the models do not have anoperational model to
support them. Recent work to overcome this problem can be separated in two major
directions. One is to define BDI models using a suitable logical formalism that allows
to represent mental states and that has operational procedures to use the logic as knowl-
edge representation formalism. Mora et al., for example, defined the notions of belief,
desires and intentions using extended logic programming (ELP), an extension of logic
programming with a second, explicit negation. This allows the explicit representation
of negative information based on a well founded semantics [10].

Another approach is to extend existing BDI logics with appropriate operational
models so that agent theories become computational. Schild’s representation of a BDI
logic follows this approach [14]. Rao also took this approach in [13] where he defines
a proof procedure for the propositional version of his BDI logic. He presented Agent-
Speak(L), a formal agent description language for an already implemented MAS. Based
on this reengineering effort a practical and useful combination of formal description and
implementation framework has been achieved.

AgentSpeak(L) allows the specification of an agent in a declarative notation sim-
ilar to horn clauses used in logic programming languages like PROLOG. An agent’s

4

behavior (i.e. plans) and its knowledge are completely and clearly described using this
notation. Plans in AgentSpeak(L) refer to horn clauses thatare triggered by an event.
Rao identified the following differences to conventional horn clauses: there are differ-
ent types of conditions that allow both, a goal directed and adata driven activation of
plans. Plans are event based and context sensitive, i.e. theexecution of a plan needs the
activation by an event and the successful evaluation of additional context conditions. Fi-
nally, the execution of a plan can be suspended and an agent may execute more than one
plan at a time. The description of AgentSpeak(L) is similar to the semantics of guarded
horn clauses used in concurrent logic programming languages like Concurrent Prolog
[15]. We used these clauses as base for the specification of CASA agents. Therefore
we will begin the specification section with a brief description of the main concepts of
Concurrent Prolog.

3 Specification of CASA agents

The specification defines a CASA agent by means of goals, plans, beliefs, actions, mes-
sages, and intentions. In this article, we focus our investigation on the CASA micro
view, i.e. modelling and execution of agent plans. These plans are defined by rules with
complex context-sensitive tests. The parallel, event-based evaluation of plans with pri-
orities is defined by extended guarded horn clauses.

3.1 Guarded Horn Clauses

Concurrent Prolog is a concurrent logic programming language [15] and was developed
by E. Shapiro during 1985-1989. It provides a process oriented semantics and was im-
plemented as a subset (Flat Concurrent Prolog) on multi processor architectures. The
language easily can handle infinite computations typical for the modelling of reactive
systems. The language incorporates guarded-command indeterminism, data-flow like
synchronization, and a commitment mechanisms. A Concurrent Prolog program is a
finite set ofGuarded Horn Clauses (GHC).

H
︸︷︷︸

Head

← G1, G2, ..., Gn
︸ ︷︷ ︸

Guard

| B1, B2, ..., Bm
︸ ︷︷ ︸

Body

The operator ‘|’ separates the guard from the body and is calledcommit opera-
tor. The head and body elements define processes with arguments.The components of
the guard define test conditions related to constraints thatthe head’s arguments should
satisfy. Declaratively, the commit operator is read just like a conjunction:H is true if
theG’s andB’s are true. The abstract computation model of Concurrent Prolog and its
derivates is established by process interpretation of the goals forming the resolvent. The
goals are regarded as an asynchronousprocess network. The concurrent processes com-
municate and synchronize via shared logical variables according to an asynchronous
communication model. When several clauses are applicable at once, the commit opera-
tor ‘|’ acts as a control primitive ensuring that clause selectionis carried out in a mutual
exclusive manner. The potential for parallelism offered byclause selection might be
considered as some form of restricted OR-parallelism. The evaluation of a guardGi

may result in a complex computation ifGi is not unifiable with a fact but with the head

5

of another GHC. Suchdeep guards relate to PROLOG’s backtracking mechanism but
can hardly be implemented efficiently on parallel architectures.

