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Abstract

Model checking has received wide acceptance as a valuable technique in the field of electronic
design automation and is currently of growing interest in general systems design. Though its
concepts and applications are well understood it often turns out that engineers have severe
problems with the specification process and the underlying notation, i.e., formulation and
understanding of specifications through means of temporal logic formulae. In this article, we
present an approach for a natural language–oriented representation of temporal logic formulae
by introducing patterns of structured English sentences for Clocked CTL (CCTL) specification.
After outlining the basic patterns of the sentences we give their semantics by a translation to
CCTL. A final example demonstrates their application.

1 Introduction

As computer–based systems design deals with more complex behavior formal verification be-
comes widely accepted as a complementary approach for system analysis. In electronic design
automation, equivalence and model checking are already frequently applied. Whereas equiva-
lence checking can be mostly controlled from means which are tailored to the user’s individual
notation such as RT-diagrams, model checking requires additional education for the specifi-
cation of properties by means of temporal logic formulae like CTL. It often turns out that
engineers even with mathematical education have severe problems to compose property speci-
fications in terms of CTL–related languages. A couple of approaches tackle these problems by
introducing temporal logic patterns for the representation of typical properties [8, 3, 1]. How-
ever, most of them are oriented towards a specific application domain like process modeling [6]
and do not completely cover other applications. Additionally, they are mostly based on CTL
or LTL, so that the user still has to deal with means which are syntactically oriented towards
temporal logic formulae.

We introduce patterns for the specification of properties in structured English. Those patterns
are based on frequently used specification patterns identified by [1, 2]. In contrast to other
approaches our structured English oriented notation is not tailored to a specific application.
Sentences are compiled by a user by selecting those patterns. Specifying a query by selecting
fragments of an English sentence allow users more easily to formulate required properties for a
given model which gives him/her the possibility to focus on the specification of the properties
rather than on the specification process itself. Furthermore, compared to pure CTL–related
formulae, the specification given in structured English can be easier communicated to a second



user. Each of our sentence corresponds to a CCTL (Clocked CTL) formula to which it is
translated for the RAVEN model checker [10]. CCTL (Clocked CTL) is a variant of timed
CTL based on I/O-interval structures introduced by Kropf and Ruf [9].

The remainder of this paper is structured as follows. The next section gives a brief overview
of related works. Section 3 introduces CCTL (Clocked CTL) which is the temporal logic
representation of the underlying system. Thereafter, we present syntax and semantics of our
notation where the semantics is introduced by the translation to CCTL. After a short example
this articles closes with a conclusion.

2 Related Works

Most related works address the identification of CTL and LTL specification patterns. Early
attempts to categorize specifications led to taxonomies that coarsely distinguish between safety
and liveness properties. The classification based on LTL formulae introduced by Manna and
Pnueli [8] is more fine-grained. It is ordered by syntactical criteria of formulae so that it
often does not match the way of thinking when compiling a specification. A first extensive
systematical classification of specifications for finite-state verification was published in [1]. The
classification is based on design patterns that were originally used to capture recurring solutions
to design and coding problems [3]. That classification presents a semantically ordered hierarchy
of property patterns and gives detailed information for each identified pattern with respect to
the requirements for well-defined design patterns. All patterns are identified by an informal
description of the intent, example mappings to different specification formalisms, their known
application, and relationships to similar patterns. In a more recent publication, a slightly
different pattern system is presented based on the investigation of more than 500 examples for
property specifications [2].

The idea of patterns has been applied not only to classify but also to construct specifications for
finite-state verification. The Testbed project [6] introduces a graphical user interface for busi-
ness process modeling and provides a small set of templates for verification with the SPIN model
checker [5]. These templates are also denoted as patterns though they refer to concrete speci-
fications in contrast to the previously mentioned classification patterns. The Testbed patterns
consist of a number of sentences that together form a question in structured natural English
language. The resulting questions are relatively simple and therefore easy to understand, but
it is still necessary to give additional outlines for sentences with ambiguous interpretations,
e.g., the difference between ‘an element of a set’ and ‘each element of a set’. Time conditions
are not considered at present. In [2] it is noted that many informal requirements are specified
as properties of segments of program execution. To our knowledge none of these approaches
considers time intervals, neither on the more abstract level of pattern classification, nor on the
concrete level of specification sentences.

