
Agents with Complex Plans: Design and Implementation of CASA∗

Stephan Flake, Christian Geiger

C-LAB

Fuerstenallee 11

33102 Paderborn

Germany

email:{flake, chris}@c-lab.de

Abstract

We describe the design of CASA, an agent
specification language that builds on the
formal agent specification approach Agent-
Speak(L) and extends it by concepts from
concurrent logic programming. With CASA
it is possible to design agents with complex
behavior patterns like speculative computa-
tions and parallel executed strategies. The
design of multi agent systems composed of
CASA agents is supported by providing pre-
defined message structures and integrating
an existing agent communication framework.

1 Introduction

Agent-based technology in the sense of distributed
computing is growing dramatically in many directions.
We are mainly concerned with the structured design
and rapid prototyping of complex concurrent systems
and from our design point of view agents provide a
natural metaphor for conceptualizing and building a
wide range of these systems including flexible man-
ufacturing systems, mobile robots, or interactive 3D
graphics [Geiger, 1998; Geiger et al., 1999].
From an implementation point of view the exis-

tence of special libraries or dedicated programming
languages that provide data and control structures
for describing and manipulating agent specific prop-
erties allows a straight forward implementation of the
designed models. Also, there is considerable work on
formalizing notions in multi agent systems (MAS), e.g.
commitments, capabilities, and know how.
A major criticism of much of the formal work is

that only little advice is given on how to apply the-
oretical results to practical realizations. Summariz-
ing recent work on the design of agent-based systems
(e.g. [Nwana and Ndumu, 1999]), the following prin-
ciples should be regarded: (1) transform theoretical
definition/specification concepts to a practical real-
ization, (2) regard and, if possible, reuse well-known
concepts from related fields and existing approaches,

∗

This work has been partly funded by a german research grant
(DFG, SPP 1064: Integration von Techniken der Softwarespezifika-
tion für ingenieurwissenschaftliche Anwendungen)

(3) develop an extendible and flexible design that is
efficiently realized.

The work presented in this paper describes CASA,
a multi agent specification language, and its efficient
implementation. Based on our experiences with con-
current logic programming we identified the need for
a multi agent system that allows rapid prototyping of
system elements similar to our previous work [Geiger
and Lehrenfeld, 1994]. Moreover, we wanted to ex-
ploit the structured design view the MAS approach
(and particular the BDI architecture) provides for.
Lastly, we decided to base our new system on an ex-
isting solid framework for describing BDI agents. We
found Rao’s work on AgentSpeak(L) particularly use-
ful [Rao, 1996], because it demonstrates a successful
reverse engineering approach of an implemented MAS
that is now given a formal specification [d’Inverno
and Luck, 1998]. By extending Rao’s specification
with our new features for complex plans (e.g. differ-
ent types of plans, parallel plans and plan elements,
speculative computations) and refining the abstract
interpreter it was possible for us to directly derive an
efficient implementation that supports these new fea-
tures. We defined the following properties as essential:
Speculative Computations: Plans are only triggered if
the plans’ preconditions hold. The reduction of such
conditions can itself result in a complex computation
requiring the reduction of new sub-goals and the evalu-
ation of new plans. CASA allows such ”deep guards”
(similar to Concurrent Prolog) by providing special
data structures for different plan types that are ac-
cessed during the interpreter cycle. Concurrency in
plans and between plans: CASA allows the concurrent
execution of multiple plans as well as the parallel pro-
cessing of elements within a plan. This is achieved
by providing special data structures (multi stack for
intentions) that are used to store and access currently
executed plans. Hierarchical plan structure: Based on
the type of preconditions in plans, CASA sets prece-
dences between different applicable plans. Priorities
allow to select between plans of the same type. De-
sign using an abstract interpreter: The operational
semantic in CASA was specified using an abstract in-
terpreter. For prototyping the interpreter was divided
in separate functional blocks that were implemented
using Java. A textual specification format describing

the agents is parsed and executed by the CASA inter-
preter at runtime.