The concepts of concurrent logic languages received significant attention in the 80’s
and several parallel programming languages based on these ideas were implemented,
e.g. FCP or Strand. Concurrent constraint programming languages and multi-paradigm
programming languages like Oz or AKL inherited many ideas from these approaches.
Such languages often build the implementation base for multi agent systems.

3.2 Basic Definitions of CASA Agents

The specification of CASA agents is based on AgentSpeak(L), Guarded Horn Clauses
and several extensions. The complete specification [6] covers the definition of beliefs,
goals, actions, messages, events, plans and agents. In the following we focus on the
definition of plans and agents and will describe the other elements only briefly and
informally.

Beliefs: Beliefs compare to facts in logic programming. If two factsa(t) andb(s) are
processed sequentially this is written asa(t); b(s). A concurrent execution is de-
noted asa(t), b(s).

Goals: A goalg(s) represents the states an agent wants to achieve in the future. There
are two different types of goals. A test?g(s) simply looks for a belief in the agent’s
knowledge base that unifies with the test. A deep goal!g(s) is a goal in the PRO-
LOG sense and needs the reduction of one or more strategies.

Actions, Messages, Events:An actiona(t) refers to a basic behavior block the agent
can perform to modify its environment. Messages are specialactions with a given
structure including sender, receiver, type, and content. If an action from other agents,
the system or the user can be perceived by an agent, this perceived action is denoted
as anevent.

Plans: The behavior of an agent is basically defined by specifying strategies (resp.
plans). A planP is formally defined as anextended guarded horn clause of form

P : H ← G1...Gn | B1...Bm(p).

in which H is the head,Gi are guards,Bj are predicates as body goals, andp
defines a priority.
The head of a CASA strategy describes the event the agent mustperceive in order
to execute the plan. The guard elements may consist of any number of tests, goals
and messages which are processed sequentially (separated by ”;”) or in parallel
(separated by ”,”). Additionally, a priority (or weight) allows to choose between
different applicable strategies. The priority(p) of a plan denotes its importance for
the agent.
Based on the type of the guards different strategies are distinguished. If all guards
are simple tests, the strategy is considered asreactive. If goals are also elements
in the strategy’s guards the strategy isdeliberative, because the evaluation of the
guard requires a speculative computation which evaluates other strategies in order
to reduce the goal (multi level plans). If the context test also requires the com-
munication between agents, the strategy is described ascommunicative. Actions
are not allowed in guards. If multiple strategies can be applied reactive strategies
take precedence over deliberative strategies. Communicative strategies have lowest
priority. During run time, an agent can suspend executing strategies and resume
suspended ones by using special operations for suspending /resuming.

6

3.3 Execution Cycle of a CASA Agent

A CASA agent is described by a tuple

(Bel, P lans, Msg, Act, RunT ime(Evt, Int, AMsg, AAct, Se, Sp, Si))

Bel, P lans, Msg, Act are sets with elements representing the agent’s beliefs, plans,
actions and messages. The structureRunT ime(...) describes a component that defines
the state of execution in each agent at run time. This structure consists of a set of cur-
rently perceived events (Evt), a set of intentions (Int, i.e., strategies that are currently
pursued by the agent), a subset of messages / actions (AMsg, AAct) that are processed
in the current execution cycle and a number of selection functions(Se, Sp, Si).

The operational semantics of a CASA agent can be best described by means of
an abstract interpreter as it is visually given in Figure 2. The interpreter manages the
execution of all agent activities in an interpretation loop. The operation of the agent
interpreter is controlled by three functions that control event selection, plan selection,
and intention selection. By modifying their implementation, the system can be easily
tailored the different operational semantics for various other applications.�
 �	�
 �	�
 �	

���� ?

�

6

@
@R

?

?

-
� ...

