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Abstract
This article investigates the formal verification of
MFERT models, an industry-approved graphical
notation and methodology for the specification of
manufacturing systems. We demonstrate our approach
by the example of an automatic transport system within
the context of a flexible manufacturing plant. For formal
verification we apply the RAVEN model checker. RAVEN
checks time-critical properties on networks of time-
annotated Finite State Machines. Time-critical
properties are specified by Clocked CTL (CCTL)
formulae. Additional timing analysis enables users to
gain detailed information on quantitative timing
properties. 

1 Introduction
In recent years model checking has been successfully
applied to verify the correctness of hardware and soft-
ware designs, in particular in the field of digital circuits
and communication protocols. The most remarkable
advantage of model checking is that the task of verifying
a model for certain properties is fully automated. More-
over, a model checker typically generates counter exam-
ples in cases when the model does not satisfy a specified
property. A counter example demonstrates an execution
of the model that leads to a situation which falsifies the
property, which is very helpful for detailed error analy-
sis. In time-dependent models, such as for manufactur-
ing systems, the correct time-critical behavior of certain
properties is of particular interest. Nevertheless, only
few tools support the formal verification of such models.
Instead, simulation is still heavily applied to validate the
correct behavior of models for manufacturing systems.

In this paper, we present an approach which covers
the design flow for the modelling and verification of
manufacturing systems. In a first step, the designer spec-
ifies a model in a graphical specification language
(MFERT). The MFERT description, i.e., the model, is

translated into an annotated Finite State Machine based
formalism (I/O-interval structures) for model checking.
For this model, properties are specified in Clocked CTL
for formal verification with the RAVEN model checker
[15]. For advanced timing analysis, RAVEN provides
additional facilities to check for min, max, and stable
times. 

This paper is organized as follows. The next section
discusses related works in the domain of model checking
focusing on manufacturing systems. Section 3 gives an
overview of MFERT. In Section 4, we sketch the formal
RAVEN model of I/O-interval structures focusing on the
introduction of the temporal logic CCTL. Section 5
introduces code generation of I/O-interval structures
from MFERT. In Section 6, we identify meaningful
properties for manufacturing system verification and
give their representation in Clocked CTL and query for-
mulae, respectively. Section 7 presents some preliminary
results, before Section 8 concludes with remarks and an
outlook to future work.

2 Related Works
Formal verification of manufacturing systems with a
focus on the analysis of real-time properties has not been
widely adopted by industry yet. Present practice in gen-
eral systems design is still that mainly simulation is
applied to detect qualitative and safety-critical defects in
system specifications, e.g., [10][11][19]. 

Formal verification in industrial context is currently
mainly applied for rather small systems and subsystems.
In general, verification tools are mainly available for dis-
crete systems analysis, e.g., VERUS [3]. Only few are
based on a continuous time model, e.g., HyTech for
hybrid automata [7]. They investigate static timing anal-
ysis on larger models of restricted (strongly linear)
hybrid systems. That work, for instance, is limited to
state space exploration and does not cover verification of
properties. 



Methods for the formal verification of discrete sys-
tems are barely applied to model manufacturing systems
right now. There are verification approaches in the
domain of chemical engineering. But they are not dedi-
cated to the analysis of timing properties [17]. Very few
approaches exist on the formal verification of real-time
properties in the field of electronic systems [1].

Quite a couple of verification tools have already been
integrated into design frameworks for their application
in specific domains. PEP [6], for instance, is a Petri-Net
based tool that provides a graphical user interface for the
design of parallel systems. The models have a well-
defined internal format so that they can be easily adopted
to different model checkers, like SPIN and SMV. In
another approach, the model checker SPIN is used to
analyze AMBER models [9]. AMBER is a graphical
notation dedicated to the domain of business processes.
A formal semantics is defined by a mapping to
PROMELA, the input language of SPIN. Again, this
approach does not consider timing analysis. Other envi-
ronments support MSC’s, StateCharts, and SDL as a
graphical front-end for formal analysis [2]. 