In a more general approach for English language oriented specification, the PROSPER project
aims at the specification through a natural English language subset [4]. The user specifies the
property in an interactive dialog with the system. Syntactically correct English sentences are
finally converted after parsing into CTL formulae as input to the SMV model checker. Major
remaining challenges are the detection of ambiguities, handling of context-sensitive expressions,
and consideration of domain-specific conventions in sentences.

Compared to pattern–based approaches we provide a richer set of specifications. In contrast to
temporal logic formulae based approaches a sentence in structured English can by far easier be
captured by non–experts than pure CTL or LTL. Compared to unstructured English the avail-



able structured English fragments give the novel user a better guidance through the allowable
and non–allowable specifications with less iterations.

3 CCTL

CCTL (Clocked CTL) is a temporal logic in the context of the real-time system model checker
RAVEN. In RAVEN, the model is specified in terms of so–called I/O-interval structures. I/O-
interval structures are basically state transition systems with time annotations. A time anno-
tation is a time constraint which specifies a [min,max]-time interval for a state transition [9].
CCTL is the underlying temporal logic for the specification of properties with additional timing
analysis issues. This article only informally sketches the CCTL notation. For formal details
the reader is referred to [10].

The CCTL syntax can be summarized as follows:

φ :=
a | φ ∨ φ | φ ∧ φ | φ → φ | φ ↔ φ | φ⊕ φ

| EX[x]φ | EF[x,y]φ | EG[x,y]φ | E(φU[x,y]φ) | E(φS[x]φ) | E(φC[x]φ)
| AX[x]φ | AF[x,y]φ | AG[x,y]φ | A(φU[x,y]φ) | A(φS[x]φ) | A(φC[x]φ)

where a is an atomic proposition, and x ∈ N0, y ∈ N0 ∪ {∞} are time bounds. The symbol
∞ is defined through: ∀i ∈ N0 : i < ∞. All interval operators can also be accompanied by a
single time-bound only. In this case the lower bound is set to zero by default. If no interval is
specified, the lower bound is implicitly set to zero and the upper bound is set to infinity. If the
x-operator has no time bound, it is implicitly set to one.

The A resp. E are run quantifiers. A run is an infinite sequence of pairs of states and clock
values (called a configuration) of the system. Every pair of states and clock values may be the
start point of a run. The A-quantifier checks for the actual configuration if all runs satisfy
the temporal operator. The E-quantifier checks if there exists at least one run starting in the
actual configuration satisfying the temporal operator. Model checking examines the properties
with respect to the initial states of the system. Table 1 gives an informal description of the
temporal operators.

X[x] φ The configuration reachable in x time steps on the actual run sat-
isfies the formula φ

F[x,y] φ A configuration satisfying φ is reachable within the interval [x, y]

G[x,y] φ All configurations within the interval [x, y] satisfy φ

φU[x,y]ψ A configuration satisfying ψ is reachable within the interval [x, y]
and all configurations before (on this run) satisfy φ

φ S[x] ψ The configurations from the beginning of the run up to the time
x− 1 satisfy φ, the configuration at time x satisfies ψ

φ C[x] ψ If the configurations from the beginning of the run up to the time
x− 1 satisfy φ, then the configuration at time x has to satisfy ψ

Table 1: Informal Description of the Temporal Operators

In addition to the previous specifications RAVEN supports three timing analysis algorithms:
MIN(start, target), MAX(start, target), and STABLE(region). Typical queries concern the
minimal and maximal answering time of a reactive system, as well as the guarantee of the



maximal stability of a state. Since this sort of specification is not discussed in the remainder
of this article the reader is referred to [11] for more detailed information.