P2 P5 P6

intention selection

messages actions

P2 P5

e4

relevant plans

applicable plans

P2

I1 I2 I3

plan selection

event
next

e1

e2
e3

events

P5 P6
P2 P1

plansevent selection

execution

intention multistack

Fig. 2.CASA Execution Cycle

The interpretation starts with the selection of an incomingevent. All perceived
events are stored and the selection functionSe selects a suitable element. In a second
step, a set of relevant plans which are appropriate for processing the selected event are
identified. Arelevant plan is defined by a plan which head matches the selected event.
The preconditions of all relevant plans are checked againstthe facts / plans stored in
the agent’s beliefs base. This test can include the evaluation of other strategies, e.g. if a
precondition is a goal of another strategy. This is realizedby generating a correspond-
ing event that is processed in one of the next execution cycles. A relevant plan which
preconditions are all satisfiable is called anapplicable plan. The agent uses the selec-
tion functionSp to select one applicable plan from the set of all applicable plans. This
plan is processed as the pursued strategy and becomes instantiated as an intention on

7

the multistack. If the event that triggered the plan was generated by the agent itself (as
a consequence of a former execution cycle) the plan is pushedonto the intention stack
that generated the event. If the event was generated from other agents, the environment
or the user, the selected applicable plan is stored as a new intention on the multistack.

The multistack concept allows each agent to investigate several plans in parallel and
to instantiate new (sub)intentions. Finally, the interpreter selects an intention by means
of the selection functionSi from the multistack and executes it starting from the top
element. Execution can result in either a direct action, thegeneration of an event, or the
instantiation of new (sub)intentions. Thereafter, the interpreter advances to process the
next event or continues to process the existing intentions on the multistack.

The interpreter and the basic definitions (formally described in [6]) served as base
for the modelling phase that will be described in the next section.

3.4 CASA Specification Language

The CASA specification language is syntactically defined similarly to the agent lan-
guage JAM [8], but the semantics differ with respect to the underlying CASA interpreter
model. The language elements are briefly described in the following:

Basic Elements: Expressions in the CASA specification language refer to first-order
terms of the formal CASA specification. An expression can be avariable, a constant
(a string or a number), a function call (e.g. calculation or comparative operations),
or a relation. A relation simply associates a list of data values with an identifier.

Facts: Facts correspond to the beliefs of the formal CASA specification. A fact is de-
fined with the keyword FACT followed by a relation.

Goals: The two different types of goals are handled in the followingways: Syntacti-
cally a test is introduced by the keywords EXISTS FACT followed by a relation.
The agent’s knowledge base is checked if the specified fact with the given argu-
ment values exists and returns TRUE if that fact could be found. Deep goals are
introduced by the keyword ACHIEVE followed by a relation anda priority value.
The relation name specifies the goal to achieve and the relation arguments represent
call-by-value-and-result parameters for relevant plans.

Actions: There are a number of pre-defined CASA actions available, e.g. for manipu-
lating the agent’s knowledge base or assigning values to variables. For any other ac-
tion which is not pre-defined in CASA additional functions can easily be declared.
Additional functions have to be introduced by the keyword EXECUTE followed by
an identifier representing the action and a list of arguments.

Messages:Messages are special actions; they are inter-agent operations and therefore
concern both the agent’s micro and macro view. CASA has some pre-defined mes-
sage types to specify messages like REQUEST, INFORM, or REPLY. These key-
words are followed by a list of arguments declaring a messagereceiver, a message
label, and the content of the message.

