
Specification of Real-Time Properties for UML Models

Stephan Flake and Wolfgang Mueller

C-LAB, Paderborn University

Fuerstenallee 11, 33102 Paderborn, Germany

{flake, wolfgang}@c-lab.de

Abstract

The Unified Modeling Language (UML) has received
wide acceptance as a standard language in the field of soft-
ware specification by means of different diagram types. In a
recent version of UML, the textual Object Constraint Lan-
guage (OCL) was introduced to support specification of
constraints for UML models. But OCL currently does not
provide sufficient means to specify constraints over the dy-
namic behavior of a model.

This article presents an OCL extension that is consistent
with current OCL and enables modelers to specify state-
related time-bounded constraints. We consider the case
study of a flexible manufacturing system and identify typ-
ical real-time constraints. The constraints are presented in
our temporal OCL extension as well as in temporal logic
formulae. For general application, we define a semantics of
our OCL extension by means of a time-bounded temporal
logic based on Computational Tree Logic (CTL).

1. Introduction

Formal verification methods like equivalence and model
checking have been well accepted through past years for
different kinds of applications. In particular, model check-
ing has received a wide industrial acceptance for electronic
system and protocol verification. Model checking needs a
system description and an additional property specification
as input. Properties are typically specified by formulae in
temporal logics, mostly in a future-oriented branching-time
logic called Computational Tree Logic (CTL). Though al-
ready frequently applied, it often turns out that modelers
and programmers are not familiar with formal methods and
regard it as a task too cumbersome to specify and under-
stand such properties in temporal logics.

On the other hand, the Unified Modeling Language
(UML) is well accepted in research and industry for a wide

spectrum of applications. With the wide acceptance of
UML, the Object Constraint Language (OCL) has also re-
ceived a considerable visibility. OCL provides means for
the specification of constraints in the context of UML, fo-
cusing on class diagrams and on guards in behavioral dia-
grams, but it currently lacks sufficient means to specify con-
straints over the dynamic behavior of such diagrams, i.e.,
the evolution of states and state transitions as well as tim-
ing constraints. However, it is essential to be able to specify
such constraints for real-time systems to guarantee correct
system behavior.

We present an OCL extension that overcomes this lim-
itation and keeps compliant with the syntax and seman-
tics of the current version of OCL (Version 1.4). Though
we present our approach as a constraint specification over
the state space of UML Statechart diagrams, it is also well
applicable for other state-oriented means like activity dia-
grams. With this approach, it is possible to replace cryp-
tic CTL specifications by more meaningful extended OCL
specifications, which are better tailored to the mental model
of programmers. Our approach introduces new OCL types
for certain state collections and operations for their manip-
ulation. We see this OCL extension as a real improvement
towards the specification of general real-time systems.

The remainder of this article is structured as follows. In
the next section, we give a brief overview of related works
w.r.t. formal verification and OCL extensions. Section 3
presents a manufacturing case study with automated guided
vehicles. It is used as a running example throughout this
article. Section 4 briefly covers real-time model checking
with an introduction to modeling with I/O-interval struc-
tures and property specification with time-bounded CTL.
Section 5 regards UML with an emphasis on Statechart di-
agrams and the concepts of current OCL. Section 6 intro-
duces our OCL extensions and provides a semantics based
on the temporal logic of time-bounded CTL. Section 7
briefly outlines the current state of our implementation, be-
fore Section 8 summarizes and concludes this paper.

2. Related work

There currently exist only a few approaches that apply
OCL in the context of formal verification. The KeY project
aims to facilitate the use of formal verification for software
specifications [1]. As OCL currently has no formal seman-
tics, this approach translates OCL constraints to dynamic
logic (DL), an extension of Hoare logic. DL is used as in-
put for formal verification. In this approach, OCL is applied
without modifications to specify constraints on design pat-
terns.

Two other approaches consider temporal extensions for
OCL. Distefano et al. [3] define BOTL (Object-Based Tem-
poral Logic) in order to facilitate the specification of static
and dynamic properties. BOTL is based on a combination
of CTL and a subset of OCL. Syntactically, BOTL looks
very similar to the common formulae in CTL. Another tem-
poral extension of OCL is defined by Ramakrishnan et al.
[6, 7]. They extend OCL by additional rules with unary and
binary temporal operators, e.g.,always andnever. Unfor-
tunately, the resulting syntax does not combine well with
current OCL concepts. Again, temporal expressions appear
to be similar to temporal logic formulae.

In contrast to these approaches, we introduce extensions
to OCL that concern the dynamic behavior of UML mod-
els. The extensions are performed with only minor modifi-
cations on the language metalevel, so that the use of current
OCL is not affected in any way. In order to seamlessly inte-
grate into existing OCL, our work is based on an OCL meta-
model presented by Baar and H¨ahnle in [2]. We mainly have
selected their model since it clearly separates metalevel and
instance level for OCL’s root metaclassOclType. How-
ever, we think that an adaptation to another OCL metamodel
such as [8] is possible without any problems. Our exten-
sions provide a seamless integration for the specification of
state-oriented constraints, as they are required when OCL
is used in combination with behavioral UML diagrams like
Statecharts. Though our extensions are kept compliant with
OCL syntax, they have a direct correspondence to tempo-
ral tree logic formulae for easy code generation in a formal
verification framework. Moreover, our work also covers the
specification of real-time constraints, as we apply Clocked
CTL (CCTL), a time-oriented extension of CTL [10].