2 BDI agents, AgentSpeak and

Guarded Horn Clauses

Perhaps the most compelling reason for modern agent
approaches is that these approaches combine a re-
spectable philosophical model of human practical rea-
soning [Bratman, 1987], a number of well designed
implemented systems and several successful applica-
tions (e.g. factory process control, business process,
fault diagnosis systems). Recent agent architectures
that provide significantly support for mentalistic no-
tions include JAM [Huber, 1999], Agent0 [Shoham,
1993], or PLACA [Thomas, 1995]. In addition to
these monolithic architectures, a number of layered
approaches such as TouringMachines [Ferguson, 1992]
or InteRRaP [Mueller, 1996] exist, that provide dif-
ferent modules for reactive behavior, planning, or
scheduling. Many of these systems are built on the
foundations of BDI logics.
Within the MAS community, the BDI model [Rao

and Georgeff, 1991] has come to be possibly the best
known and best studied model of agency. However,
it is generally concerned that there is a gap between
those powerful BDI logics and practical system imple-
mentations. Following [Mora et al., 1998], one reason
is that the logical formalisms used to define the mod-
els do not have an operational model to support them.
Recent work to overcome this problem can be sepa-
rated in two major directions. One is to define BDI
models using a suitable logical formalism that allows
to represent mental states and has operational proce-
dures to use the logic as knowledge representation for-
malism. Mora et al., for example, defined the notions
of beliefs, desires, and intentions using extended logic
programming (ELP), an extension of logic program-
ming with a second, explicit negation. This allows the
explicit representation of negative information based
on a well founded semantics.
Another approach is to extend existing BDI logics

with appropriate operational models so that agent the-
ories become computational. Schild’s representation
of a BDI logic follows this approach [Schild, 1998].
Rao also took this approach in [Rao, 1996] where he
defines a proof procedure for the propositional ver-
sion of his BDI logic. He presented AgentSpeak(L), a
formal agent description language for an already im-
plemented MAS. AgentSpeak(L) allows the specifica-
tion of an agent in a declarative notation similar to
horn clauses used in logic programming languages like
PROLOG. An agent’s behavior (i.e., plans) and its
knowledge are completely and clearly described using
this notation. Plans in AgentSpeak(L) refer to horn
clauses that are triggered by an event.
We found the description of AgentSpeak(L) simi-

lar to the semantics of flat guarded horn clauses used
in concurrent logic programming languages like Flat
Concurrent Prolog (FCP). FCP is a concurrent logic
programming language [Shapiro, 1989] and was de-
veloped by E. Shapiro during 1985-1989. It pro-

vides a process oriented semantics and was imple-
mented on multi processor architectures. The lan-
guage can easily handle infinite computations typical
for the modeling of reactive systems. The language
incorporates guarded-command indeterminism, data-
flow like synchronization, and a commitment mech-
anism. A Flat Concurrent Prolog program is a fi-
nite set of Guarded Horn Clauses (GHC), denoted as
H ← G1, G2, ..., Gn | B1, B2, ..., Bm. The operator
‘|’ separates the guard from the body and is called
commit operator. The head and body elements define
parallel processes with arguments. The components of
the guard define test conditions related to constraints
that the head’s arguments should satisfy. Declara-
tively, the commit operator is read just like a conjunc-
tion. The abstract computation model of Flat Con-
current Prolog is established by process interpretation
of the goals forming the resolvent. The goals are re-
garded as an asynchronous process network. The con-
current processes communicate and synchronize via
shared logical variables according to an asynchronous
communication model. When several clauses are ap-
plicable at once, the commit operator ‘|’ acts as a con-
trol primitive ensuring that clause selection is carried
out in a mutual exclusive manner. The potential for
parallelism offered by clause selection might be con-
sidered as some form of restricted OR-parallelism.
The concepts of concurrent logic languages received

significant attention in the 80’s and several parallel
programming languages based on these ideas were im-
plemented, e.g. FCP or Strand. Concurrent con-
straint programming languages and multi-paradigm
programming languages like DFKI Oz/Mozart or
AKL inherited many ideas from these approaches.
Such languages often build the implementation base
for multi agent systems.

