
Eliminating Qualifier and Association Class

Ambiguities from OCL*

6WHSKDQ�)ODNH
C-LAB, University of Paderborn

Fuerstenallee 11, 33102 Paderborn, Germany

��,QWURGXFWLRQ
This paper presents different proposals to eliminate ambiguities from OCL expressions with
respect to issue #3513, published in the current documentation of recent OCL changes. It has
been recognized that qualifiers and association classes cannot be distinguished in certain
OCL expressions. This is due to the fact that it is allowed to use the same name more than
once in the scope of different classifiers in a single class diagram. Although this problem
does not seem to appear frequently and can be regarded to be of minor severity, it is still nec-
essary to resolve this conflict, as OCL claims to be a precise, unambiguous language (cf. [4],
page 8). Without this, OCL expressions cannot be correctly parsed and validated by CASE
tools. On the other hand it has to be noted that OCL should still be understood by practitio-
ners, which limits the extent of introducing new notations and/or semantics.

After describing the general problem in the next section, an example is presented in section
3 by a class diagram and a sample OCL constraint. Some proposals to resolve the problem
are presented in section 4. The paper is completed by a brief conclusion in section 5.

��7KH�,VVXH
Issue #3513 is described in the document of recent OCL changes [2] as follows:

Descriptor: 2&/��TXDOLILHUV�DQG�DVVRFLDWLRQ�FODVVHV�DPELJXLW\
Source: XQNQRZQ
Reference: 6HFWLRQ����2&/
Nature: 5HYLVLRQ
Severity: 0LQRU
Summary: 4XDOLILHUV��ZULWWHQ�LQ�EUDFNHWV�DIWHU�WKH�SDWK�QDPH�RI�D�IHDWXUH�FDOO��FDQ
H[SUHVV�WZR�GLIIHUHQW�WKLQJV����TXDOLI\LQJ�XVH��$�TXDOLILHU�LV�XVHG�WR�JLYH�WKH�TXDOLI\LQJ
YDOXH� RI� D� TXDOLILHG� DVVRFLDWLRQ� �FKDSWHU� �������� �� QDYLJDWLRQDO� XVH�� $� TXDOLILHU� LV
XVHG� WR� UHILQH� WKH�QDYLJDWLRQ� WR�DVVRFLDWLRQ� FODVVHV��:KLOH� WKLV�QDYLJDWLRQDO�XVH� LV
QHFHVVDU\�RQO\�ZLWK�UHFXUVLYH�DVVRFLDWLRQV��LW�LV�OHJDO�IRU�HYHU\�QDYLJDWLRQ�WR�DQ�DVVR�
FLDWLRQ�FODVV��FKDSWHU���������7KHUH�LV�QR�ZD\�WR�GLVWLQJXLVK�WKHVH�WZR�VRUWV�RI�TXDOLIL�
HUV��7KHUH�DUH�HYHQ�H[SUHVVLRQV�ZKHUH�ERWK�XVHV�RI�WKH�TXDOLILHUV�ZRXOG�EH�QHFHVVDU\
DW�RQFH��EXW�WKLV�SUREOHP�LV�UHVWULFWHG�WR�VXFK�PRGHOV�WKDW�FRQWDLQ�D�UHFXUVLYH��TXDOL�
ILHG�DVVRFLDWLRQ�WKDW�KDV�DQ�DVVRFLDWLRQ�FODVV��>���@

* This work is supported by a German research grant (DFG, SPP 1064: Integration von Techniken der
Softwarespezifikation für ingenieurwissenschaftliche Anwendungen)

��([DPSOH
We do not follow the example originally presented with this issue, as it does not consider a
class diagram in which navigational use is truly required. Instead, a different example should
demonstrate the ambiguity with respect to a recursive qualified association. In figure 1, two
classes Bank and Person are connected by an association with rolenames employer and employ-

ees. Connected to class Person there is a recursive association with rolenames bosses and sub-

ordinates, qualified by an integer attribute score in the association class EmployeeRanking (cf.
[3], paragraph 7.5.5).