3. Flexible manufacturing case study

We apply the Holonic Manufacturing System (HMS)
case study as a running example throughout the following
sections. The HMS case study was introduced by the IMS
Initiative [14]. It is composed of a set of different manufac-
turing stations and a transport system as it is illustrated by
the virtual 3D model in Figure 1.

Figure 1. 3D Model of the Case Study

The different manufacturing stations transform items,
e.g., by milling, drilling, or washing. Additional input and
output storages are for primary system input and output.
The transport system consists of a set of automated guided
vehicles (AGVs), i.e., autonomous vehicles that carry items
between stations. We assume that stations have an input
buffer for incoming items and that each AGV can take only
one item at a time. The whole system is basically character-
ized by the following application flow.
Once having located an item at its output buffer, a station

1. broadcasts a request for delivery to all AGVs
2. receives replies from each idle AGVhi

3. selects one AGVhi

4. notifies AGV hi for its acceptance, and notifies all
other AGVs for their rejection.

On the other hand, each AGVhi

1. is idle until it receives a request for delivery from a
stationsj

2. sends a reply tosj on request ofsj

3. moves tosj on notification of acceptance fromsj

4. takes an item from the output buffer ofsj

5. asks the next destination stationsk (sk 6= sj) for per-
mission to deliver the item

6. moves tosk on notification of acceptance fromsk

7. unloads the item at the input buffer ofsk

8. moves to a parking position and returns to step 1.

4. Real-time model checking with RAVEN

In this section, we outline a temporal logic that is used
in our OCL extension to provide a formal semantics. This
logic is introduced for formal verification with the RAVEN
model checker. In RAVEN, a model is given by a time-
annotated state transition system, i.e., a set of I/O-interval

Table 1. Semi-formal Description of CCTL Operators

Formula Denotation Description

g0 |= p (p ∈ P) Proposition g0 is valid inp, if p ∈ L(s0)

g0 |= ¬φ Negation g0 is satisfied by¬φ if g0 |= φ is false.

g0 |= (φ ∧ ψ) Concatenation g0 |= φ andg0 |= ψ

g0 |= EX[a] φ Next There exists a runr = (g0, . . .) such thatga |= φ

g0 |= EF[a,b] φ Eventually There exists a runr = (g0, . . .) anda ≤ i ≤ b s.t.gi |= φ

g0 |= EG[a,b] φ Globally There exists a runr = (g0, . . .) s.t. for alla ≤ i ≤ b holdsgi |= φ

g0 |= E(φU[a,b] ψ) Strong Until There exists a runr = (g0, . . .) and ana ≤ i ≤ b s.t. gi |= ψ and for allj < i
holdsgj |= φ

g0 |= E(φU[a,b] ψ) Weak Until There exists a runr = (g0, . . .) and and either (a) there exists ana ≤ i ≤ b s.t.
gi |= ψ and for allj < i holdsgj |= φ, or (b) for all i ≤ b holdsgi |= φ

structures [9]. Interval structures are based on Kripke struc-
tures with [min,max]-time intervals at their state transitions.
We here only briefly sketch the basics of interval structures.
For a more detailed introduction to I/O-interval structures,
the reader is referred to [10].

An interval structure= is a tuple(P, S, T, L, I) with a
set of propositionsP , a set of statesS, a transition rela-
tion T between states such that every state has a succes-
sor state, a state labeling functionL : S → ℘(P), and a
transition labeling functionI : T → ℘(N). I/O-interval
structures are interval structures that have read-only access
to states of other interval structures. We assume that each
interval structure has exactly one clock for measuring time.
The clock is reset to zero, if a new state is entered. A state
may be left, if the actual clock value corresponds to a delay
time labeled at an outgoing transition. The state must be left
where the maximal delay time of all outgoing transitions is
reached. Aclocked state1 g = (s, v) of an interval structure
= is a states associated with a clock valuev. The set of all
valid clocked states in= is calledG.

Clocked CTL (CCTL) is a time-bounded temporal logic
[11]. In contrast to classical CTL, the temporal operatorsF
(i.e., eventually),G (globally), andU (until) are provided
with interval time-bounds[a, b], a ∈ N0 , b ∈ N0 ∪ {∞}.
The symbol∞ is defined through:∀i ∈ N0 : i <∞. These
temporal operators can also have a single time-bound only.
In this case the lower bound is set to zero by default. If no
interval is specified, the lower bound is zero and the upper
bound is infinity by default. TheX-operator (i.e., next) can
have a single time-bound[a] only (a ∈ N). If no time bound
is specified, it is implicitly set to one.