4 Structured English Sentences for Specification

We introduce a structured English oriented notation as a user front-end for the specification
of Clocked CTL formulae for model checking. Natural English sentences are compiled from (i)
lists (interpreted as a set or a sequence) of given states and (ii) a set of fragments in natural
English. The user compiles a specification by selecting those lists and fragments and combines
them to meaningful sentences of limited length and complexity. The fragments are so defined
that they only combine to sentences which directly correspond to CCTL formulae. In order to
provide a sufficient coverage in application the introduced fragments are derived from patterns
which are identified as being frequently used in [1, 2].

The remainder of this section separately presents the syntactical and semantical aspects of
those sentences.

4.1 Syntax

A specification sentence has a very simple basic structure with a scope and a specification
where the latter can be given as a subsentence with condition and consequence. The sentences
encapsulate state specifications which are lists of state identifiers. Due to the context those
lists are interpreted as sets or sequences. Figure 1 gives the definition of the complete syntax
in Extended BNF where terminals are given in capital letters.

In details, each specification sentence is composed of a main scope followed by ‘that’ and a main
specification (Rule 1). Main specifications are distinguished into sequence, set, and complex
specifications (Rule 3). The first two are simple specifications which range over a sequence
of states or single/all elements of a set of states. The latter one defines a relation between
elements of two subspecifications S1 and S2 of form ‘if S1 ...then ...S2 ’ (Rule 15) where
S2 stands for a consequence with a scope and a specification (Rule 16) separated by ’that’.
The consequence specification can be a sequence specification or set specifications again. The
sequence specification structure is the same as in the main specification. However, we introduce
a small variation of the set specification in the context denoted as set subspecification (Rule
21). Since interval definitions are of no use in consequences when investigating the occurrence
of single elements we do not allow their definition here (Rule 23: ’occurs’ without setScope).

4.2 Semantics

We define the semantics of sentences by their translation to CCTL formulae. Since the transla-
tion of sentence fragments is context sensitive it is not possible to simply define a self-contained
formula in CCTL for each fragment of a sentence, although this might be possible for other
temporal logics. So each derived sentence translates to a different formula.

Table 2 defines the mapping of the main scopes of main specifications where the ∆ stands
for one of the operators F, G, and X. The use of those operators depends on the occurrence
modifier in the subsequent specifications.

Since it is not possible to enumerate all translations here we only give the mapping for the
most important ones. Thus, the remainder of this section focuses on the mapping for the main



1: sentence ::= mainScope ’that’ mainSpecification .

2: mainScope ::= ’It is’ [’at all times’] (’true’|’possible’|’inevitable’).

3: mainSpecification ::= sequenceSpec | setSpec | complexSpec .

4: sequenceSpec ::= seqType stateSpec seqScope seqOccurrence .

5: seqType ::= ’a weak sequence’ | ’a strong sequence’ .

6: seqScope ::= ’with time interval(s)’’[’INTEGER’,’(INTEGER|’infinity’)’]’ |

’with arbitrary time interval(s)’ |

’with interval(s) of exactly’’[’INTEGER’]’ ’time unit(s)’.

7: seqOccurrence ::= ’occurs’ | ’does not occur’ .

8: setSpec ::= (singleElements|allElements) setScope .

9: singleElements ::= ’an element of set’ stateSpec simpleOccurrence .

10: simpleOccurrence ::= [’always’|’never’] ’occurs’ .

11: allElements ::= ’all elements of set’ stateSpec combinedOccurrence .

12: combinedOccurrence ::= [’always’|’never’] ’occur’ combineModifier .

13: combineModifier ::= ’simultaneously’ | ’exclusively’ .

14: setScope ::= ’within the interval’ ’[’INTEGER ’,’ (INTEGER|’infinity’) ’]’ |

’within an arbitrary interval’ |

’in exactly [’ INTEGER ’] time unit(s)’ .

