
Customer-Oriented Systems Design through Virtual Prototypes

Stephan Flake, Christian Geiger, Wolfgang Mueller,
Volker Paelke, Waldemar Rosenbach

C-LAB, Paderborn University
Fuerstenallee 11, 33102 Paderborn, Germany
�flake, chris, wolfgang, vox, bobka�@c-lab.de

Juergen Ruf
Wilhelm-Schickard Institut

Tuebingen University
Sand 13, 72076 Tuebingen, Germany

ruf@informatik.uni-tuebingen.de

Abstract

Rapid prototyping based on 3D models is well accepted
for several applications. This article addresses the applica-
tion of animated virtual 3D prototypes for the development
of computer-based systems supporting early collaboration
of the system designer with the external customer. Our
methodology seamlessly integrates illustration through 3D
animation with the main tasks of computer-based real-time
systems development, i.e., implementation and verification.
The approach is outlined by the example of the design of a
flexible manufacturing system.

1. Introduction

In the recent past, rapid prototyping with virtual 3D
models became well accepted for various applications in the
areas of mechanical engineering and construction. Virtual
prototypes, e.g., piping arrangements in nuclear power sta-
tions and ships, avoid time consuming and costly generation
of physical mock-ups. Though virtual 3D models have their
place in those domains, their application is less accepted in
the field of general systems development.

However, 3D animation has great potential to signifi-
cantly enhance communication with the external customer
through the entire development process, since existing de-
sign languages, i.e., textual programming languages and vi-
sual diagrams like UML, do not give external customers
easy access to behavior/function of the system under de-
sign. Therefore, customers cannot give immediate feedback
on the functional correctness of the specified system.

In contrast, animated 3D models as a design representa-
tion can significantly enhance customer feedback through-
out the development process. We introduce a refined col-
laborative development process which is tailored to current
design practice and integrates state machine based imple-
mentation and verification of real-time properties with 3D
animation.

Starting with requirements, we develop scenarios which
are transformed into an agent-based description. From the
agent-based model we derive a 3D representation and an
UML-based implementation. The latter gives a first exe-
cutable model and can be used as input for design veri-
fication. 3D animation can serve as visualization for sev-
eral purposes. While simulation can control the animation
of the 3D model, a model checker can generate traces of
counter examples that trigger animation sequences. In or-
der to seamlessly integrate tools for analysis and animation,
our system is based on the animation library i4D for rapid
prototyping of animated 3D models.

The remainder of this article is structured as follows. The
next section sketches the general and the refined collabora-
tive customer-centered design process. Section 3 introduces
the example of a flexible manufacturing system which is
used as a running example. Section 4 presents our approach
in detail with a brief outline of the applied tools. The final
section closes with a summary and a conclusion.

2. Collaborative Systems Design

The general systems design process can be roughly di-
vided into specification, implementation, and analysis. Re-
quirement analysis and specification take place in the very
early phase of systems design. This phase requires a most
frequent communication and information exchange of the
designer with the customer in order to agree to a first con-
tract. With this contract the designer tries to implement the
required system. Practical experience shows that it makes
sense to contact the customer from time to time during sys-
tems design in order to minimize the deviation from the re-
quirements. Deviations can be due to different interpreta-
tions, conflicting specifications, or not implementable spec-
ifications. To avoid this, Repenning proposes a model for a
collaborative development which integrates the customer’s
feedback in the very early phases of the process [8]. Figure
1 shows our interpretation of this model.