The semantics of CCTL is defined as a validation rela-
tion ”|=”, using the notion ofruns, which represent possible

1Clocked states are originally calledconfigurations, but we are going
to use this term in a different context in the following sections.

sequences of clocked states that occur during execution of
=. Any arbitrary clocked stateg0 may be the starting point
of a run. Table 1 shows some sample semi-formal descrip-
tions of the validation relation for a given interval structure
= and a clocked stateg0 = (s0, v0) ∈ G. Note thatφ andψ
denote arbitrary CCTL (sub)formulae.
The semantics for temporal operators with path quantifier
A (i.e., regardingall possible runs) can easily be derived,
e.g.,AX[a]φ is equivalent to¬EX[a]¬φ. Another example
is AF[a,b]φ, which is equivalent to¬EG[a,b]φ.

In the context of RAVEN, I/O-interval structures and a
set of CCTL formulae are specified by means of the textual
RAVEN Input Language (RIL). A RIL specification con-
tains (a) a set of global definitions, e.g., fixed time bounds
or frequently used formulae, (b) the specification of parallel
running modules, i.e., a textual specification of I/O-interval
structures, and (c) a set of CCTL formulae, representing re-
quired properties of the model. The following code is a
fragment of the RIL model for our running example, re-
garding a part of a station input buffer.

MODULE acceptor

SIGNAL

state : {waitingForOrder,rejecting,accepting,failed}

INPUTS announced := global_newOrderForMachine

loadFail := global_loadFailure

idle := (loader.state = loader.idle)

DEFINE rejectOrder := (state = rejecting)

acceptOrder := (state = accepting)

INIT state = waitingForOrder

TRANS

|- state=waitingForOrder

-- loadFail --> state:=failed

-- !loadFail & idle & announced --> state:=accepting

-- !loadFail & !idle & announced --> state:=rejecting

!-> state:=waitingForOrder

|- state=rejecting

-- loadFail --> state:=failed

!-> state:=waitingForDelivery

... // some more transitions omitted

Figure 2. Class Diagram of the Case Study

For property specification, consider the following exam-
ple. One requirement in our case study is that the input
buffer of a station must not be blocked for too long in order
to guarantee sufficient continuous workload, i.e., each ac-
cepted delivery request must be followed by actually load-
ing an item at the input buffer within 100 time units after
acceptance. Due to the dependency on other modules, in
particular the AGVs, it is not obvious whether the model
satisfies this property. Therefore, a corresponding CCTL
formula has to be specified:

AG((acceptor.state = acceptor.accepting)

-> AF[100]((loader.state = loader.waitingForDelivery)

& AX(loader.state = loader.loading)

)

)

If RAVEN evaluates a CCTL formula to be incorrect,
a counter example execution run can be generated. Exe-
cution runs are given by time-annotated sequences of state
changes. RAVEN invokes a built-in waveform browser that
lists all variables and their states over time.

5. UML

UML (Unified Modeling Language) is a widely accepted
OMG standard for graphical design capture and representa-
tion. UML has a very rich notational framework which is
deeply embedded in and tied to object oriented methodol-
ogy. UML is most useful for communication amongst de-
signers and design teams to understand and explain design-
ers’ intent. UML expresses models through a rich set of

diagrams, i.e., class, package, deployment, use case, col-
laboration, sequence, activity, and state diagrams.

Class diagrams describe the static structure of a system.
As an example, Figure 2 gives a class diagram for the pre-
viously introduced case study. Classes are given by rect-
angular boxes with variables and operations in their lower
section. Generalizations are given as vertices with white tri-
angles, while diamonds represent aggregation relationships,
and simple vertices denote associations. OCL constraints,
in particular invariants, are associated by a dotted line with
the corresponding class.

Figure 3 illustrates examples for behavior-oriented UML
diagrams: Statechart diagrams, activity diagrams, and se-
quence diagrams.

action1

action2

action3

[condition1]

[condition2]

check

OK

return

kill

new()

activate

object1:class1

object2:class1

object1:class3

E

g h
i

A D

C

B
f

Figure 3. Sample UML Diagrams: Statechart,
Activity Diagram, Sequence Diagram

Figure 4 gives the corresponding Statechart of a subbe-
havior of a station input buffer. The figure shows one su-
perstate (InputBuffer) with two concurrent substate defi-
nitions (Acceptor andLoader) where the black circles de-
note the initial states. Directed vertices define state transi-
tions and are annotated by conditions.

Figure 4. Statechart Diagram: Input Buffer

Based on the case study presented in Section 3, we as-
sume that AGVs, stations, and the input and output storages
are all modeled by UML class diagrams and that their be-
havior is given by Statecharts. We focus here on the sub-
aspects of the behavioral specification of an input buffer
that is in charge of delivery requests. Thus, the correspond-
ing Statechart is separated into two parallel substates, one
for handling messages from other stations which request a
notification acceptance for delivery (Acceptor), the other
one for performing the actual loading process after the ac-
ceptance of a delivery (Loader), as it is shown in Figure
4.