3 MFERT
We are using the structure-oriented language MFERT as
the basis for modelling manufacturing processes.
MFERT is short for "Modell der FERTigung" (German
for: Model of Manufacturing). MFERT provides means
and a methodology for specification and implementation
of planning and control assignments in manufacturing
processes. MFERT is a universal approach which has
been successfully applied in different projects with vari-
ous industrial partners [8], additionally acknowledged
by the German science award of logistics [16].

An MFERT model is based on production elements
(F-Elements) and production processes (F-Processes).
Production elements represent objects, whose properties
are changed by processes and transformations. Proper-
ties of production elements are described by attributes. A
production elements obtains its own identity, composed
out of the description and the element’s correlative sta-
tus. Using this identity, the different states during the
production can be associated to production elements.

An MFERT model is a directed bipartite graph of FE-
nodes and FP-nodes. The graphical notation of an FE-
node is a triangle , and FP-nodes are given by rectan-
gles . Each FE-Node represents a specific state and
can be seen as a container for F-Elements in the respec-
tive state. FP-nodes represent transformations on F-Ele-
ments, performed by F-processes. Nodes are connected
by edges that describe exchange relations between two
nodes. Edge annotations define if a predecessor is bring-
ing, providing, or waiting for elements and processes, as

well as when a successor is fetching, receiving, or wait-
ing for elements. Interface edges are for connecting dif-
ferent levels of hierarchy. They additionally allow the
coupling to a real production environment.

Figure 1 gives an MFERT example with table-tops,
table-legs, and screws, which are combined to complete
tables.

F-Elements and F-Processes are in certain states,
which are characterized by attributes. An attribute
denotes a feature of a model element and assigns a value
to a relation. Constructors for the definition of discrete
time modes are available. In practice, different time
models are often necessary for the definition of produc-
tion assignments, e.g., the provision of the source mate-
rials for an assembly line may take place non-recurringly
at the beginning of a shift, while the mounted end prod-
ucts are transported every hour to the delivery store.

MFERT is dedicated to the specification and imple-
mentation of automatic production systems in full com-
plexity. For implementation, model nodes are equipped
with functions, and their process control is carried out by
means of message exchange between nodes and by a so-
called "global manager" that coordinates the computa-
tions in the model.

4 Real-Time Model Checking
For formal verification of MFERT models, we apply the
RAVEN model checker. In RAVEN, the model is given
by a time-annotated state transition system, i.e., a set of
I/O-interval structures. Interval structures are based on
Kripke structures with [min,max]-time intervals at their
state transitions. This section briefly sketches the basics
of interval structures before outlining CCTL. For a more
detailed introduction to I/O-interval structures the reader
is referred to [13]. 

An interval structure  is a tuple  with
a set of propositions , a set of states , a transition rela-
tion  between the states, such that every state in  has
a successor state, a state labeling function ,
and a transition labeling function . I/O-
interval structures are interval structures with I/O-opera-
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Figure 1. Example MFERT Diagram for  a Table 
Production Assignment
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tions. We assume that each interval structure has exactly
one clock for measuring time. The clock is reset to zero,
if a new state is entered. A state may be left, if the actual
clock value corresponds to a delay time labelled at an
outgoing transition. The state must be left, if the maxi-
mal delay time of all outgoing transitions is reached. A
configuration of an interval structure  is a
state  associated with a clock value . The set of all
valid configurations in is called .

Clocked Computational Tree Logic (CCTL) is for the
specification of properties for a given interval structure
[12]. CCTL formulae are composed from propositions
denoting predicates in combination with Boolean con-
nectives and time-annotated temporal operators. The
CCTL syntax is as follows:

 

where  is an atomic proposition and  and
 are time-bounds. All interval operators

can also have single time-bound only. If not specified,
the lower bound is zero and the upper bound is infinite
by default. In the case an X-operator has no time bound
specification, its default value is one. 

The semantics of CCTL is defined as a validation
relation " " as follows, using the notion of runs, which
are possible sequences of configurations that occur dur-
ing execution of .