3 Specification of CASA Agents

The specification of CASA agents is based on Agent-
Speak(L), Guarded Horn Clauses and several exten-
sions. The complete specification covers the definition
of beliefs, goals, actions, messages, events, plans, and
agents [Geiger, 1998]. In the following we focus on
the definition of plans and agents and will describe
the other elements only briefly and informally.
Beliefs compare to facts in logic programming. If

two facts a(t) and b(s) are processed sequentially this
is written as a(t); b(s). A concurrent execution is de-
noted as a(t), b(s). A goal g(s) represents the states
an agent wants to achieve in the future. There are
two different types of goals. A test !g(s) simply looks
for a belief in the agent’s knowledge base that uni-
fies with the test. A deep goal ?g(s) is a goal in
the PROLOG sense and needs the reduction of one
or more strategies. An action a(t) refers to a basic
behavior block the agent can perform to modify its
environment. Messages are special actions with a
given structure including sender, receiver, type, and
content. If a message from other agents, the system,
or the user can be perceived by an agent, this message
is denoted as an event. The behavior of an agent is

basically defined by specifying plans. A plan P is
formally defined as an extended guarded horn clause
of form P : H ← G1...Gn | B1...Bm(p), in which H is
the head, Gi are guards, Bj are body predicates, and p
defines a priority. The head H of a CASA agent strat-
egy P describes the event the agent must perceive in
order to execute the plan. The guard elements may
consist of any number of tests, goals and messages
which are processed sequentially (separated by ’;’) or
in parallel (separated by ’,’). The priority (p) of a plan
denotes its importance for the agent. The evaluation
of a guard Gi can result in a complex computation if
Gi is not unifiable with a fact but with the head of
another plan. Such deep guards relate to PROLOG’s
backtracking mechanism but can be seamlessly inte-
grated in the semantics of concurrent logic program-
ming languages using guarded commands.
Based on the type of the guards different strategies

are distinguished at run time. If all guards are simple
tests, the strategy is considered as reactive. If there
are also deep goals in the guards, the strategy is delib-
erative, because the evaluation of the guards requires a
speculative computation which evaluates other strate-
gies in order to reduce the goal (multi level plans). If
the context test also requires the communication be-
tween agents, the strategy is described as communica-
tive. Other actions than messages are not allowed in
guards. If multiple strategies can be applied, reactive
strategies take precedence over deliberative strategies.
Communicative strategies have lowest priority. Dur-
ing execution an agent can suspend executing strate-
gies and resume suspended ones by using special op-
erations for suspending/resuming.

Execution Cycle of a CASA Agent

A CASA agent is described by a tuple (Bel, Plans,
Msg, Act, RunTime(Evt, Int, AMsg, AAct, Se, Sp,
Si)), where Bel, P lans,Msg,Act are sets with el-
ements representing the agent’s beliefs, plans, mes-
sages, and actions. The structure RunT ime(...) de-
scribes a component that defines the state of execu-
tion in each agent at run time. This structure con-
sists of a set of currently perceived events (Evt), a
set of intentions (Int, i.e., strategies that are cur-
rently pursued by the agent), a subset of messages/
actions (AMsg,AAct), that are processed in the cur-
rent execution cycle, and a number of selection func-
tions (Se, Sp, Si).
The operational semantics of a CASA agent can be

best described by means of an abstract interpreter as
it is visually given in Figure 1. A formal version of
this interpreter can be found in [Flake, 1999]. The
interpreter manages the execution of all agent activ-
ities in an interpretation loop which is controlled by
three functions that control event selection, plan se-
lection, and intention selection. By modifying their
implementation, the system can be easily tailored for
different operational semantics in other applications.
The interpretation starts with the selection of an in-