The name of the association class alone is not sufficient for navigation in recursive associa-
tions. Additionally, the direction in which the association is navigated has to be specified.
Let us consider a navigation to the association class EmployeeRanking towards the bosses�end.
According to paragraph 7.5.5 in [3], the rolename of the direction is added to the association
class name inside square brackets. In the constraint

the sub-expression employeeRanking[bosses]�evaluates to the set of EmployeeRankings� for the
collection of bosses. Note, that the unqualified use of the association class name is not per-
mitted in such a recursive association. Now consider the constraint

in the context of class Bank, which seems to be very similar to constraint (1). Here, the use of
bosses can either denote the integer attribute of class Bank or the association end of the recur-
sive association of class Person. In the first case, employees.employeeRanking[bosses] evaluates
to the set of EmployeeRankings whose integer value is equal to the integer value bosses of
class Bank, while in the other case the result is - as in (1) - the set of EmployeeRankings

belonging to the collection of bosses. In general, these sets are not equal.

Person

firstname : String
lastname : String
age : Integer

Bank

bosses : Integer

EmployeeRanking

score : Integer

employees

0..*0..1

0..*

0..* subordinates

bosses

Figure 1. UML class diagram

employer

context Person inv:

employeeRanking[bosses]->size > 0
(1)

context Bank inv:

employees.employeeRanking[bosses]->size > 0
(2)

��3RVVLEOH�6ROXWLRQV
Taking a closer look at the UML class model and the OCL grammar, we find the following
causes for the illustrated ambiguity:

1. UML allows to use the same name in different model elements of a single class diagram
under certain conditions. For instance, in the context of the considered issue an attribute
in one class can have the same name as a qualified association end in the scope of
another class.

2. In the OCL grammar, there is one production rule for qualifiers, leading to an actual
parameter list embraced by square brackets. Actual parameters can syntactically be all
kind of OCL logical expressions, in particular attributes and qualified association ends.

3. In the OCL chapter of the UML specification document [3], no semantics are given
which restrict the formulation of ambiguous OCL expressions in the considered issue.

It seems to be not possible to eliminate the first listed cause without restricting the UML
metamodel of class diagrams. But instead of proposing a new semantics for class diagrams,
we should rather concentrate on the other two causes in order to find a solution within OCL.

In the remainder of this section we investigate whether this problem can be resolved on the
level of the OCL grammar, or by additional rules of use, or whether it should be left to the
modelers. In each of these approaches we outline different possible solutions and briefly dis-
cuss their suitability and drawbacks.

��� 0RGLILFDWLRQ�RI�*UDPPDU�(OHPHQWV
Some grammar terminals could be replaced or introduced to explicitly distinguish between
different semantics. For our problem, the square brackets are obvious candidates. The rele-
vant production rules to analyze are taken from the current Draft 1.4 OCL Grammar [1]:

One way to resolve the problem is by replacing the qualifiers production rule. First, a split
into two parameter lists is introduced:

These two lists can then be used in the qualifiers production rule in the following ways.

(a) Keep the embracing brackets and introduce a separator:

propertyCall := pathName timeExpression?

qualifiers? propertyCallParameters?

qualifiers := "[" actualParameterList "]"

actualParameterList := expression ("," expression)*

(3)

qualifiedActualParameterList := expression ("," expression)*

navigatedActualParameterList := expression ("," expression)*
(4)

qualifiers := "[" navigatedActualParameterList "|" qualifiedActualParameterList "]"

| "[" navigatedActualParameterList "]"

| "[" "|" qualifiedActualParameterList "]"
(5)

(b) Introduce an additional construct:

(c) A shorter alternative to (b) that produces the same language:

'LVFXVVLRQ��All proposals distinguish between navigated and qualified parameter lists. This
leads to a redundant production rule, which (informally) clarifies the different meanings of
the two lists. Proposal (5) can lead to HPSW\�VHFWLRQV if only one parameter list is applied,
e.g. [| employees] . Empty sections should be avoided, as they complicate the readability of
OCL expressions. The preferable version is (6) - or alternatively (7) - as it does not produce
empty sections. This proposal is keeping the brackets for qualified parameters, like it is
widely understood by practitioners. Thus, a new notation is used to YLVXDOO\ separate naviga-
tion to an association class from access via a specific qualifying value. With this notation,
not only the conflict is solved, but there are even more complex expressions possible. For
instance, in the expression

the part employees.employeeRanking<bosses> evaluates to the set of employeeRankings of the
collection of bosses, and then [bosses] is additionally restricting this set to the employeeRank-

ings whose score is equal to the value of Bank.bosses.