15: complexSpec ::= ’if’ consequenceCond ’then’ consequence .

16: consequence ::= consequenceScope ’that’ consequenceSpec .

17: consequenceCond ::= setSubSpec | sequenceSpec .

18: consequenceSpec ::= setSubSpec | sequenceSpec .

19: consequenceScope ::= followModifier ’within’ ’[’INTEGER’,’INTEGER’]’ ’time unit(s)’ |

followModifier ’at least after’ ’[’INTEGER’]’ ’time unit(s)’ |

followModifier ’in exactly’ ’[’INTEGER’]’ ’time unit(s)’ |

followModifier ’in’ ’[’INTEGER’]’ ’time unit(s) at the latest’ |

followModifier ’at some time later’ .

20: followModifier ::= ’it must happen’ | ’it is possible’ .

21: setSubSpec ::= subSingleElements | subAllElements .

22: subSingleElements ::= ’an element of set’ stateSpec subSimpleOccurrence .

23: subSimpleOccurrence::= ’occurs’ | (’always’|’never’) ’occurs’ setScope.

24: subAllElements ::= ’all elements of set’ stateSpec combinedOccurrence setScope.

25: stateSpec ::= ’{’ STATE_IDENTIFIER idList ’}’ .

26: idList ::= ’,’ STATE_IDENTIFIER idList | .

Figure 1: Syntax of Structured English Sentences

scope ‘It is at all times possible that ...’ (resp. AG E∆). Other specifications can then be
easily derived by replacing AG E∆. Note here that the mapping is different when the global
scope changes to AG or AG A∆. In those cases further occurrences of E-quantifiers have to
be replaced by an A–quantifier in the CCTL formula. As some of the provided interval scopes
are only special cases of the arbitrary interval [x, y], we only outline CCTL formulae in which
x and y are arbitrary numbers explicitly allowing y = ∞.

We start our investigation considering the substitution and mapping of sequence and set spec-
ifications. For sequences, we distinguish between two different types. Let A = [a1, . . . , an] be
a sequence of states. A weak sequence A allows arbitrary intermediate configurations between
ai and ai+1, while a strong sequence A requires for all ai that ai+1 is directly reachable from
ai. The given intervals refer to the number of allowed time steps (time units) between subse-
quent ai. We present two of the possible specifications for weak sequences here from which the
remaining weak sequence specifications can then be easily derived.

1. It is at all times possible that a weak sequence A with time interval(s) [x, y]

occurs

⇒ AG EF (a1 ∧EF[x,y](a2 . . . ∧ EF[x,y] (an) . . .))



Main Scope CCTL Operators

It is true ... —

It is possible ... E∆ (. . .)

It is inevitable ... A∆ (. . .)

It is at all times true ... AG (. . .)

It is at all times possible ... AG E∆ (. . .)

It is at all times inevitable ... AG A∆ (. . .)

Table 2: Mapping of Main Scopes to CCTL

2. It is at all times possible that a weak sequence A with time interval(s) [x, y] does

not occur

⇒ AG EG ( ¬a1 ∨
(a1 → ¬AF[x,y](a2)) ∨
(a1 ∧ EF[x,y](a2 → ¬AF[x,y]a3)) ∨
. . .
(a1 ∧ EF[x,y](a2 ∧ EF[x,y](a3 ∧ . . .EF[x,y](an−1 → ¬AF[x,y]an) . . .))))

When the interval scope with exactly [x] time unit(s) is selected, all EF[x,y] are replaced by
EX[x] in the above formulae. CCTL formulae for strong sequences are realized by applying the
successor-operator and the strong until-operator which ensures that the subsequent configura-
tion is reached.

3. It is at all times possible that a strong sequence A with time interval(s) [x, y]

occurs

⇒ AG EF E (a1 U[x,y](E (a2 U[x,y](E (a3 U[x,y] . . . an) . . .))))