coming event. All perceived events are stored and the
selection function Se selects a suitable element. In a
second step, a set of relevant plans which are appropri-

execution

messages actions

applicable plans
(guards succeeded)

e1

events

e3
e2

event selection

(head matches event)
relevant plans

plan selection

I1 I2 I3

intention selection

add to multistack

plans

event: e4

context test

Figure 1: CASA Execution Cycle

ate for processing the selected event are identified. A
relevant plan is defined by a plan which head matches
the selected event. The preconditions of all relevant
plans are checked against the facts/plans stored in the
agent’s belief base. This test can include the evalua-
tion of other strategies, e.g., if a precondition is a goal
of another strategy. This is realized by generating a
corresponding event that is processed in one of the
next execution cycles. A relevant plan which precon-
ditions are all satisfiable is called an applicable plan.
The agent uses the selection function Sp to select one
applicable plan from the set of all applicable plans.
This plan is processed as the pursued strategy and be-
comes instantiated as an intention on the multistack.
If the event that triggered the plan was generated by
the agent itself (as a consequence of a former execu-
tion cycle) the plan is pushed onto the intention stack
that generated the event. If the event was generated
from other agents, the environment, or the user, the
selected applicable plan is stored as a new intention
on the multistack. This concept allows each agent to
investigate several plans in parallel and to instantiate
new (sub)intentions. Finally, the interpreter selects an
intention by means of the selection function Si from
the multistack and executes the next body element.
Execution can result in either an action, a message,
or the generation of one or more (sub)intentions as
new events. Thereafter, the interpreter advances to
process the next event or continues to process the ex-
isting intentions on the multistack.

4 Modeling CASA

The CASA language for modeling agents is syntac-
tically defined similarly to the agent language JAM
[Huber, 1999], but the semantics differ with respect to
the underlying CASA interpreter model. Expressions
in the CASA specification language refer to first-order
terms of the formal CASA specification. An expres-
sion can be a variable, a constant (a string or a num-
ber), a function call (e.g. calculation or comparative
operations), or a relation. A relation simply associates
a list of data values with an identifier. Facts corre-
spond to the beliefs of the formal CASA specification.
A fact is defined with the keyword FACT followed
by a relation. The two different types of goals are
handled in the following ways: Syntactically a test is
introduced by the keywords EXISTS FACT followed

by a relation. The agent’s knowledge base is checked
if the specified fact with the given argument values
exists and returns TRUE if that fact could be found.
Deep goals are introduced by the keyword ACHIEVE
followed by a relation and a priority value. The rela-
tion name specifies the goal to achieve and the rela-
tion arguments represent call-by-value-and-result pa-
rameters for relevant plans. There are a number of
pre-defined CASA actions available, e.g. for manipu-
lating the agent’s knowledge base or assigning values
to variables. For any other action which is not pre-
defined in CASA additional functions can easily be
declared. Additional functions have to be introduced
by the keyword EXECUTE followed by an identifier
representing the action and a list of arguments. Mes-
sages are special actions; they are inter-agent oper-
ations and therefore concern both the agent’s micro
and macro view. CASA has some pre-defined message
types to specify messages like REQUEST, INFORM,
or REPLY. These keywords are followed by a list of
arguments declaring a message receiver, a message la-
bel, and the content of the message. CASA plans cor-
respond to extended guarded horn clauses described
in the formal CASA specification. They are defined
along the lines of the following patterns:

PLAN: {

NAME: <string>;
DESCRIPTION: <string>;

GOAL: ACHIEVE <relation>;
TYPE: <plan type>;
PRECONDITION: <list of conditions>;

BODY: <list of actions>;
FAILURE: <list of actions>;