Further production rules for the two types of actual parameter lists could state that they can
only contain appropriate elements, namely rolenames or attributes/values. But this regards to
the semantics and not to the domain of the grammar.

��� 3URYLGLQJ�DQ�,GHQWLI\LQJ�&RQWH[W
Generally, a different format of the potentially ambiguous actual parameters can be applied
in order to resolve the regarded problem.

(a) A first idea to unambiguously access a diagram element in OCL expressions is to provide
its whole path at all times, starting from the context with self. Although this is not necessary
in most cases, it is essential for names which are potentially ambiguous, like in figure 1. In
OCL expressions with context Bank the name bosses must then either be specified as
self.bosses or as self.employees.bosses.

(b) Another idea dedicated to the domain of OCL is to explicitly attach a PRGHO�HOHPHQW�W\SH
to the regarded parameters. With respect to figure 1 we could either state bosses:Rolename or
bosses:Attribute, like in the following expression:

qualifiers := ("<" navigatedActualParameterList ">")?

("[" qualifiedActualParameterList "]")?
(6)

propertyCall := pathName timeExpression?

("<" navigatedActualParameterList ">")?

("[" qualifiedParameterList "]")?

propertyCallParameters?

(7)

context Bank inv:

employees.employeeRanking<bosses>[bosses]->size > 0
(8)

context Bank inv:

employees.employeeRanking[bosses:Attribute]->size > 0
(9)

'LVFXVVLRQ��An advantage of proposal (b) is that the information is very simple to extract
from the class diagram. This approach requires changes in the OCL grammar: Actual param-
eters are specified together with model element types which are elements of the set {Attribute,

Operation, Rolename, Classifier}. Note that the ambiguity is only resolved if this sort of exten-
sion was required for all parameters. Therefore, this approach might be too complex for
practise. Proposal (a) might also be a task too cumbersome; it is even worse than proposal
(b), as a complete navigation along several associations results in quite long expressions.

��� 3UHFHGHQFH�5XOHV
Names in OCL expressions can generally represent different elements of the given class dia-
gram. For instance, they can denote rolenames, classifiers, attributes or operations. As UML
allows to use the same name multiple times in the same class diagram, it will consequently
lead to misinterpretations. As long as class diagrams are discussed by human modelers, they
might additionally point at the elements, thus avoiding an ambiguous interpretation. Dis-
cussing a diagram without physically pointing at its elements is much more difficult, as the
context of names must then be explicitly stated. In OCL, we also cannot physically point at
the diagram elements. Solutions to apply a unique identifying context by syntactically
extending OCL have been discussed in the previous sections. Now we investigate an
approach with precedence rules that does not require any changes to the OCL syntax. One of
the rules can be added to the relevant paragraphs in the official UML specification (para-
graphs 7.5.5 and 7.5.7):

3UHFHGHQFH�5XOH����*LYHQ�DQ�2&/�H[SUHVVLRQ�ZLWKLQ� WKH� FRQWH[W�RI�D�FODVVLILHU�&�
ORFDO�QDPHV�RI�&�KDYH�D�KLJKHU�SUHFHGHQFH�WKDQ�QDPHV�RI�RWKHU�GLDJUDP�HOHPHQWV��

Or, contrary to the first rule:

3UHFHGHQFH�5XOH����*LYHQ�DQ�2&/�H[SUHVVLRQ��HDFK�RFFXUULQJ�QDPH�EHORQJV�WR�WKH
VFRSH�RI�LWV�SUHFHGLQJ�H[SUHVVLRQ�HOHPHQW��

Of course, these are just informal rules, and it must be clearly defined what is being under-
stood as QDPH, ORFDO�QDPH and SUHFHGLQJ�H[SUHVVLRQ�HOHPHQW in an OCL expression. With
rule 1, the original expression (2) evaluates to the set of EmployeeRankings with the value of
score equal to the value of Bank.bosses. If the rolename bosses was intended to be specified,
the expression must now explicitly state