The model is based on the principle of bidirectional ob-



Customer Designer

implement

analyze
observe

observerequirement

negotiate

Figure 1. Collaborative Systems Design

servation. First, the designer tries to understand the cus-
tomer’s requirements. The following negotiation reduces
these requirements to the technical realizable subset. This
can be seen as the first contract between designer and cus-
tomer. In the ideal case, the customer observes the de-
signer during implementation and analysis and collabora-
tively tries to refine the requirements for the next iteration of
the design process. The biggest problem in current practice
is that it is often not possible for a customer to understand
the details of the implemented functions. The designer of-
ten faces the problem to communicate the details of a func-
tion to a customer. This is mostly done by the means of
graphical user interfaces which partly emulate the required
function as it is understood by the designer. When this
is not sufficient, more advanced techniques from multime-
dia authoring can be applied. State-of-the-art presentations
employ photographs and textual descriptions, sometimes
augmented with video and sound. However, it is difficult
to present complex technical systems with inherent three-
dimensional geometric properties by these medias. Cus-
tomers must be enabled to experience the features and fail-
ures of the current system prototype in a realistic way in
order to influence the design process. An obvious solution
to overcome this problem is to use interactive 3D simula-
tions and animations, which provide rich exploration of the
prototype, and animation techniques for dynamic content
[7].

On the other hand, designers require additional tools for
their system implementation, for instance model checkers
that automatically check required system properties for va-
lidity. The seamless integration of expressive 3D presenta-
tion techniques and formal verification methods requires a
refinement of the previously described design process. We
propose a structured design process based on an adequate
conceptual model and supported by tools for visualization
and analysis.

Due to our experience, support for computer-based con-
current systems in early design phases is often based on
agent-oriented conceptual models since the agent metaphor

has shown to be well applicable for conceptualizing as-
pects for those purposes [5]. While the conceptual model
of agents with goals and complex behavior is suitable to in-
formally capture first ideas, it lacks precision in order to
be directly applicable as input to formal verification like
model checking which requires a state-oriented implemen-
tation [2].

Figure 2. Design Approach

The design process for system development in virtual en-
vironments needs to address interactivity, bridge the large
conceptual gap between external customer’s view and tech-
nical implementation, support extensive user involvement,
handle fuzzy requirements, and provide a base for formal
verification techniques and expressive 3D illustration ap-
proaches. Our approach is illustrated in Figure 2 and com-
bines techniques of scenario generation, hierarchical de-
composition, and iterative prototyping. We outline our ap-
proach in more detail in Section 4 based on the running ex-
ample introduced in the next section.

3. Manufacturing Case Study

The holonic manufacturing system (HMS) was intro-
duced as a test case by the IMS Initiative [12]. An HMS
is based on the notion of a holon which denotes a building
block of a system for complex production lines. Hierarchi-
cally composed holons cooperate along the lines of basic
rules to achieve a goal or objective. A single holon is under-
stood as an autonomous cooperative building block which
mostly consists of a information processing and a physi-
cal part. Holonic system structure is based on the prin-
ciples of self-similarity and self-configuration which form
self-adaptable and thus fault-tolerant networks of holons.

Our HMS example is composed of a set of different sta-
tions and a transport system as it is illustrated by the virtual



Figure 3. Screenshot of a 3D HMS Simulation

3D model in Figure 3. The transport system consists of a set
of AGVs (Automated Guided Vehicles). An AGV is an au-
tonomous vehicle which moves parts between working sta-
tions. Parts enter the system at an input station. AGVs take
parts to different subsequent manufacturing stations where
they are transformed by milling, drilling, and washing. Fi-
nally, parts are taken to an output station and leave the sys-
tem.

Stations have an input and an output buffer for incom-
ing and outgoing parts. Once having located an item at its
output buffer, a station

1. broadcasts a request for delivery to all AGVs
2. receives replies �� from idle AGVs

3. selects one AGV ��

4. notifies AGV �� for its acceptance, and notifies all
other AGVs for their rejection.

On the other hand, each AGV ��

1. is idle until it receives a request for delivery from a
station ��

2. sends a reply to �� on request of ��
3. moves to �� on notification of acceptance from ��

4. takes an item from the output buffer of ��
5. asks the next destination station �� (�� �� ��) for per-

mission to deliver the item
6. moves to �� on notification of acceptance from ��

7. unloads the item at the input buffer of ��
8. moves to a parking position and returns to step 1.

