Eliminating Qualifier and Association Class
Ambiguities from OCL

Stephan Flake

C-LAB, University of Paderborn
Fuerstenallee 11, 33102 Paderborn, Germany

1 Introduction

This paper presents different proposals to elingigambiguities from OCL expressions with
respect to issue #3513, published in the currectibentation of recent OCL changes. It has
been recognized that qualifiers and associatiosseka cannot be distinguished in certain
OCL expressions. This is due to the fact that @liswed to use the same name more than
once in the scope of different classifiers in agknclass diagram. Although this problem
does not seem to appear frequently and can bededjé be of minor severity, it is still nec-
essary to resolve this conflict, as OCL claimsealprecise, unambiguous language (cf. [4],
page 8). Without this, OCL expressions cannot byeectly parsed and validated by CASE
tools. On the other hand it has to be noted thdt 6luld still be understood by practitio-
ners, which limits the extent of introducing newatmns and/or semantics.

After describing the general problem in the nextisa, an example is presented in section
3 by a class diagram and a sample OCL constraimieSproposals to resolve the problem
are presented in section 4. The paper is complstedbrief conclusion in section 5.

2 The Issue

Issue #3513 is described in the document of red€nt changes [2] as follows:

Descriptor: OCL: qualifiers and association classes ambiguity

Source: unknown
Reference: Section 7- OCL
Nature: Revision

Severity: Minor

Summary: Qualifiers, written in brackets after the path name of a feature call, can
express two different things. - qualifying use: A qualifier is used to give the qualifying
value of a qualified association (chapter 7.5.7). - navigational use: A qualifier is
used to refine the navigation to association classes. While this navigational use is
necessary only with recursive associations, it is legal for every navigation to an asso-
ciation class (chapter 7.5.5). There is no way to distinguish these two sorts of qualifi-
ers. There are even expressions where both uses of the qualifiers would be necessary
at once, but this problem is restricted to such models that contain a recursive, quali-
fied association that has an association class. [...]

* This work is supported by a German research (i2RG, SPP 1064: Integration von Techniken der
Softwarespezifikation fiir ingenieurwissenschaféiddnwendungen)

3 Example

We do not follow the example originally presenteithwhis issue, as it does not consider a
class diagram in which navigational use is trutyuieed. Instead, a different example should
demonstrate the ambiguity with respect to a reeargualified association. In figure 1, two
classe®ank andPerson are connected by an association with rolenasme®yer andemploy-
ees. Connected to clas®rson there is a recursive association with rolenabaeses andsub-
ordinates, qualified by an integer attributeore in the association clagployeeRanking (cf.

[3], paragraph 7.5.5).

Bank Person
bosses : Integer 0.1 0. * firstname : String
- “ | lastname : String bosses
employer employees | age : Integer 0.*

0..* |subordinates

I

[

|
EmployeeRanking

score : Integer

Figure 1. UML class diagram

The name of the association class alone is nacairif for navigation in recursive associa-
tions. Additionally, the direction in which the asfation is navigated has to be specified.
Let us consider a navigation to the associatiogs@aployeeRanking towards theosses end.
According to paragraph 7.5.5 in [3], the rolenarhéhe direction is added to the association
class name inside square brackets. In the confstrain

context Person inv: 1)
employeeRanking[bosses]->size > 0

the sub-expressiogmployeeRanking[bosses] evaluates to the set afnployeeRankings for the
collection ofbosses. Note, that the unqualified use of the associatiass name is not per-
mitted in such a recursive association. Now comdiue constraint

context Bank inv:

employees.employeeRanking[bosses]->size > 0 @
in the context of clasgank, which seems to be very similar to constraint Higre, the use of
bosses can either denote the integer attribute of ckasg or the association end of the recur-
sive association of clagerson. In the first casesmployees.employeeRanking[bosses] evaluates
to the set oEmployeeRankings whose integer value is equal to the integer vabsges of
classBank, while in the other case the result is - as in-(ihe set ofEmployeeRankings
belonging to the collection @bsses. In general, these sets are not equal.

4 Possible Solutions

Taking a closer look at the UML class model and@&l. grammar, we find the following
causes for the illustrated ambiguity:

1. UML allows to use the same name in different nhettements of a single class diagram
under certain conditions. For instance, in the exnof the considered issue an attribute
in one class can have the same name as a quas®atiation end in the scope of
another class.

2. In the OCL grammar, there is one production folequalifiers, leading to an actual
parameter list embraced by square brackets. Agai@meters can syntactically be all
kind of OCL logical expressions, in particular dutites and qualified association ends.