4. It is at all times possible that a strong sequence A with time interval(s) [x, y]

does not occur

⇒ AG EG ( ¬a1 ∨
(a1 → ¬A(a1U[x,y]a2)) ∨
E (a1 U[x,y] (a2 → ¬A(a2U[x,y]a3))) ∨
. . .

E (a1 U[x,y]E (a2 U[x,y](E (a3 U[x,y] . . . (an−1 → ¬A(an−1U[x,y]an)) . . .)))))

For set specifications, we also focus only on the most relevant combinations. Note here, that
in some formulae the time scope is directly attached to the main scope operator. When all
elements of a set A are considered, it must be additionally defined whether the elements occur
simultaneously or exclusively.

5. It is at all times possible that an element of set A occurs within the interval [x, y]

⇒ AG EF[x,y](a1 ∨ . . . ∨ an)



6. It is at all times possible that all elements of set A occur simultaneously within the

interval [x, y]

⇒ AG EF[x,y](a1 ∧ . . . ∧ an)

7. It is at all times possible that all elements of set A occur exclusively within the

interval [x, y]

⇒ AG EF[x,y]( (a1 → ¬(a2 ∨ a3 ∨ . . . ∨ an)) ∧
(a2 → ¬(a1 ∨ a2 ∨ . . . ∨ an)) ∧
. . .

(an → ¬(a1 ∨ a2 ∨ . . . ∨ an−1)) )

Given the previous translations, it should be easily possible to derive the remaining translations
of the other combinations. In order to extend the sequence scope to global occurrence, i.e.,
occurrence during the complete interval [x, y], all F–operators from above have to be replaced
by a G–operator. Correspondingly, in specifications defining the absence of configurations the
G–operator has to be applied as follows:

8. It is at all times possible that an element of set A never occurs within the

interval [x, y]

⇒ AG (EG[x,y](¬a1) ∨EG[x,y](¬a2) . . . ∨ EG[x,y](¬an))

9. It is at all times possible that all elements of set A never occur simultaneously

within the interval [x, y]

⇒ AG EG[x,y](¬(a1 ∧ a2 ∧ . . . an))

10. It is at all times possible that all elements of set A never occur exclusively within

the interval [x, y]

⇒ AG EG[x,y]( ¬(a1 → ¬(a2 ∨ a3 ∨ . . . ∨ an)) ∨
¬(a2 → ¬(a1 ∨ a2 ∨ . . . ∨ an)) ∨
. . .

¬(an → ¬(a1 ∨ a2 ∨ . . . ∨ an−1)) )

The previous paragraphs outlined mappings for simple sequence and set specifications. Al-
though parts of those formulae can also be applied in consequence specifications, it is not valid
to just concatenate two derived formulae. Instead, they have to be combined more meaning-
ful into a third one. Let A = {a1, . . . , an} and B = {b1, . . . , bm} be two sets or sequences of
states. The following examples give possible combinations to compose them for a consequence
specification:

11. It is at all times true that if a strong sequence A with time interval(s) [x1, y1] occurs

then it must happen within [x2, y2] time unit(s) that an element of set B occurs

⇒ AG (A(a1 U[x1,y1]( A(. . .U[x1,y1](an → AF[x2,y2](b1 ∨ . . . ∨ bm) . . .))))

12. It is inevitable that if all elements of set A occur simultaneously within the

interval [x1, y1] then it is possible at some time later that a weak sequence B with

time interval(s) [x2, y2] occurs

⇒ AF EF[x1,y1]((a1 ∧ . . . ∧ an) → EF[1,∞](b1 ∧ EF[x2,y2](b2 . . . ∧EF[x2,y2] (bm) . . .)))