Definition 4.1. Given an interval structure  and a con-
figuration . 

 

Other operators can be derived by the previous ones,
such as:

 

Additional timing analysis queries help users to
extract important time bounds from formal system
descriptions. For instance, one might be interested in the
maximal number of time steps a workpiece is waiting
until it is processed. Other typical problems are minimal
and maximal delay times between events, e.g., the maxi-
mal time until the first workpiece leaves the process.
Three algorithms, which are suitable to investigate such
quantitative timing analysis questions, are formally cap-
tured by the following definition.

Definition 4.2. Given an interval structure and a set
of configurations 1 (the "region" set). The func-
tion  is defined through:

 

The function  is defined
through:

 

The function  is defined
through:

 

In the context of RAVEN, an interval structure and a
set of CCTL formulae have to be specified by the means
of the RAVEN Input Language (RIL). A RIL specifica-
tion contains a set of global definitions (e.g., fixed time
bounds or frequently used formulae) followed by the
specification of parallel running modules and CCTL
specifications plus timing analysis queries. 

g s v,( )=
s v
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5 Model Checking of MFERT
For applying RAVEN to MFERT models we have to
introduce a transformation of MFERT to I/O-interval
structures. We illustrate this transformation by a case
study taken from the domain of flexible manufacturing
systems. 

The production process is defined by the MFERT dia-
gram in Figure 2: Raw workpieces (wps) enter the manu-
facturing plant at an input storage IN, are transported
from IN to machine MILL by an automated guided vehi-
cle (AGV), then further carried on to machine WASH
(possibly by a different AGV), and finally approaches at
output storage OUT.

Subprocesses can be modelled by refined MFERT
diagrams, e.g., the process transport_to_MILL can be
divided into (a) loading an AGV at IN, (b) AGV moving
the workpiece to machine MILL, (c) unloading the AGV
at MILL. In the following, we only investigate step (a)
and assume that there are always workpieces available
for loading, according to the case study description in

[18]. A cyclic process at station IN (1) loads an AGV
with a workpiece and (2) provides the next workpiece
for loading (cf. Figure 3).

For the subprocess of loading at station IN an initial
task has to be specified. This is marked by a double
framed triangle. In our example wp_present is initial,
indicating that a workpiece is ready to be loaded. For the
process of loading, an AGV is delayed by time annota-
tions which are assigned to the outgoing edges. Note
here, that AGV is taken from the top-level MFERT dia-
gram, while node AGV_loaded_at_IN is added to the
model as a new element.

Generating I /O-Interval Structures. Given the previ-
ously introduced MFERT models, we now demonstrate
their translation to interval structures in RIL (RAVEN
Input Language).

For each MFERT subdiagram a separate I/O-interval
structure is required (cf. Figure 3). Each MFERT node is
represented by a state. Edges are interpreted as time-
annotated state transitions. Production elements that are

wp_present transport_to_MILL at_MILL

MILL wp_present transport_to_WASH at_WASH

WASH wp_present transport_to_OUT OUT

workpiece IN

Figure 2. MFERT Diagram of Manufactur ing Case Study

AGV

wp_present load_AGV empty reload

δ=10

AGV

δ=10

AGV_loaded_at_IN

δ=15
loading_IN

Figure 3. MFERT Diagram for  Loading at Station IN



connected by incoming edges to the MFERT subdiagram
(e.g., AGV in Figure 3) are interpreted as conditions. In
our example, the condition is formulated as a Boolean
expression w.r.t. 3 available AGVs:

AGV := h1.at_IN || h2.at_IN || h3.at_IN

Conditions must be completely specified when edges
are mapped to state transitions. For example, when con-
sidering the condition "in state wp_present and AGV is
true" the alternative condition "in state wp_present and
AGV is false" must be added to get a valid description of
an I/O-interval structure.