To model behavior over time, we are using text anno-
tations. In our example, there is a time interval assigned
to stateLoading; ”load() in [20,40]” specifies that load-
ing takes between 20 to 40 time units. If the buffer fails
for some reason, e.g., a sensor is sending a failure signal,
the buffer enters a failure state, notifies the AGVs and other
stations, and gives an error report.

Object Constraint Language. The Object Constraint
Language (OCL) is part of the UML since Version 1.3. It
is a language to express restrictions on a system under de-
velopment and is applied as textual annotations within the

different UML diagram types. With OCL, modelers can ex-
press invariants on classes as well as pre- and postcondi-
tions for operations. Boolean OCL expressions can be ap-
plied in behavioral diagrams (i.e., Statecharts and activity
diagrams) as transition conditions. OCL has a simple non-
symbolic syntax and claims to be precise and unambigu-
ous, but still easy understandable by designers in the area of
object-oriented technology [13]. OCL has a number of core
concepts, e.g., it is declarative without side effects and has
a set of predefined built-in types dedicated to deal with ob-
ject collections. As an example, consider class InputBuffer
in Figure 2. Assume that technical constraints require that
the input buffer cannot keep more than 10 items at a time.
Consequently, the number of items in the input buffer has
to be restricted by the following OCL constraint:

context InputBuffer inv:

self.currentItems->size <= 10

We briefly explain how to read this invariant. The dot ”.”
is used to access properties of an object. In this example, it
is used to navigate within the class diagram and yield those
objects associated to the object on the left via the associa-
tion name on the right. In this case, we retrieve the set of all
instances of class Item currently associated to InputBuffer.
The arrow ”→” indicates that the expression to its left rep-
resents a collection of objects. OCL distinguishes between
three kinds of collections: sets, multisets resp. bags, and se-
quences. The operation to the right of the arrow is applied
to this collection. In our example, operationsize() returns
the number of elements of the previously determined set of
items.

6. Real-time OCL extensions

Our OCL extensions introduce temporal OCL operations
for state-oriented behavior. For a seemless integration into
the concepts of existing OCL, we consider the OCL type
metamodel of Baar and H¨ahnle [2], introduce some new
operations forOclState andOclAny, and add two new ba-
sic typesOclConfiguration andOclPath to their meta-
model. In the following, we only outline the basic concepts
of our extensions, as we focus in this article on the appli-
cation of the OCL extensions to specify typical real-time
constraints. More details about our metamodel extension
and the new operations can be found in [4].

6.1. States, configurations, and paths

Current OCL already supports the retrieval of states from
Statechart diagrams. States are regarded to be of type
OclState. However, this type is only marginally investi-
gated in the OCL standard and thus needs to be elaborated

with respect to its combined usage with UML Statechart di-
agrams and the underlying formal model of state machines2.
We therefore introduce new properties forOclState and
briefly describe their semantics.

OclBasicType OclState <supertype> OclAny {

stateType : enum{composite,simple};

isConcurrent : Boolean;

isRegion : Boolean;

parentState () : OclState;

subStates () : Set(OclState);

isActive () : Boolean;

notActive () : Boolean;

anySubState () : OclState;

}

In the following,s denotes an instance of typeOclState.
We first introduce an enumeration attributestateType
with literalscomposite andsimple that indicates whether
s contains substates or not. A boolean attributeis-
Concurrent indicates whethers contains concurrent sub-
states (calledregions); a boolean attributeisRegion checks
whethers is a substate of a concurrent state. We define the
operationsparentState() and subStates() which re-
turn the direct parent state and the set of direct substates,
respectively.isActive() evaluates to true ifs is currently
active and its dualnotActive() becomes true if it is not
active. We also introduce an operationanySubState()
which returns a non-deterministically selected substate.

Compliant with common OCL practice3, we take some
implicit presumptions for the remainder of this article. We
assume that there is at most one Statechart (resp. one state
machine) associated to each class. In order to be directly
accessible from OCL, all simple and composite states of a
state machine have to be available as instances ofOclState
and their properties are set according to their state machine
specification.

6.1.1. Configurations

Currently, the only possibility to retrieve information about
states in OCL is given by the boolean operationoclIn-
State() of type OclAny. This is not sufficient since in
concurrent Statechart diagrams, an overall state can only be
uniquely described by tuples of substates and thus needs ad-
ditional operations on them. We refer to such a tuple as a
configuration. More precisely, we consider a configuration
as a set of simple states that uniquely and completely de-
scribe an overall state of a given Statechart diagram.

The concurrent Statechart shown in Figure 4 has the
top level stateInputBuffer, which also denotes the class
this Statechart belongs to. The initial configuration is
Set{Acceptor::WaitingForOrder, Loader::Idle}.

2see [5], Section 2.12
3see [5], Section 6.5.10: States are already directly accessible in OCL

expressions.