When rule 2 should be applied, the original expression (2) must be changed to

'LVFXVVLRQ��Introducing precedence rules has the advantage that the syntax does not have to
be changed. The former ambiguous notation is getting a unique semantics, and alternatives
have to be expressed by providing a complete path. But users have to know the additional
precedence rules in order to correctly use OCL. From the user’s point of view it would be
better if ambiguous notations are syntactically not possible at all.

context Bank inv:

employees.employeeRanking[self.employees.bosses]->size > 0
(10)

context Bank inv:

employees.employeeRanking[self.bosses]->size > 0
(11)

��� /HDYLQJ�WKH�,VVXH�WR�WKH�0RGHOHUV�DQG�7RROV
Finally, this paragraph presents a solution which does not directly affect OCL syntax and
semantics. As long as no other solution is found, the OCL specification document should
inform users about the problem. A first advice should be placed at the end of paragraph 7.5.5
in the official UML specification together with an example. For instance, the advice could
start like this:

$GYLFH����1RWH� WKDW� WKHUH� PLJKW� RFFXU� DQ� DPELJXLW\� LQ� FRUUHODWLRQ� ZLWK� TXDOLILHG
DWWULEXWH�YDOXHV��FI��SDUDJUDSK���������7KHUH�DUH�FODVV�GLDJUDPV�SRVVLEOH�LQ�ZKLFK�D
QDPH�LV�ERWK�UHSUHVHQWLQJ�DQ�DWWULEXWH�LQ�RQH�FODVV�DQG�D�UROHQDPH�LQ�WKH�VFRSH�RI
DQRWKHU� FODVV�� 7R� DYRLG� DPELJXLWLHV� LQ�2&/� H[SUHVVLRQV�� HLWKHU� UHQDPH� WKHVH� HOH�
PHQWV�LQ�WKH�GLDJUDP�RU�FOHDUO\�VWDWH�LQ�WKH�2&/�H[SUHVVLRQ�ZKLFK�QDPH�LV�PHDQW�E\
DSSO\LQJ�WKH�FRPSOHWH�SDWK�

There should be a another advice at the end of paragraph 7.5.5, e.g.

$GYLFH����1RWH�WKDW�WKHUH�PLJKW�RFFXU�DQ�DPELJXLW\�LQ�FRUUHODWLRQ�ZLWK�QDYLJDWLRQ�WR
DVVRFLDWLRQ�FODVVHV�YLD�UROHQDPHV��FI��SDUDJUDSK���������>���@

Parsers that follow this approach should also be aware of this matter and raise an exception
or should ask modelers to select one of the alternatives.

'LVFXVVLRQ��This approach can only be an interim solution. It is nothing more than a state-
ment that an ambiguity problem has been recognized. As OCL claims to be a precise lan-
guage, an alternative approach has definitely to be preferred.

��&RQFOXVLRQ
This paper presents different proposals to eliminate an ambiguity problem in the current ver-
sion of OCL. Two of these proposals seem to resolve the problem in an adequate way and
should be further discussed at the workshop: Either a second type of actual parameter list is
introduced to the OCL grammar or an identifying context must be specified for each actual
parameter. Leaving the problem to the modelers cannot be regarded as a final solution, but at
least some advice could be given to the OCL specification document until a formal solution
is found.

/LWHUDWXUH
[1] Klasse Objecten. The Draft 1.4 OCL Grammar, Version 0.1b, June 2000. http://

www.klasse.nl/ocl/ocl-grammar-01b.pdf

[2] Klasse Objecten. UML 1.4 RTF: OCL Issues - Changes from 1.3 to 1.4, page 30,
March 2000. http://www.klasse.nl/ocl/ocl-issues.pdf

[3] Object Management Group. UML Unified Modelling Language Specification, Ver-
sion 1.3, March 2000. ftp://ftp.omg.org/pub/docs/formal/00-03-01.pdf

[4] J. Warmer and A. Kleppe. The Object Constraint Language. Precise Modeling with
UML, Object Technology Series, Addison-Wesley, 1999.