4. Collaborative Development through
3D Animation

This section outlines how the refined design pocress il-
lustrated in Figure 2 is applied to the case study of the pre-
vious section. After conceptual modeling, we discuss im-
plementation and verification.

4.1. Conceptual Modeling

System behavior can be meaningfully described as a
collection of representative interaction scenarios similar to
UML’s sequence and collaboration diagrams based on the
agent-based metaphor. Consider the following example:
For a station in the context of the case study, the goal to
perform a transport has been identified. Figure 4 illustrates
the main steps to achieve the goal, given as plan 1. Com-
plex steps can again be goals, for which separate scenarios
have to be developed. Note that in general several plans
to achieve a goal are possible. For instance, consider the
subgoal for selecting an AGV. The station could choose be-
tween different plans to determine an AGV, e.g., the nearest,
the most reliable, or the least used AGV.

Figure 4. Interaction Scenario for Transports

The scenarios should provide representative examples of
the application objects, their individual behavior, and inter-
action. Scenario analysis refines the scenarios into struc-
tured situation descriptions that detail interactive, commu-
nicative, and behavioral content. In the design process, the
scenarios are progressively refined to define communicative
goals of agents and behavior for their achievement by de-
liberative means. The designer takes these descriptions to
identify relevant agents and behaviors. The behavior can
then be transferred to an adequate 3D presentation model
and a precise state machine based implementation model
(e.g., UML StateCharts [6]) for simulation and formal veri-
fication.

The resulting agents and behaviors have a direct map-
ping to the state machine based implementation and the
actor-based i4D animation framework.

An i4D application consists of a number of actors placed
on a stage. Actors include conceptual objects like lights
and cameras, visual 3D objects, and even software elements
without a visual representation. Actors can be hierarchi-
cally structured and have attributes that describe their prop-
erties. They perform actions (e.g. animations, sending mes-
sages, sound) by continuously modifying their attributes.



Incoming Command Reply

createMT wash 90.0 50.0 90.0 wash1

startMT wash1 ok

...

createAGV 50.0 50.0 270.0 agv1

startAGV agv1 ok

moveAGVtoOutBuffer agv1 in ok

startAGVhandOver agv1 ok

moveAGVtoInBuffer agv1 mill ok

startAGVhandOver agv1 ok

moveAGVtoParking agv1 ok

...

getAGVnextObstacle agv1 24.2 agv3

Table 1. Sample Animation Sequence

The 3D actors are connected to the system implementa-
tion through an interface. In the context of our case study,
a Tcl/Tk script with a TCP/IP socket interface acts as a
server for handling incoming animation commands. Ta-
ble 1 shows some sample commands for creating objects
and manipulating actuators (e.g., moving around, loading
parts). Moreover, information from virtual sensors can be
retrieved, e.g., AGVs can use animated ”ultrasonic sensors”
to determine the distance from obstacles. Each command
is associated with an animation sequence, e.g., StartAGV-
HandOver starts an animation that loads an AGV with an
item at a station. More details of specification and realiza-
tion of the interface is given in [1].

4.2. State Machine Based Implementation

A state machine based implementation is derived from
agent behavior. For each agent, reactive behavior has to
be identified in detail and implemented as states and state
transitions.

Figure 5 illustrates how the behavior of a station input
buffer is divided into a negotiation part (Acceptor) and an
actual loading part (Loader) which both run in parallel. That
state machine can serve as a first executable implementation
which can be used for simulation. Events in the simulation
control the 3D animation through the interface. This appli-
cation can be used as a first feedback to the customer.

On the other hand, the implementation can be processed
further to an input for formal verification, e.g., for model
checking. Figure 6 gives an example for RIL code which
is applicable for the RAVEN model checker. The exam-
ple demonstrates that StateCharts can be more easily under-
stood than RIL code.

Figure 5. UML StateChart Example

4.3. Formal Verification

Symbolic model checking is well established in the for-
mal verification of small systems, in particular in the field of
electronic system design [2]. Compared to classical simula-
tion, the most notable benefit of model checking is the com-
pletely automated ellaboration of the complete state space
of a system.