Given this initial configuration, the expressionoclIn-
State(Acceptor::WaitingForOrder) is true in OCL,
althoughAcceptor::WaitingForOrder is not a complete
configuration ofInputBuffer. When investigating com-
plete configurations on the level of simple states, we cur-
rently have to write

InputBuffer.oclInState(Acceptor::WaitingForOrder)

and InputBuffer.oclInState(Loader::Idle)

since only the operationoclInState() is available. It is
easy to see that such specifications are not easily manage-
able for complex Statecharts. To overcome this, we intro-
duce the new basic typeOclConfiguration and extend
OCL’s root metatypeOclAny with the operationconfig().
This operation returns the set of all possible valid con-
figurations, i.e., all sets ofsimplestates that are required
to uniquely cover complete configurations. For instance,
InputBuffer.config() returns a set of3 ∗ 3 = 9 ele-
ments:

{ Acceptor::WaitingForOrder, Acceptor::Rejecting,

Acceptor::Accepting }
×

{ Loader::Idle, Loader::WaitingForDelivery,

Loader::Loading }

With config(), it is possible to check configurations for
their validity. For instance,

context InputBuffer inv:

self.config()->includes(c:OclConfiguration |

c = Set{Acceptor:Accepting,Loader::Loading})

checks if Set{Acceptor::Accepting,Loader::Load-
ing} is a valid configuration forInputBuffer.

6.1.2. OclConfiguration operations

As we interpretOclConfiguration as a new built-in type
for a representation of specific sets of OclStates, most op-
erations from OCL’s collection typeSet can be reused.
We only have to elaborate on operations returning collec-
tions since the result might not be a valid configuration,
but an arbitrary set of OclStates. Therefore, we can only
adopt the operations=, <>, size(), count(), isEmpty(),
notEmpty(), exists(), forAll(), includes(), includesAll(), ex-
cludes(), excludesAll()4. The other OCL operations for col-
lections, e.g., union() and intersection(), cannot be applied
for OclConfigurations without modification of their seman-
tics, as they usually result in arbitrary sets of states rather
than valid configurations. Nevertheless, type cast opera-
tions, e.g.,asSet(), still give access to the omitted oper-
ations.

4see [5], Section 6.8.2

Additionally, we introduce two new operationsisAc-
tive() andnotActive(). For an instancecfg of type
OclConfiguration, cfg->isActive() returns true if all
states ofcfg are active, whilecfg->notActive() is the
boolean opposite to this. To accessOclConfiguration
properties, we make use of the arrow-operator. This so-
lution is chosen to keep compliant with existing OCL and
its syntax for collection operations, although we regard
OclConfiguration as a new basic type.

6.1.3. OclPath

In order to reason about execution sequences of state ma-
chines, we require means to represent sequences of config-
urations. Our notion of ”sequence” assumes strong succes-
sorship, i.e., no other configuration may occur in between
two subsequent elements of a specified sequence. Addition-
ally, a configuration in a sequence may hold for a certain
time or a timing interval. In that case, the interval specifica-
tion is appended to the expression as an additional qualifier.

Current OCL already covers sequence declarations
throughliteralCollection, so that there is no need to
add or modify OCL grammar rules with that respect. We
illustrate the declaration of OclPaths by an example in the
context of Figure 4. A sequence for stateInputBuffer
which directly changes from its initial configuration to
Set{Acceptor::Accepting, Loader::Idle} after an
arbitrary time and then immediately changes to the respec-
tive waiting states of both substates is specified by the fol-
lowing configuration sequence:

Sequence{ Set{Acceptor::WaitingForOrder,

Loader::Idle } [1,’inf’],

Set{Acceptor::Accepting,

Loader::Idle } [1],

Set{Acceptor::WaitingForOrder,

Loader::WaitingForDelivery}

}

6.1.4. OclPath operations

An instance ofOclPath is interpreted as a possible execu-
tion sequence composed of OclConfigurations in the con-
text of a given Statechart resp. state machine. Similar to
OclConfiguration, many of the existing OCL sequence
operations can be immediately applied toOclPath. These
operations are=, <>, size(), isEmpty(), notEmpty(), ex-
ists(), forAll(), includes(), includesAll(), excludes(), ex-
cludesAll(), at(), first(), last(), append(), prepend(), subSe-
quence(), asSet(), asBag(), and asSequence(). The seman-
tics of almost all these operations can be directly derived
from the generic OCL typesCollection andSequence5.

We cannot make all common sequence operations di-
rectly available toOclPath, as they would result in arbi-

5see [5], Section 6.8.2

trary collections of OclConfigurations, which are not valid
OclPaths, e.g., operationsselect() andcollect() that
extract certain elements of a sequence. Nevertheless, type
casting operations still permit access to all common se-
quence operations.

6.2. Temporal operations

We introduce temporal operations to obtain object values
with respect to certain points in time. Since our application
domain is future-oriented branching time logic, we focus
our definition only on future-oriented operations. However,
we see no limitation to extend our work further to the spec-
ification of past-oriented constraints.