PRIORITY: <numeric value>;
}

In addition to the five plan sections which directly
refer to the components of extended guarded horn
clauses we have defined sections for informally de-
scribing the plan, specifying a plan type, and a failure
section, which is executed when errors occur during
run time execution of the plan body. Only some ac-
tions are allowed in this section, e.g. assignments to
variables in order to achieve a consistent state before
dropping the plan. Due to a better readability the ele-
ments to execute in parallel are explicitly declared in a
PARALLEL section (instead of using commas), while
sequences are still simply separated by semicolons.
Some additional pre-defined structures are available in
plan bodies to support easy specification development,
e.g. IF-THEN-ELSE or WHILE-loops. With these
language elements it is possible to specify a complete
initial state of CASA agents. Each agent specification
is composed of the four main sections functions, goals,
facts and plans:

FUNCTIONS: EVENTSELECT: <selection function>;
PLANSELECT: <selection function>;

INTENTIONSELECT: <selection function>;

GOALS: ACHIEVE <relation> : <numeric value>;
...

FACTS: FACT <relation>;

...
PLANS: PLAN: {...}

...

Three selection functions have to be declared in the
first section of an agent specification. The selection
functions depend on the agent application, i.e., agent
developers provide these functions to their agents in
a function library. Initial deep goals are defined in
the second section. These goals will be instantiated –
together with an applicable plan – in the multistack
as separate intentions. Initial facts are simply listed in
the third section and added to the agent’s knowledge
base. Lastly a set of plans has to be defined in order to
achieve the goals which are perceived as events during
run time execution. The plans are stored in the agent’s
plan library.

Refined Operational Semantics

We have refined the abstract interpreter, as it is desir-
able to distinguish between different types of perceived
events. In the following we focus on the run time
execution of new goals in CASA agents and present
central aspects of modeling speculative computations,
which appear when a subgoal in a precondition of a
plan has to be tested (deep guards).
Suppose there is a (sub)goal selected from the set of

perceived events. When there is no applicable reactive
plan found for this goal (this can be checked imme-
diately), relevant deliberative and/or communicative
plans have to be checked. These speculative computa-
tions take place in an additional module called Con-
textTest in order to explicitly separate them from the
interpreter cycle. The ContextTest module consists of
the two components DelibStructure and CommStruc-
ture. Each element in the DelibStructure is composed
of a goal event and all relevant deliberative plans to
check. Similarly, an element in the CommStructure
is composed of a goal event and all relevant commu-
nicative plans. In the following we briefly illustrate
how the two additional components interfere with the
interpreter cycle. When no applicable reactive plan
is found for a goal g, a new element – composed of g
and all relevant deliberative plans for g – is added to
the DelibStructure. An element in the DelibStructure

I1 I2 I3

relevant plans

plan selection

yes

yes

intention multistack

event selection

plans

events goal event

Can’t achieve goal(e)

Complete element

in DelibStructure?

Complete element

in CommStructure?

Select complete element e from

CommStructure. Any applicable

communicative plans in e?

Select complete element e from

DelibStructure. Any applicable

deliberative plans in e?

applicable plans
yes

yes

intention selection

Add goal(e) together with

relevant communicative plans

to CommStructure

execution

no

no

no

no

Figure 2: Check Points in Refined Interpreter Cycle

(resp. CommStructure) is said to be complete, when
all its relevant plans are checked, i.e., the according
plans’ preconditions have been tested. As complete
elements have to get back into the basic interpreter cy-

cle, we added check points into the original interpreter
cycle. The operational semantics are best described by
means of figure 2. When there is a complete elment
in the DelibStructure, it is checked whether there is
at least one applicable plan. If this is true, the in-
terpreter cycle is continued with plan selection and
intention instantiation. Otherwise all relevant com-
municative plans for this goal have to be checked in
the CommStructure. Finally, when even no applicable
communicative plan can be found, the new goal can’t
be achieved and an exception has to be raised. It is im-
portant to notice that the DelibStructure, the Comm-
Structure and the interpreter cycle operate indepen-
dently and elements in the two additional components
are usually not completed before several rounds of the
interpreter cycle have passed.