The nodes of the MFERT subdiagram are basically
mapped to binary coded state variables. The correspond-
ing RIL module of the example is given in Figure 4. The
internal signals, inputs, and local macros (DEFINE) are
given in the first part. They are followed by the defini-
tion of the initial states and the state transitions. The lat-
ter have the form:

|- state -- condition : delay --> next_state

Figure 4 gives only an excerpt from the complete
specification. The RIL code for AGVs with more than
50 states for maintaining the navigation can be found in
[14]. The complete generation requires some more com-
position and reduction algorithms to retrieve a single
interval structure out of the modules. Details about com-
position and model checking algorithms are available in
[13].

6 Proper ty and Timing Analysis
The generation of RIL from MFERT enables the auto-
matic formal verification through the RAVEN model
checker. We now outline the specification of properties
that are of specific interest in the context of our manu-
facturing case study. We present some meaningful defi-
nitions and give the corresponding CCTL formulae. The
presented formulae can be easily rephrased for other sit-
uations in the manufacturing process, i.e., for different
AGVs, their positions, other machines, and different
timing values. 

We start with a simple property about the location of
all AGVs. A heading AG-operator in the formula defines
that the property should hold on All possible execution
paths Globally at all time steps, i.e., the property should
be valid all the time during system execution.

Proper ty 1: There is at all times at most one AGV at sta-
tion IN .

 

This formula defines the mutual exclusion for AGVs at
input IN: If one of the AGVs is currently at IN, then the
other two must not show up there. Correspondingly,
other positions at machines and crossings along trans-
portation paths are checked. All these properties together
ensure that the AGVs will never collide.

Proper ty 2: Each workpiece must be picked up at input
IN not later than 400 time units after it has been pro-
vided.

 

If there is a workpiece available to be picked up, then on
all possible further execution paths (A of AF-operator) it
must happen at some time (F of AF-operator) in future
within the next 400 time units that the given state is left.

Proper ty 3: Machine MILL must not be idle for more
than 400 time units.

 

This formula is similar to the one of property 2, except
that the negation is reversed.

Proper ty 4: The interval between completed workpieces
being unloaded at the output OUT is at most 500 time
units.

 

The first part of this formula expresses the condition that
must hold: We are checking the time point when a work-

MODULE load_at_IN
SIGNAL s : { wp_present, load_AGV, empty, reload }
INPUTS AGV := h1.at_IN || h2.at_IN || h3.at_IN
DEFINE AGV_loaded_at_IN := (s==empty)
INIT  wp_present
TRANS |- s == wp_present -- AGV : 1 --> s := load_AGV

|- s == wp_present -- !AGV : 1 --> s := wp_present
|- s == load_AGV -- : 10--> s := empty
|- s == empty -- : 1 --> s := reload
|- s == reload -- : 15--> s := wp_present

END

Figure 4. RIL-Code for  Loading at Station IN

AG (
h1.at_IN h2.at_IN h3.at_IN∨( )¬→( )∧
h2.at_IN h1.at_IN h3.at_IN∨( )¬→( )∧
h3.at_IN h1.at_IN h2.at_IN∨( )¬→( ) )

AG ( loading_IN.wp_present  →
AF 400[ ] loading_IN.wp_present¬( ))

AG MILL.processing¬ AF 400[ ] MILL.processing( )→( )

AG OUT.full AX( OUT.full¬∧ AF 1 500,[ ] OUT.full( )→( ) )



piece has been unloaded to OUT (OUT.full) and in the
next step (AX-operator with implicit timing interval 1)
OUT is ready to receive new input again, i.e., the buffer
is not full. If this is true, the buffer must be filled again
before the next 500 time units (AF-operator with time
interval [1,500]).

Checking these properties with the RAVEN model
checker, the result is either "yes" (property is valid) or
"no" (property is not valid). In the latter case, a counter
example trace of the model execution is given and can be
viewed in a wave form browser1. This supports the
designer to detect and correct errors in the model or to
rephrase the property specification. In order to support
this iterative process of verification, additional timing
analysis queries can be formulated. Answers to such
queries give information about times required for execu-
tion of specific tasks. The following examples give
meaningful timing analysis specifications in the context
of our case study. 

Timing Analysis 1: How many time units are required
to receive the first workpiece at the output storage OUT?