We first consider the@pre operator which is already
available in OCL. This operator is only allowed in postcon-
ditions and used to recall the value of an object when an
operation was started. Correspondingly, we define@post
that regards to future points in time. For a seamless in-
tegration of that operator, we interpret the symbol @ as a
separate operator such as the dot- and arrow-operator. This
means to takepre() andpost() asoperationsof OclAny
and limit the @-operator to be used only for those temporal
operations. With this interpretation, we only need very few
minor changes w.r.t. the OCL grammar, so that syntax and
semantics of existing OCL can be kept.

6.2.1. Temporal extensions to OclAny

For the introduction of temporal operations we extend OCL
typeOclAny as follows:

OclBasicType OclAny {

-- standard OclAny operations are kept

...

-- the following new operations are introduced:

config () : Set(OclConfiguraion);

pre () : OclAny;

post () : Set(OclPath);

next () : Set(OclConfiguration);

}

We already introduced operationconfig() in Section
6.1.1; it returns a set of all possible configurations. In or-
der to stick with the existing OCL return type ofpre(), it
has to be of typeOclAny. We definepost() as an oper-
ation that returns a set of OclPaths, i.e., asetof possible
future execution sequences. It has to be a set, as there are
typically different possible orders of executions in a State-
chart. Operationnext() returns a set of all possible next
configurations. Furthermore, we allow the declaration of a
[min,max]-interval in combination withpost(), as already
introduced forOclPath.

An informal semantics is given as follows. Letobj be
an object in the context of OCL.

obj@pre : OclAny

This operation may be applied in operation postcondi-

tions only. It returns the value of obj at the time

of entering the respective operation.

obj@post[a,b] : Set(OclPath)

Returns a set of possible future execution sequences

in the interval [a,b]. The configurations of time

points a and b are included. Qualifier a must be of

type Integer, and b must either be of type Integer or

of type String (in the latter case, b must be equal

to ’inf’).

obj@post[b] : Set(OclPath)

Equal to obj@post[b,b]. b must be of type Integer

obj@post : Set(OclPath)

Equivalent to obj@post[1,’inf’].

obj@next : Set(OclConfiguration)

Similar to obj@post[1,1], but this operation returns

a set of OclConfigurations which can be reached after

the next time step.

6.2.2. Mapping temporal OCL expressions

We formally define our temporal extensions by the means
of CCTL formulae as they were introduced in Section 4.
For OCL invariants, all corresponding CCTL formulae start
with an AG operator, i.e., with ’always globally’. Ta-
ble 2 lists OCL operations that directly match to CCTL
expressions. In that table,expr is supposed to be of
type OclExpression with expr.evaluationType() =
Boolean, andcctlExpr is the equivalent boolean expres-
sion in CCTL syntax. It should be easy to see how more
complex nested expressions correspond.

We finally demonstrate how configuration sequences
correspond to CCTL formulae. Lete1, e2, ..., en be ele-
ments of a sequence declaration where eachei can be ei-
ther a simpleOclConfiguration or a complex expression,
specified with timing intervals [ai, bi]. The temporal OCL
expression

inv: obj@post[a,b]→includes(

Sequence{e1[a1, b1], e2[a2, b2], ..., en})

maps to the CCTL formula

AG[a,b] EF(E(e1 U[a1,b1] E(e2 U [a2,b2] E(...
E(en−1 U[an−1,bn−1] en)...))))

Note that the path quantifier, which is applied to each
sequence element, depends on the preceded operations.
Though we only give that single mapping as an example
here, it should be clear how general expressions relate.

6.3. Constraints

In this section, we specify typical real-time constraints
with respect to the manufacturing case study described in
Section 3. The sample constraints presented here mainly
concern the Statechart forInputBuffer. Each constraint
is introduced in the following way: First, an informal re-
quirement specification in natural language is given, then a
respective CCTL formula is presented to illustrate a com-
pact formal representation of the constraint, and finally an
according OCL formula is given, applying our OCL exten-
sion with temporal operations.

To keep the constraint formulae short, we define some
abbreviations for those subexpressions that are frequently
applied. In RIL, the following definitions are declared with
global visibility:

DEFINE // RIL code for global definitions

waitForOrder := (acceptor.state =

acceptor.waitingForOrder)

accepting := (acceptor.state = acceptor.accepting)

rejecting := (acceptor.state = acceptor.rejecting)

loaderIdle := (loader.state = loader.idle)

loaderWaiting := (loader.state =

loader.waitingForDelivery)

loaderLoading := (loader.state = loader.loading)

In OCL, definitions for a given classifier are declared by
let-expressions:

context InputBuffer -- OCL code for global definitions

def: let waitForOrder = Acceptor::WaitingForOrder

let accepting = Acceptor::Accepting

let rejecting = Acceptor::Rejecting

let loaderIdle = Loader::Idle

let loaderWaiting = Loader::WaitingForDelivery

let loaderLoading = Loader::Loading

The variables declared above are used in the following con-
straints:

1. We demand that items have to periodically arrive at
the input buffer within timing intervals of at most 400
time units. In other words, stateLoader::Loading
can always be reached again within 400 time units. An
according CCTL formula is

AG EF[1,400] (loaderLoading)

The corresponding OCL formula is

context InputBuffer inv:

InputBuffer::Loader@post[1,400]->exists(

p:OclPath | p->includes(loaderLoading))

In this constraint, we directly access the (sub)state
InputBuffer::Loader, whose configurations can be
expressed by single states, e.g., byloaderLoading.