The primary input for model checking is a system model
given by a set of finite state machines. As a second input,
model checking needs a formal specification of required
properties. The requirements are typically given as for-
mulae based on temporal logics. Once having specified a
property as a temporal logic formula ��, a model checker
can directly answer the question ”Does a given model sat-
isfy property ��?” by either true or false. On request, a
model checker typically generates counter examples when
the model does not satisfy a specified property. A counter
example demonstrates an execution sequence that leads to a
situation that falsifies the property, which is very helpful for
detailed error analysis.

4.3.1. Real-Time Model Checking with RAVEN. For
systems verification, we apply the RAVEN model checker
[9] that supports verification of real-time systems. In the
following, we give a brief introduction to RAVEN.

In RAVEN, a model is given by a set of time-annotated
extended state machines called I/O-interval structures. I/O-
interval structures are based on Kripke structures with
[min,max]-time intervals and additional input conditions at
their state transitions. A more detailed and formal specifi-



Figure 6. RIL Code for Acceptor

Figure 7. Sample CCTL Formula

cation of I/O-interval structures is presented in [11].
For property specifications on a given set of I/O-interval

structures, the temporal logics Clocked Computational Tree
Logic (CCTL) is applied [10]. CCTL formulae are com-
posed from propositions denoting predicates in combination
with boolean connectives and time-annotated temporal op-
erators. Timing interval specification is a significant benefit
of CCTL when being compared to the classical Computa-
tional Temporal Logics (CTL) [2].

In the context of RAVEN, I/O-interval structures and a
set of CCTL formulae have to be specified by means of
the textual RAVEN Input Language (RIL). A RIL speci-
fication contains (a) a set of global definitions, e.g., fixed
time bounds or frequently used formulae, (b) the specifica-
tion of parallel running modules, i.e., a textual specification
of I/O-interval structures, and (c) a set of CCTL formulae,
representing required properties of the model.

Figure 6 gives a code fragment of the RIL model for our
running example. For property specification, consider the
following example. One requirement in our case study is
that the input buffer of a station must not be blocked for
too long in order to ensure sufficient continuous workload,
i.e., each accepted delivery request must be followed by ac-
tually loading an item at the input buffer not later than 100
time units after acceptance. Due to the dependency on other
modules, in particular the AGVs, it is not obvious whether
the model satisfies this property. The designer has to spec-
ify a corresponding CCTL formula as it is shown in Figure
7. Additional property specifications for the manufacturing
case study can be found in [3].

4.3.2. Presentation of Results. If a CCTL formula is
proved to be incorrect, a counter example execution run can
be generated. Execution runs are given by time-annotated
sequences of state changes. RAVEN invokes a built-in
waveform browser that lists all variables and their states
over time; but only boolean variables can be visualized (Fig-
ure 8).

Figure 8. Waveform Browser

That waveform representation has two major drawbacks.
On the one hand, it is hard to interpret when the internal
bit representation has no direct correspondence to the high
level objects in the implementation, e.g., when the behavior
given by 5 states and 15 state transitions of a vehicle is mod-
eled by more than 50 variables. On the other hand, it is hard
for uneducated designers to interpret the results. To over-
come the limits of waveform representation, we provide an
intuitive application-dependent animated 3D model to visu-
alize sample model execution runs for advanced illustration
of counter examples. A screenshot of the case study sce-
nario is shown in Figure 9.

Figure 9. Screenshot of the Case Study

4.4. Animation Environment

For modeling and animation, we use the component-
based high-level graphics library i4D [4]. Figure 10 illus-
trates the architecture of the i4D system. The central unit of



this system is the management component that is responsi-
ble for organization and execution of the different i4D com-
ponents.