Plans: CASA plans correspond to extended guarded horn clauses described in the for-
mal CASA specification. They are defined along the lines of thefollowing patterns:

PLAN:
{ NAME: <string>;

DESCRIPTION: <string>;
GOAL: ACHIEVE <relation>;
TYPE: <REACTIVE | DELIBERATIVE | COMMUNICATIVE>;

8

PRECONDITION: <list of conditions>;
BODY: <list of actions>;
FAILURE: <list of actions>;
PRIORITY: <numeric value>;

}

In addition to the five plan sections which directly refer to the components of ex-
tended guarded horn clauses we have defined a section for informally describing
the plan, a section for specifying a plan type, and a failure section. The failure sec-
tion is executed when errors occur during run time executionof the plan body. Only
some actions are allowed in this section, e.g. assignments to variables in order to
achieve a consistent state before dropping the plan. Due to abetter readability the
elements to execute in parallel are explicitly declared in aPARALLEL section (in-
stead of using commas), while sequences are still simply separated by semicolons.
Some additional pre-defined structures are available in plan bodies to support easy
specification development, e.g. IF-THEN-ELSE or WHILE-loops.

With these language elements it is possible to specify a complete initial state of CASA
agents. Each agent specification is composed of four main sections:

FUNCTIONS: EVENTSELECT: <selection function>;
PLANSELECT: <selection function>;
INTENTIONSELECT: <selection function>;

GOALS: ACHIEVE <relation> : <numeric value>;
...

FACTS: FACT <relation>;
...

PLANS: PLAN {...}
...

Three selection functions have to be declared in the first section of an agent speci-
fication. The selection functions depend on the agent application, i.e., agent developers
provide these functions to their agents in a function library. Initial deep goals are defined
in the second section. These goals will be instantiated – together with an applicable plan
– in the multistack as separate intentions. Initial facts are simply listed in the third sec-
tion and added to the agent’s knowledge base. Lastly a set of relevant plans has to be
defined in order to achieve the goals which are perceived as events during run time
execution. The plans are stored in the agent’s plan library.

3.5 Refined Operational Semantics and Speculative Calculations in CASA

We have refined the abstract interpreter, as it is desirable to distinguish between different
types of perceived events (so far all events were processed as new goals). Events get an
additional type tag, so that it can now be distinguished between new goals, new facts,
new plans, suspend / resume events and replies. New facts andplans are directly inserted
into the according components. Suspend / resume events and replies only have effect on
single intentions and can therefore be directly passed to the multistack. Only for new
goals it is necessary to find an applicable plan and instantiate a new (sub)intention. In
the following we focus on the run time execution of new goals in CASA agents and
present central aspects of modelling speculative calculations.

9

I1 I2 I3

e1

e2

events

relevant plans

Can’t achieve goal(e)

messages actions

nono

CommStructure. Any applicable

Select complete element e from
DelibStructure. Any applicable
deliberative plans in e?

no

no

e4: ACHIEVE goal

applicable plans

Any applicable reactive plans?

yes

Add e4 together with
relevant deliberative
plans to DelibStructure

yes

yes

plan selection

yes

yes
in CommStructure?

in DelibStructure?
Complete element

Complete element

execution

intention multistack

intention selection

event selection

plans

Add goal(e) together with
relevant communicative plans
to CommStructure

no

Select complete element e from

communicative plans in e?

e3

Fig. 3. Refined CASA Interpreter Cycle

Speculative calculations appear when a subgoalg in a precondition of a plan has to
be tested (deep guards). In order to achieveg, a new goal event has to be generated and
eventually some actions have to be performed. The interpreter model is refined with two
independent components responsible for speculative calculations: Each element in the
DelibStructure is composed of a goal event and all relevant deliberative plans to check.
Similarly an element in theCommStructure is composed of a goal event and all relevant
communicative plans. The operational semantics are best described by means of the
cycle shown in Figure 3. When no applicable reactive plans are found for a new goal,
a new element – composed of the goal and all relevant deliberative plans – is added to
the DelibStructure. An element in the DelibStructure is said to be complete, when all
its relevant plans are checked, i.e. the according plans’ preconditions have been tested.
When there is at least one applicable plan in such a complete element, the interpreter
cycle is continued with plan selection and intention instantiation. Otherwise all relevant
communicative plans have to be checked in the CommStructure. Finally, when even no
applicable communicative plan can be found, the new goal can’t be achieved and an
exception has to be raised. It is important to notice that theDelibStructure, the Comm-
Structure and the interpreter cycle operate independentlyand elements in the two ad-
ditional components are usually not completed before several rounds of the interpreter
cycle have passed.