Table 2. Temporal OCL Expressions and Equivalent CCTL Formulae

Temporal OCL Expression Respective CCTL Formula

inv: obj@post[a,b]→exists(p:OclPath| p→forAll(c:OclConfiguration| expr)) AG EG[a,b](cctlExpr)

inv: obj@post[a,b]→exists(p:OclPath| p→exists(c:OclConfiguration| expr)) AG EF[a,b](cctlExpr)

inv: obj@post[a,b]→exists(p:OclPath| p→includes(cfg)) AG EF[a,b](cctlCfg)

inv: obj@post[a,b]→forAll(p:OclPath| p→forAll(c:OclConfiguration| expr)) AG AG[a,b](cctlExpr)

inv: obj@post[a,b]→forAll(p:OclPath| p→exists(c:OclConfiguration| expr)) AG AF[a,b](cctlExpr)

inv: obj@post[a,b]→forAll(p:OclPath| p→includes(cfg)) AG AF[a,b](cctlCfg)

2. The previous constraint can only become valid if or-
ders have already been announced and accepted be-
forehand. To guarantee this, we require that configura-
tion Set{Acceptor::Accepting, Loader::Idle}
is always reached again within 400 time units. An ac-
cording CCTL formula is

AG AF[1,400] (accepting & loaderIdle)

The corresponding OCL expression is

context InputBuffer inv:

self@post[1,400]->includes(

Set{accepting,loaderIdle})

3. To ensure correct processing of orders, the buffer must
not accept a new order when it is still waiting for a
delivery. In CCTL, this can be expressed by

AG(!(accepting & loaderWaiting))

In OCL, a corresponding constraint is

context InputBuffer inv:

let errorCfg = Set{accepting,loaderWaiting}

in

self@post->forAll(p:OclPath |

p->excludes(errorCfg))

4. After accepting an order, the according item has to be
delivered at most 80 time units later. In CCTL, we
write

AG((accepting & loaderIdle)

-> AF[1,80](waitForOrder & loaderLoading))

In OCL, this constraint is expressed by a concatenation
of collection operations, such that results from a pre-
ceding collection operation deal as input for the next
operation.

context InputBuffer inv:

let acceptCfg = Set{accepting,loaderIdle}

let loadCfg = Set{waitForOrder,loaderLoading}

in

self@post->forAll(p:OclPath |

p->first = acceptCfg

implies

p->subSequence(1,80)->

includes(loadCfg))

5. We demand that immediately after an order is ac-
cepted,Acceptor returns to stateWaitingForOr-
der andLoader changes toWaitingForDelivery.
Thereafter, the order should arrive within 100 time
units at the buffer, and stateLoader::Loading is en-
tered, whileAcceptor must not enter stateAccept-
ing. A corresponding CCTL formula is

AG EF E(accepting & loaderIdle

U[1] E(waitForOrder & loaderIdle

U[1,100] (!accepting & loaderLoading)

)

)

For an OCL formula, we define a configuration se-
quence that is reused in a temporal expression:

context InputBuffer inv:

let acceptPath =

Sequence {

Set{accepting, loaderIdle }[1],

Set{waitForOrder, loaderWaiting}[1,100],

Set{not accepting,loaderLoading}

}

in

self@post->includes(acceptPath)

These constraints appear in a similar way for Statecharts
of the other classes, e.g., AGVs have to periodically deliver
items to stations, must wait until they are loaded, and should
meet required delivery time limits. Moreover, AGVs should
not collide, which is expressed by the following CCTL and
OCL formulae6. In CCTL, we write:

AG((agv1.pos != agv2.pos) & (agv1.pos != agv3.pos)

& (agv1.pos != agv4.pos) & (agv1.pos != agv5.pos)

& (agv2.pos != agv3.pos) & (agv2.pos != agv4.pos)

& (agv2.pos != agv5.pos) & (agv3.pos != agv4.pos)

& (agv3.pos != agv5.pos) & (agv4.pos != agv5.pos))

Note here that all instance combinations have to be explic-
itly named in the CCTL formula. This leads to quite long
formulae, e.g., in 10 conjunction elements when there are 5
AGVs. In OCL, this constraint can be more easily specified:

6We are assuming that AGVs are moving along paths defined by fixed
positions.

context AGV inv:

self.allInstances(x,y:AGV | (x <> y) implies

(x.pos <> y.pos))

7. Implementation

The OCL extensions presented here are integrated into
our OCL editor which is implemented in Java 1.3 using
Swing components. Users can load and edit OCL types,
model descriptions, and OCL constraints in parallel. For
parsing OCL type declarations, we have defined a sepa-
rate grammar that considers the unique declaration needs
for collection operations [4]. Class models and Statecharts
are currently read as textual descriptions, using again a sep-
arate grammar similar to the one for OCL types. OCL ex-
pressions are parsed according to the official OCL grammar
version 1.4 (see [5], Section 6.9). The three parsers are im-
plemented with JavaCC (http://www.webgain.com) based
on an early implementation for OCL version 1.1 [12].