13. It is at all times true that if all elements of set A always occur simultaneously

within the interval [x1, y1] then it must happen in exactly [z] time unit(s) that all

elements of set B occur simultaneously within the interval [x2, y2]

⇒ AG A((a1 ∧ . . . ∧ an)C[y1−x1](AX[z]AG[x2,y2](b1 ∧ . . . ∧ bm)))

5 Example

We outline the previously introduced sentences the example of a simple sequential digital circuit.
The behavior of gates and flip-flops is modeled as follows. For gates, impulses on the inputs
which are shorter than the delay time are suppressed. Only if a signal remains stable for the
minimum delay time, the gate changes at the output. For modeling flip-flops, we assume a
setup and a hold time. If the input signals violate these timing constraints, the flipflop remains
in its current state. As an example we choose the single pulser circuit [7] which is shown in
Figure 2.
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Figure 2: A Single Pulser

Figure 3 shows the behavior of the parts where initial states are marked bold. For the AND
gate, we use edge sensitive presentation of the behavior: When the system starts in state high

and the inputs fulfill ¬a1 ∨ ¬a2 for δ time units then it changes to state low. If the inputs
fulfill a1 ∧ a2 before δ time units are passed, the structure remains in state high. The clock
generator is modeled by an I/O-interval structure with two states (high and low) which toggles
between both states every cycle. The environment (Env) is either given by a user pressing the
button (which should be single pulsed) or by a bouncing pulse. In both cases, I/O-interval
structures as given in Figure 3 allow a very clear and compact modeling of timing constraints
and communication behavior.

Based on this example, we specify that a raising edge on the input implies a raising edge on
the output. Since we consider delayed gates, we assume that the input first remains low for 2
clock cycles and then keeps high for 2 clock cycles:

It is at all times true that if a strong sequence {¬in, in} with interval(s) of

exactly [2δclock] time unit(s) occurs it must happen at some time later that a strong

sequence {¬out, out} with interval(s) of exactly [1] time unit(s) occurs.

⇒ AG ( A(¬in C[2δclock](in→ AF(¬out ∧ EX[1]out))))

The second specification verifies that when the output becomes high, it remains high for one
cycle period.

It is at all times true that if a strong sequence {¬out, out} with interval(s) of

exactly [1] time unit(s) occurs it must happen in exactly [0] time unit(s) that an

element of {out} always occurs within the interval [0, 2δclock].

⇒ AG ( A(¬out C[1](out→ AG[0,2δclock−1]out)))
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Figure 3: Gates with input a, a1, a2, clock c, delay time δ resp. setup δs and hold δh

6 Conclusion

We have introduced patterns for compiling structured natural English sentences for specification
of real-time properties in model checking. The sentences are introduced by their syntax and
semantics where the semantics is given by a translation to a CCTL formula. Due to page
limitation we only introduced the translation of the most relevant structures. Note here, that
the presented approach also covers the treatment of more advanced CCTL timing specification
queries like STABLE, MIN, and MAX [11]. The specification of those properties follows the
same patterns, e.g., ‘How long does it take to get from A to all configurations of B?’

Due to investigations given in [1] we think that the presently supported patterns are sufficient to
cover the most typical cases for general systems design. However, circuit–specific verifications
in final phases sometimes require CCTL formulae which are more complex than those which
are currently covered by our notation. Such complex specifications would also result in much
more complex English sentences. Though our approach can easily scale to complex structures
we currently do not see how these sentences can be easily controlled and understood by a user.
An advanced visual framework might help to control these complexity. But this clearly needs
further investigations.

In our first experiments we found out that the meaning of some of our composed sentences still
allow ambiguous interpretations. Consider the expression ‘... all elements of set A occur

exclusively ...’, for instance. One interpretation can be that all elements have to occur and

when they occur it has to be exclusive. An alternative interpretation is that if an element occurs

the occurrence has to be exclusive. In combination with the already considerably long sentences
this effect can result in a significant drawback. We are currently investigating alternatives to
overcome both drawbacks by either compiling shorter sentences and/or providing additional
textual outlines of the intended semantics.

We are aware that the work presented here is only a first step towards a more advanced user
interface which is supposed to be more acceptable for the general user with basic engineering
and mathematical education. However, we think that this still requires significant future work
since the presented approach has to be seamlessly integrated in an interactive user interface in
order to become well applicable.
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