3.6 Implementation

CASA’s micro level view is implemented in Java with JDK 1.1.5integrating modules
of the JAM library [8]. A parser written in JavaCC reads CASA specification programs,
sets the initial state of CASA agents and starts the execution on the CASA interpreter.

10

CASA agents are integrated into the MECCA framework [2]. MECCA is an agent man-
agement system which implements the FIPA ACL (Agent Communication Language)
standard [4]. A CASA agent writes messages through a specificcommunication adap-
tor to the internal message transport channel of the MECCA system. This adaptor is
also reading incoming messages from the transport channel,converting messages into
appropriate CASA events and forwards them to the CASA agent.The adaptor allows
CASA agents to communicate with any FIPA compliant agent viathe MECCA frame-
work as it is shown in Figure 4.

Fig. 4. CASA Agent connected to MECCA

3.7 A Sample CASA Agent

In this section we present a sample CASA agent which was builtas part of a MAS
that is simulating a color sorting assembly buffer (CSAB) for coloring car bodies. Each
station and roboter of the CSAB is represented by an own agent. In this paper we focus
on the tasks of a transport roboter. In the corresponding specification file we have listed
the robot’s strategies to achieve certain goals, e.g. getting an order to deliver, moving to
the body depot, or determining the most appropriate destination station. The following
CASA code fragment is describing the central part of the agent’s specification:

FUNCTIONS: EVENTSELECT: Event_OldestFirst;
PLANSELECT: Plan_HighestPriority;
INTENTIONSELECT: Intention_HighestPriority;

GOALS: ACHIEVE transport : 1.0;
FACTS: ...

FACT orderAgent "orderManager";
PLAN:
{ NAME: "Master Plan";

GOAL: ACHIEVE transport;
TYPE: REACTIVE;
BODY: GETFACT myId $id;

WHILE TEST (TRUE) {
...
PARALLEL
{ ACHIEVE getOrder $nr $bodyType $color : 1.0; }
{ ACHIEVE gotoDepot : 1.0; }
IF TEST (!= $nr "none") {

11

PARALLEL
{ ACHIEVE loadRobot $bodyType $bodyNumber :1.0;}
{ ACHIEVE findDestination $color $destLine :1.0;}
... // success: move to $destLine and unload
... // else: send order back

}
}

PRIORITY:1.0;
}

The specification defines a top-level goal ”transport” and anappropriate master plan
to achieve this goal. When the master plan is executed, several subgoals have to be
achieved, some of them even in parallel, e.g. the subgoals ”getOrder” and ”gotoDepot”.
Each time after this subgoal is achieved a parameter value ischecked in order to find
out whether an order can be transported or not. The followingCASA code is a fragment
of the possible plans to achieve the subgoal ”getOrder”:

PLAN:
{ NAME: "taking local order";

GOAL: ACHIEVE getOrder $nr $bodyType $color;
TYPE: REACTIVE;
PRECONDITION: GETFACT order $nr $bodyType $color;
BODY: EXECUTE printLine "taking order " $nr;
FAILURE: ASSIGN $nr "none";
PRIORITY: 2.0;

}
PLAN:
{ NAME: "requesting orderAgent";

GOAL: ACHIEVE getOrder $nr $bodyType $color;
TYPE: COMMUNICATIVE;
PRECONDITION: GETFACT orderAgent $orderAgent;

REQUEST $orderAgent "getOrder" : 1.0;
GETREPLY $nr $bodyType $color;

BODY: EXECUTE printLine "received order " $nr;
FAILURE: ASSIGN $nr "none";
PRIORITY: 6.0;

}

According to the CASA interpreter model the reactive plan ischecked first. When
there is no order in the agent’s knowledge base, the GETFACT precondition fails and
the plan is not applicable. The communicative plan is only considered when the pre-
condition of the reactive plan is false. When the communicative plan’s precondition is
checked, the agent will get a new order from the ”order agent”on request within a reply
message. After execution of one of the plans the variables specified in the ACHIEVE-
action of the invoking intention are automatically updated, as they are interpreted as
call-by-value-and-result parameters.