3. In the OCL chapter of the UML specification doamh [3], no semantics are given
which restrict the formulation of ambiguous OCL eegsions in the considered issue.

It seems to be not possible to eliminate the fisteéd cause without restricting the UML
metamodel of class diagrams. But instead of proygoainew semantics for class diagrams,
we should rather concentrate on the other two canserder to find a solution within OCL.

In the remainder of this section we investigate tiwbethis problem can be resolved on the
level of the OCL grammar, or by additional rulesusk, or whether it should be left to the
modelers. In each of these approaches we outlffexetit possible solutions and briefly dis-

cuss their suitability and drawbacks.

4.1 Modification of Grammar Elements

Some grammar terminals could be replaced or intteduo explicitly distinguish between
different semantics. For our problem, the squaeehets are obvious candidates. The rele-
vant production rules to analyze are taken fronctireent Draft 1.4 OCL Grammar [1]:

propertyCall = pathName timeExpression?

qualifiers? propertyCallParameters?
qualifiers = "[" actualParameterList "]" (3)
actualParameterList = expression ("," expression)*

One way to resolve the problem is by replacingdinsgifiers production rule. First, a split
into two parameter lists is introduced:

qualifiedActualParameterList := expression ("," expression)*

(4)

navigatedActualParameterList := expression ("," expression)*

These two lists can then be used indirgifiers production rule in the following ways.
(a) Keep the embracing brackets and introduce aratp:

qualifiers = "[" navigatedActualParameterList "|" qualifiedActualParameterList "]"
| "[* navigatedActualParameterList "" (5)

| "[* “|" qualifiedActualParameterList ']"

(b) Introduce an additional construct:

qualifiers := ("<" navigatedActualParameterList ">")? 6
("["* qualifiedActualParameterList “]")? ©)
(c) A shorter alternative to (b) that producessame language:
propertyCall = pathName timeExpression?
("<" navigatedActualParameterList ">")?
(7

("[* qualifiedParameterList 'T*)?

propertyCallParameters?

Discussion. All proposals distinguish between navigated andifig parameter lists. This
leads to a redundant production rule, which (infalty) clarifies the different meanings of
the two lists. Proposal (5) can leadetapty sections if only one parameter list is applied,
e.g.[| employees | . Empty sections should be avoided, as they couglithe readability of
OCL expressions. The preferable version is (6)al@rnatively (7) - as it does not produce
empty sections. This proposal is keeping the bitacke qualified parameters, like it is
widely understood by practitioners. Thus, a nevationh is used toisually Separate naviga-
tion to an association class from access via aifsgpgoalifying value. With this notation,
not only the conflict is solved, but there are emeare complex expressions possible. For
instance, in the expression

context Bank inv:

8
employees.employeeRanking<bosses>[bosses]->size > 0 ®)
the partemployees.employeeRanking<bosses> evaluates to the set efnployeeRankings of the
collection ofbosses, and thenbosses] is additionally restricting this set to th@ployeeRank-
ings Whosescore is equal to the value @ank.bosses.

Further production rules for the two types of atharameter lists could state that they can
only contain appropriate elements, namely rolenasnestributes/values. But this regards to
the semantics and not to the domain of the grammar.

4.2 Providing an Identifying Context

Generally, a different format of the potentially Biguous actual parameters can be applied
in order to resolve the regarded problem.

(a) A first idea to unambiguously access a diagelament in OCL expressions is to provide
its whole path at all times, starting from the exitwith self. Although this is not necessary
in most cases, it is essential for names whiclkpatentially ambiguous, like in figure 1. In

OCL expressions with contexdank the namebosses must then either be specified as
self.bosses Or aSself.employees.bosses.

(b) Another idea dedicated to the domain of OCloisxplicitly attach anode! element type
to the regarded parameters. With respect to figume could either stat@sses:Rolename oOr
bosses:Attribute, like in the following expression:

context Bank inv:

9)

employees.employeeRanking[bosses:Attribute]->size > 0

Discussion. An advantage of proposal (b) is that the infornmat® very simple to extract
from the class diagram. This approach requiresggmm the OCL grammar: Actual param-
eters are specified together with model elemerggyphich are elements of the getribute,
Operation, Rolename, Classifier}. Note that the ambiguity is only resolved if tbi@t of exten-
sion was required for all parameters. Thereforis, #8pproach might be too complex for
practise. Proposal (a) might also be a task toobemsome; it is even worse than proposal
(b), as a complete navigation along several assocsaresults in quite long expressions.