An integrated type checker investigates whether OCL
constraints are correctly declared w.r.t. a given system
model. Additionally, constraints with temporal operations
can automatically be translated to CCTL formulae and ex-
ported for further use in a model checking tool.

8. Summary and conclusion

We have presented OCL extensions for the specification
of real-time constraints in state-oriented UML diagrams.
Our extensions are based on an existing OCL metamodel
and extend it by additional operations on existing types
and by completely new types. The presented approach has
demonstrated that an OCL extension for real-time specifi-
cation is possible with only minor changes of current OCL
syntax and semantics. Regarding the manufacturing case
study, we were able to express all relevant real-time con-
straints with our OCL extension. We think that enhance-
ments into this direction are necessary for future OCL ver-
sions to ensure correct behavior of real-time systems that
are developed with UML. Our formal semantics by means
of equivalences to CCTL formulae provides a sound basis
for formal treatment such as an interface to a formal veri-
fication tool. Though our extensions are based on a future-
oriented temporal logic, we see no limitation to extend it
further to the specification of past-oriented constraints.

Acknowledgements

This work has been supported by a grant from the
Deutsche Forschungsgemeinschaft (DFG) within the Prior-
ity Programme 1064 ”Integration von Techniken der Soft-
warespezifikation f¨ur ingenieurwissenschaftliche Anwen-
dungen”.

References

[1] W. Ahrendt et al. The KeY Approach: Integrating Ob-
ject Oriented Design and Formal Verification. In M. Ojeda-
Aciego et al., editors,8th European Workshop on Logics in
AI (JELIA), Malaga, Spain, volume 1919 ofLecture Notes
in Computer Science, pages 21–36. Springer-Verlag, 2000.

[2] T. Baar and R. H¨ahnle. An Integrated Metamodel for OCL
Types. InProc. of OOPSLA 2000, Workshop Refactoring the
UML: In Search of the Core., Minneapolis, MN, USA, 2000.

[3] D. Distefano, J.-P. Katoen, and A. Rensink. On a Temporal
Logic for Object-Based Systems. InProc. of FMOODS’2000
- Formal Methods for Open Object-Based Distributed Sys-
tems IV, Stanford, CA, USA, September 2000.

[4] S. Flake and W. Mueller. An OCL Extension for Real-Time
Constraints. In T. Clark and J. Warmer, editors,Advances in
Object Modelling with the OCL, Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, 2001.

[5] OMG. Unified Modeling Language Specification, Ver-
sion 1.4. Technical report, Object Management Group,
September 2001. URL: http://www.omg.org/technology/do-
cuments/formal/uml.htm (last visited September 18, 2001).

[6] S. Ramakrishnan and J. McGregor. Extending OCL to Sup-
port Temporal Operators. InProc. of the 21st International
Conference on Software Engineering (ICSE99), Workshop
on Testing Distributed Component-Based Systems, Los An-
geles, CA, USA, May 1999.

[7] S. Ramakrishnan and J. McGregor. Modelling and Testing
OO Distributed Systems with Temporal Logic Formalisms.
In 18th International IASTED Conference Applied Informat-
ics’2000, Innsbruck, Austria, 2000.

[8] M. Richters and M. Gogolla. A Metamodel for OCL. In
R. France and B. Rumpe, editors,UML’99 - The Unified
Modeling Language. Beyond the Standard. Fort Collins, CO,
USA, volume 1723 ofLecture Notes in Computer Science,
pages 156–171. Springer-Verlag, 1999.

[9] J. Ruf. RAVEN: Real-Time Analyzing and Verification Envi-
ronment. Journal on Universal Computer Science (J.UCS),
Springer-Verlag, Heidelberg, 7(1):89–104, February 2001.

[10] J. Ruf and T. Kropf. Symbolic Model Checking for a Dis-
crete Clocked Temporal Logic with Intervals. InConfer-
ence on Correct Hardware Design and Verification Methods
(CHARME97), Montreal, Canada, October 1997.

[11] J. Ruf and T. Kropf. Modeling and Checking Networks of
Communicating Real-Time Systems. InConf. on Correct
Hardware Design and Verification Methods (CHARME99),
Bad Herrenalb, Germany, September 1999.

[12] J. Warmer. OCL Parser, Version 0.3. URL: http://www-4-
.ibm.com/software/ad/library/standards/ocl.html (last visited
on September 18, 2001).

[13] J. Warmer and A. Kleppe.The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1999.

[14] E. Westkaemper, M. Hoepf, and C. Schaeffer. Holonic Man-
ufacturing Systems (HMS) - Test Case 5. InProceedings of
Holonic Manufacturing Systems, Lake Tahoe, CA, 1994.