4 Summary and Outlook

We have described the design of the agent specification language CASA, its efficient
realization and the integration in the agent management framework MECCA. CASA
combines the BDI agent approach with concepts from concurrent logic programming

12

and allows the design of complex agent strategies. Based on the elements of the CASA
specification a description language was designed that allows to textually specify a
multi agent system on a high abstraction level. This description is efficiently executed
using the CASA programming environment. First examples include simple applications
taken from holonic manufacturing [5]. Future work will concentrate on the development
of visual tools for the design of CASA agents and the application in the area of flexible
manufacturing systems and intelligent user interfaces.

References

1. Agent Web Pages: http://www.agentlink.org, http://www.cs.umbc.edu/agents
2. B. Bauer, D. Steiner. MECCA - System Reference Manual. (Internal Documentation)

Siemens, Munich, 1998.
3. M. E. Bratman. Intentions., Plans, and Practical Reason.Harvard University Press, Cam-

bridge, USA, 1987.
4. FIPA 97 Specification - Part 2: Agent Communication Language. FIPA - Foundation for

Intelligent Physical Agents, Geneva, Switzerland, 1997.
5. S. Flake, Ch. Geiger, G. Lehrenfeld, W. Mueller, V. Paelke. Agent-Based Modeling for

Holonic Manufacturing Systems with Fuzzy Control, NAFIPS’99, 18th International Con-
ference of the North American Fuzzy Information Processing Society, New York, USA, June
10-12, 1999.

6. C. Geiger. Rapid Prototyping of interactive 3D animations.PhD Thesis, Paderborn University,
September 1998 (in German).

7. J. Kiniry, D. Zimmerman.A Hands-On Look at Java Mobile Agents.IEEE Internet Comput-
ing, Vol. 1, No. 4, July 1997.

8. J.M. Huber. JAM - A BDI-theoretic Mobile Agent Architecture. Proceedings of the Third
International Conference on Autonomous Agents, Seattle, Washington, USA, May 1-5, 1999.

9. J. Mueller et. al. Chapter Belief Desire Intention.Intelligent Agents V. Agent Theories, Ar-
chitectures, and Languages. 5th International Workshop, ATAL 98, Paris, France, July 1998.
Springer LNAI 1555.

10. M. Mora et. al. BDI Models and Systems: Bridging the GAP.Intelligent Agents V. Agent
Theories, Architectures, and Languages. 5th International Workshop, ATAL 98, Paris, France,
July 1998. Springer LNAI 1555.

11. H. Nwana, D. Ndumu. A Perspective on Software Agents Research. (To appear).Knowledge
Engineering Review, Cambridge University Press, Cambridge, USA, 1999.

12. A.S. Rao, M.P. Georgeff. Modeling Rational Agents within BDI-Architecture.Tech. Report
64, Australian Artificial Intelligence Institute, Melbourne, Australia, February 1996.

13. A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.7th
European Workshop on Modeling Autonomous Agents in a Multi-Agent World, Eindhoven,
The Netherlands, 1996.

14. K. Schild. On the Relationship Between BDI Logics and Standard Logics of Concurrency.
Intelligent Agents V. Agent Theories, Architectures, and Languages. 5th International Work-
shop, ATAL 98, Paris, France, July 1998. Springer LNAI 1555.

15. E. Shapiro. The Family of Concurrent Logic Programming Languages.ACM Surveys, 21(3)
1989.