5 Prototype Implementation

A parser written in JavaCC reads CASA specifica-
tion programs, sets the initial state of CASA agents
and starts the execution on the CASA interpreter.
The CASA interpreter is implemented in Java (JDK
1.1.8) integrating modules from the JAM library [Hu-
ber, 1999]; JAM’s classes for representation and ma-
nipulation of facts, actions, simple control structures
and external functions were easily adapted to our re-
quirements. CASA agents communicate with the en-
vironment using the MECCA framework [Bauer and
Steiner, 1998], an agent management system that im-
plements the FIPA ACL (Agent Communication Lan-
guage) standard. A CASA agent writes messages
through a specific communication adaptor to the in-
ternal message transport channel of the MECCA sys-
tem. This adaptor is also reading incoming messages
from the transport channel, converting messages into
appropriate CASA events and forwards them to the
CASA agent. The adaptor allows CASA agents to
communicate with any FIPA compliant agent using
the MECCA framework. Further details can be found
in [Flake, 1999].

6 A Sample CASA Agent

In this section we present a sample CASA agent which
was built as part of a MAS that is simulating a color
sorting assembly buffer (CSAB) for coloring car bod-
ies. Car bodies are buffered in sortlines before they are
transported further to coloring stations. The sortlines
shall help to reduce the number of color changes in the
coloring stations, thus reducing time and costs of the
whole coloring process. Each transport robot, sort-
line and coloring station of the CSAB is represented
by an agent. In this paper we focus on the tasks of
a transport robot. In the corresponding specification
file we have listed the robot’s strategies to achieve cer-
tain goals, e.g. getting orders, moving to the car body
depot, or determining the most appropriate destina-
tion sortline. The following CASA code fragment is
describing the central part of the agent’s specification:

FUNCTIONS: EVENTSELECT: Event_OldestFirst;
PLANSELECT: Plan_HighestPriority;

INTENTIONSELECT: Int_HighestPriority;

GOALS: ACHIEVE busy : 1.0;

FACTS: ...
FACT orderAgent "orderManager";

PLANS:

PLAN: {

NAME: "Master Plan";
GOAL: ACHIEVE busy;

TYPE: REACTIVE;
BODY: WHILE TEST (TRUE) {

...
PARALLEL
{ ACHIEVE getInfos : 1.0;

ACHIEVE optimize $number $color
$bodyType $sortline : 1.0;

}
{ ACHIEVE moveToDepot : 1.0;
}

IF TEST (!= $number "none") {
ACHIEVE loadRobot $bodyType

$bodyNumber : 1.0;
ACHIEVE transport $sortline : 1.0;

}
...

}

PRIORITY: 1.0;
}

PLAN: {
NAME: "get information from other agents";

GOAL: ACHIEVE getInfos;
TYPE: COMMUNICATIVE;

PRECONDITION:
PARALLEL

{ REQUEST $orderAgent "getOrderCount" : 1.0;
GETREPLY $orderCount;

}

{ REQUEST $sortline1 "getDesire" : 1.0;
GETREPLY $color1 $blockLength1 $fillState1;

}
... // request desire from other sortlines

BODY: IF TEST (> $orderCount 0) {

ACHIEVE "getOrders" : 1.0;
}

IF TEST (!= $color1 "none") {
ADD sortline 1 "desire" $color1

$blockLength1 $fillState1;
}
... // add desire of other sortlines to KB

PRIORITY: 2.0;
}

The specification defines an initial goal busy and
an appropriate plan to achieve this goal. When this
plan’s body is executed, several subgoals have to be
achieved in each cycle of the while-loop, some of them
even in parallel. Each time after the parallel subgoals
are achieved the value of variable $number is checked
in order to find out whether an order is to be trans-
ported or not. In this example different types of plans
are needed to achieve the subgoals, e.g. a communica-
tive subgoal to get information from other agents as
well as reactive and deliberative plans to achieve the
subgoal optimize. The CASA code above (right side)
denotes a fragment of one possible plan to achieve the
subgoal getInfos: When the communicative plan’s pre-
condition is checked, the agent is requesting informa-
tion from different other agents: On the one hand the
robot agent is asking the order agent about the num-
ber of waiting orders. On the other hand all sortlines
are asked about their current ”desire” to accept new
orders. This is described by the color of the last ac-
cepted order, the block length (i.e. the number of or-
ders already taken with this color) and the percentage
filling state. Finally, we present parts of the different
plans to achieve the subgoal optimize:

PLAN: {

NAME: "optimize - 1";
GOAL: ACHIEVE optimize $num $color $type $sortline;

TYPE: REACTIVE;
PRECONDITION: GETFACT order $num $color $type "urgent";
BODY: ADD currentOrder $num $color $type "urgent";

... // determine best destination sortline
PRIORITY: 2.0;

}
PLAN: {

NAME: "optimize - 2";
GOAL: ACHIEVE optimize $num $color $type $sortline;
TYPE: REACTIVE;

PRECONDITION: GETFACT sortline $lineNum $color $blockLen 0;
BODY: ADD currentDestination "sortline" $lineNum;

...// determine appropriate order to transport
PRIORITY: 1.0;

}

PLAN: {
NAME: "optimize - 3";

GOAL: ACHIEVE optimize $num $color $type $sortline;
TYPE: DELIBERATIVE;;

PRECONDITION: ACHIEVE investigateEnvironment : 1.0;
BODY: EXECUTE findBestCombination $num $color

$type $sortline;

PRIORITY: 2.0;
}

According to the CASA interpreter model the reac-
tive plans are checked first. Plan optimize-1 is check-
ing whether a fact with an urgent order is in the
agent’s knowledge base. Plan optimize-2 is checking
whether a fact with an empty sortline exists. Suppose
both of the preconditions are true, then because of
the plan selection function ”highestPriority” the first
plan is chosen. Only if both plans’ preconditions are
false, the third relevant plan optimize-3 is considered,
as it is deliberative: Before the best combination of an
order and one of the sortlines can be computed, the
robot has to investigate the environment, e.g. find out
where the other robots are or determine the distances
to sortlines and calculate the estimated time needed
to get there. Once it has checked all this, the best
combination of order and sortline can be calculated
(using a Java function findBestCombination). After
execution of one of the three plans the four variables
$number, $color, $bodyType, $sortline are automati-
cally updated in the invoking intention, as they are
interpreted as call-by-value-and-result parameters.

7 Summary and Outlook

We have described the design of the agent specifica-
tion language CASA and the development of an ab-
stract interpreter for CASA agents. CASA combines
the BDI agent approach with concepts from concur-
rent logic programming and allows the design of com-
plex agent strategies on a high level of abstraction.
Main differences to other approaches are the concur-
rent execution of typed, priorized plans and plan el-
ements (preconditions, actions) and the support for
speculative computations similar to deep guards in
Concurrent Prolog. The presented work also provides
a successful case study of how to derive an efficient
agent implementation from a formal specification that
was taken from another autor’s work and extended
towards our requirements. First examples include
simple applications taken from holonic manufactur-
ing [Flake et al., 1999] and the design of 3D actors in
virtual worlds [Geiger and Latzel, 2000]. Future work

will concentrate on the development of visual tools for
the design of CASA agents and the application in the
area of manufacturing and smart 3D graphics.

References
[Bauer and Steiner, 1998] B. Bauer and D. Steiner. MECCA - Sys-

tem Reference Manual. Internal Documentation, Siemens AG,
Munich, Germany, 1998.

[Bratman, 1987] M. E. Bratman. Intentions, Plans, and Practical
Reason. Harvard University Press, Cambridge, USA, 1987.

[Ferguson, 1992] A. Ferguson. TouringMachines: An Architecture
for Dynamic, Rational Mobile Agents. PhD Thesis, University
of Cambridge, Cambridge, USA, 1992.