MIN (INIT, OUT.wp_present)

Here, INIT represents the initial system configuration.
The target system configuration is specified in the sec-
ond parameter: OUT.wp_present.

Timing Analysis 2: When does AGV h1 unload a work-
piece at the output OUT for the first time?

MIN (INIT, h1_at_OUT & OUT.wp_present)

This formula is similar to the first analysis query above.
Here, we investigate a specific AGV unloading at station
OUT. h1_at_OUT represents a Boolean formula that
summarizes the states of AGV h1 when it reaches station
OUT. This has to be combined with the condition
OUT.wp_present to ensure that h1 is really unloading a
workpiece and is not just passing by.

Timing Analysis 3: What is the minimum time interval
between workpieces that are unloaded at the output stor-
age OUT? 

MIN (OUT.wp_present ∧ EX ¬OUT.wp_present,
¬OUT.wp_present ∧ EX OUT.wp_present)

We are starting from a configuration in which a work-
piece has been loaded into the input buffer of OUT and is
now removed from there, using the EX-operator to
declare two subsequent configurations. Similarly, the
second parameter specifies the configuration, in which a
workpiece is going to be loaded into the input buffer.

Timing Analysis 4: What is the maximum unloading
interval of workpieces at the output storage OUT? 

MAX (OUT.wp_present ∧ EX ¬OUT.wp_present,
 ¬OUT.wp_present ∧ EX OUT.wp_present)

Correspondingly, the maximum time between two sys-
tem configurations can be computed.

Timing Analysis 5: How long must a workpiece be
waiting at the most to be picked up at station IN?

STABLE(IN.wp_present)

This query can be easily formulated through the STA-
BLE function. Similarly, all other stations and machines
can be checked.

Timing Analysis 6: How long is machine MILL idle at
most?

STABLE(!MILL.processing)

This query defines by negation all states of machine
MILL in which it is not working on a workpiece, i.e., all
states that are different from processing. 

Although the properties and queries presented in this
paper are relatively easy to specify in temporal logics
formulae or analysis algorithm calls, the formulation of
properties in general is a task too cumbersome for people
not trained in formal methods. Based on research on
recurring patterns in existing property specifications [4],
we have developed a set of useful structured English
sentences to formulate typical time-critical properties
and timing analysis queries. To avoid ambiguities, the
sentences are given a formal semantics by their transla-
tion to CCTL formulae [5]. 

7 Results
So far, we have manually transformed a complete
MFERT model of the case study and analyzed the result-
ing I/O-interval structures with RAVEN. We could ver-
ify that the AGVs indeed do not collide in our MFERT
model2. Additional queries have proven that the first
workpiece is finished after 890 time units, and that after-
wards the interval between two completed workpieces
unloaded at the output storage is between 209 and 229
time units. The longest time for a machine to be idle is
136. More details can be found in [14]. 

On a PC with a 366MHz processor and 96MB RAM
under Linux, the automatic verification of the model
with RAVEN took less than one minute for analyzing
possible collisions and some timing queries.

1. We are currently developing a translation of these traces to
instructions for an existing 3D animation of the case study
in order to provide an intuitive visualization of such counter
examples.

2. Under the assumption that AGVs are moving along paths
defined by fixed positions.



8 Conclusion
The translation from MFERT to model checking input
presented in this article is a first step for applying auto-
mated verification of models with property specification
and timing analysis to MFERT models. Not all of the
MFERT concepts could be integrated into the translation
so far and we are currently limited to a synchronous
interpretation of MFERT. Nevertheless, the presented
studies showed that the RAVEN model checker can be
used to verify qualitative properties of modular MFERT
models including timing issues. We are expecting an
even better applicability of the upcoming next version of
RAVEN since it includes the analysis of quantitative
properties, e.g., for the dimensioning of input and output
buffers.

The presented results are based on a manual transfor-
mation of an MFERT diagram modelling a flexible man-
ufacturing system. Since the works on our graphical
MFERT capture are almost finished, RIL code genera-
tion will be integrated next.
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