Figure 10. i4D Structure

i4D is based on a framework that allows to manage dif-
ferent components in a flexible way and provides a struc-
tured and open interface for external (third party) compo-
nents. Therefore, a number of different systems can be
seamlessly integrated (e.g., simulation systems, multi agent
systems). i4D runs on NT and Linux and uses the Open GL
graphics standard. A programming interface for C++ and a
script binding using Tcl/Tk is supported for application de-
velopment. A TCP/IP interface can be used to communicate
with other applications.

5. Summary and Conclusion

We have presented a refined model for a collaborative
systems development process. The refined process covers
current practice as it is applied in collaborative computer-
based systems design and focuses on state-based systems.
Our approach integrates external representation (3D anima-
tion) into the design process for computer-based concurrent
systems.

A first evaluation of our environment has been conducted
using the example of a flexible manufacturing system of
considerable complexity. However, in order to draw gen-
eral conclusions further evaluation is required.

While i4D is well suited for 3D visualization, creating
the interface still requires too many manual interactions, as
it has to be built from scratch. We are currently investigating
a basic set of domain-oriented commands that are dedicated
for several applications.

Acknowledgements

We gratefully thank Malte Beyer for modeling the case
study scenario in 3D and Tim Schmidt for implementing
the animation prototype in i4D. Christian Reimann was
involved in the implementation of the i4D kernel. This
work is supported in part by the DFG project GRASP
within the DFG Schwerpunktprogramm 1064 ”Integration
von Techniken der Softwarespezifikation fuer ingenieurwis-
senschaftliche Anwendungen”.

References

[1] A. Braatz, S. Flake, W. Mueller, and E. Westkaem-
per. ”Prototyping einer Fahrzeugsteuerung in virtueller
3D-Umgebung”. In Simulation und Visualisierung 2000,
Magdeburg, Germany, March 2000. (in German).

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, Cambridge, MA, 1999.

[3] S. Flake, W. Mueller, U. Pape, and J. Ruf. ”Analyzing
Timing Constraints in Flexible Manufacturing Systems”.
In International NAISO Symposium on Information Sci-
ence Innovations in Intelligent Automated Manufacturing
(IAM’2001), Dubai, March 2001.

[4] C. Geiger, V. Paelke, C. Reimann, and W. Rosenbach. ”A
Framework for the Structured Design of VR/AR Content”.
In ACM Symposium on Virtual Reality Systems and Tech-
niques, VRST, Seoul, Korea, October 2000.

[5] H. Nwana and D. Ndumu. ”A Perspective on Software
Agents Research”. Knowledge Engineering Review, Cam-
bridge University Press, Cambridge, MA, 1999.

[6] OMG. UML Unified Modelling Language Specification,
Version 1.3. Object Management Group, March 2000. URL:
ftp://ftp.omg.org/pub/docs/formal/00-03-01.pdf.

[7] V. Paelke. ”Systematic Design of Interactive Illustration
Techniques for User Guidance in Virtual Environments”. In
Proceedings of IEEE VR 2000, March 2000.

[8] A. Repenning and T. Summer. ”Agentsheets: A Medium for
Creating Domain-Oriented Visual Languages”. IEEE Com-
puter, 28(3), 1995.

[9] J. Ruf. ”RAVEN: Real-Time Analyzing and Verification
Environment”. Journal on Universal Computer Science
(J.UCS), Springer, Heidelberg, February 2001.

[10] J. Ruf and T. Kropf. ”Symbolic Model Checking for a Dis-
crete Clocked Temporal Logic with Intervals”. In Confer-
ence on Correct Hardware Design and Verification Methods
(CHARME), Montreal, Canada, October 1997.

[11] J. Ruf and T. Kropf. ”Modeling and Checking Networks of
Communicating Real-Time Processes”. In Int. Conf. on Cor-
rect Hardware Design and Verification Methods, Bad Herre-
nalb, Germany, 1999. Springer-Verlag.

[12] E. Westkaemper, M. Hoepf, and C. Schaeffer. ”Holonic
Manufacturing Systems (HMS) - Test Case 5”. In Proceed-
ings of Holonic Manufacturing Systems, Lake Tahoe, CA,
February 1994.