[Flake, 1999] S. Flake. Design and Prototypical Realization of a
Specification Language for Intelligent Software Agents. Diploma
Thesis, University of Paderborn, May 1999 (in German).

[Flake et al., 1999] S. Flake, C. Geiger, G. Lehrenfeld, W. Mueller,
and V. Paelke. Agent-Based Modeling for Holonic Manufacturing
Systems with Fuzzy Control. 18th International Conference
of the North American Fuzzy Information Processing Society,

NAFIPS’99, New York, USA, June 10-12, 1999.

[Geiger and Lehrenfeld, 1994] C. Geiger and G. Lehrenfeld. The
Application of Concurrent Fuzzy Prolog in the Field of Modelling
Flexible Manufacturing Systems. In L. Sterling, editor: The
Second International Conference on the Practical Application
of PROLOG, PAP 94, London, England, April 1994.

[Geiger, 1998] C. Geiger. Rapid Prototyping of Interactive 3D Ani-
mations. PhD Thesis, University of Paderborn, September 1998
(in German).

[Geiger et al., 1999] C. Geiger, G. Lehrenfeld, and W. Mueller. Vi-
sual Specification, Animation and Illustration of Complex Dy-
namical Systems. In: Proc. of the 32nd Hawaiian International
Conference on Computer Systems, HICCS, Maui, Hawaii, Jan-
uary 1999.

[Geiger and Latzel, 2000] C. Geiger and M. Latzel. Prototyping
of Complex Plan Based Behavior for 3d Actors. In: Proc. of
the 4th Int. Conference on Autonomous Agents, Agents2000,
Barcelona, Spain, June 2000. (to appear)

[Huber, 1999] J.M. Huber. JAM - A BDI-theoretic Mobile Agent
Architecture. In: Proc. of the Third International Conference

on Autonomous Agents, Seattle, Washington, USA, May 1-5,
1999.

[d’Inverno and Luck, 1998] M. d’Inverno and M. Luck. Engineering
AgentSpeak(L): A Formal Computational Model. In: Journal of

Logic and Computation, 8(3), p.233-260, 1998.

[Mora et al., 1998] M. Mora et al. BDI Models and Systems:
Bridging the GAP. In: Intelligent Agents V. Agent Theo-
ries, Architectures, and Languages. 5th International Work-

shop, ATAL 98, Paris, France, July 1998. Springer LNAI 1555.

[Mueller, 1996] J. Mueller. The Design of Intelligent Agents: A
Layered Approach. Springer-Verlag, 1996.

[Nwana and Ndumu, 1999] H. Nwana and D. Ndumu. A Perspec-
tive on Software Agents Research. Knowledge Engineering Re-

view, Cambridge University Press, Cambridge, USA, January
1999.

[Rao and Georgeff, 1991] A. S. Rao and M. P. Georgeff. Model-
ing Rational Agents within a BDI-Architecture. Tech. Report
64, Australian Artificial Intelligence Institute, Melbourne, Aus-
tralia, February 1996.

[Rao, 1996] A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in
a Logical Computable Language. 7th European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, Eind-
hoven, The Netherlands, 1996.

[Schild, 1998] K. Schild. On the Relationship between BDI Log-
ics and Standard Logics of Concurrency. In: Intelligent Agents
V. Agent Theories, Architectures, and Languages. 5th Interna-
tional Workshop, ATAL 98, Paris, France, July 1998. Springer
LNAI 1555.

[Shapiro, 1989] E. Shapiro. The Family of Concurrent Logic Pro-
gramming Languages. ACM Surveys, 21(3) 1989.

[Shoham, 1993] Y. Shoham. Agent-oriented Programming. Artifi-

cial Intelligence, 60(1), p.52-92, 1993.

[Thomas, 1995] R.S. Thomas. The PLACA Agent Programming
Language. In: Intelligent Agents II - Theory, Architectures,
and Languages. Springer (ATAL 95), 1995.