4.3 Precedence Rules

Names in OCL expressions can generally represéatefit elements of the given class dia-
gram. For instance, they can denote rolenamesifiéas, attributes or operations. As UML
allows to use the same name multiple times in #meesclass diagram, it will consequently
lead to misinterpretations. As long as class diagrare discussed by human modelers, they
might additionally point at the elements, thus dirgy an ambiguous interpretation. Dis-
cussing a diagram without physically pointing atétements is much more difficult, as the
context of names must then be explicitly statedd@L, we also cannot physically point at
the diagram elements. Solutions to apply a unigientifying context by syntactically
extending OCL have been discussed in the previeatiops. Now we investigate an
approach with precedence rules that does not equiy changes to the OCL syntax. One of
the rules can be added to the relevant paragraptigeiofficial UML specification (para-
graphs 7.5.5and 7.5.7):

Precedence Rule 1. Given an OCL expression within the context of a classifier C,
local names of C have a higher precedence than names of other diagram elements.

Or, contrary to the first rule:

Precedence Rule 2. Given an OCL expression, each occurring name belongs to the
scope of its preceding expression element.

Of course, these are just informal rules, and istnfoe clearly defined what is being under-
stood asname, local name andpreceding expression element in an OCL expression. With
rule 1, the original expression (2) evaluates @ogbt ofEmployeeRankings with the value of
score equal to the value dank.bosses. If the rolenameaosses was intended to be specified,
the expression must now explicitly state

context Bank inv:

10
employees.employeeRanking[self.employees.bosses]->size > 0 (10)

When rule 2 should be applied, the original expogsf2) must be changed to

context Bank inv: 1)
employees.employeeRanking[self.bosses]->size > 0

Discussion. Introducing precedence rules has the advantagéhthatyntax does not have to
be changed. The former ambiguous notation is getimnique semantics, and alternatives
have to be expressed by providing a complete [gathusers have to know the additional
precedence rules in order to correctly use OCLnFtiee user’s point of view it would be
better if ambiguous notations are syntacticallypuxsible at all.

4.4 Leaving the Issue to the Modelers and Tools

Finally, this paragraph presents a solution whioksdnot directly affect OCL syntax and
semantics. As long as no other solution is fouhd, ®CL specification document should
inform users about the problem. A first advice dtidoe placed at the end of paragraph 7.5.5
in the official UML specification together with axample. For instance, the advice could
start like this:

Advice 1. Note that there might occur an ambiguity in correlation with qualified
attribute values (cf. paragraph 7.5.7). There are class diagrams possible in which a
name is both representing an attribute in one class and a rolename in the scope of
another class. To avoid ambiguities in OCL expressions, either rename these ele-
ments in the diagram or clearly state in the OCL expression which name is meant by
applying the complete path.

There should be a another advice at the end ofyph 7.5.5, e.g.

Advice 2. Note that there might occur an ambiguity in correlation with navigation to
association classes via rolenames (cf. paragraph 7.5.5). [...]

Parsers that follow this approach should also b&rewf this matter and raise an exception
or should ask modelers to select one of the altees

Discussion. This approach can only be an interim solutions lhothing more than a state-
ment that an ambiguity problem has been recognizedOCL claims to be a precise lan-
guage, an alternative approach has definitely tprb&erred.

5 Conclusion

This paper presents different proposals to elingiraat ambiguity problem in the current ver-
sion of OCL. Two of these proposals seem to resthleeproblem in an adequate way and
should be further discussed at the workshop: Ealegcond type of actual parameter list is
introduced to the OCL grammar or an identifying teoth must be specified for each actual
parameter. Leaving the problem to the modelersaamregarded as a final solution, but at
least some advice could be given to the OCL spatitin document until a formal solution
is found.

Literature

[1] Klasse ObjectenThe Draft 1.4 OCL Grammar, Version 0.1b, June 2000. http://
www.klasse.nl/ocl/ocl-grammar-01b.pdf

[2] Klasse ObjectenUML 1.4 RTF: OCL lssues - Changes from 1.3 to 1.4, page 30,
March 2000. http://www.klasse.nl/ocl/ocl-issues.pdf

[3] Object Management GroupML Unified Modelling Language Specification, Ver-
sion 1.3, March 2000. ftp://ftp.omg.org/pub/docs/formal/08-01.pdf

[4] J. Warmer and A. Klepp&he Object Constraint Language. Precise Modeling with
UML, Object Technology Series, Addison-Wesley, 1999.

