
An OCL Extension for Real-Time Constraints

Stephan Flake and Wolfgang Mueller

C-LAB, Paderborn University, Fürstenallee 11
33102 Paderborn, Germany

{flake, wolfgang}@c-lab.de

Abstract. The Object Constraint Language (OCL) was introduced to support the
specification of constraints for UML diagrams and is mainly used to formulate
invariants and operation pre- and postconditions. Though OCL is also applied in
behavioral diagrams, e.g., as guards for state transitions, it is currently not possi-
ble to specify constraints concerning the dynamic behavior and timing properties
of such diagrams.
This article discusses OCL’s application for the dynamic behavior of UML State-
chart diagrams and presents an OCL extension for specification of state-oriented
time-bounded constraints. We introduce operations to extract state configurations
from diagrams and define additional predicates over states and state configura-
tions. The semantics of our OCL extension is given by employing time-bounded
Computational Tree Logic (CTL) formulae. An example of a flexible manufac-
turing system with automated guided vehicles demonstrates the application of our
extension.

1 Introduction

Currently, the Unified Modeling Language (UML) is well accepted in research and in-
dustry for a wide spectrum of applications. With the broad acceptance of UML, the Ob-
ject Constraint Language (OCL) also has received a considerable visibility. OCL pro-
vides means for the specification of constraints in the context of UML diagrams, focus-
ing on class diagrams and on guards in behavioral diagrams. However, OCL presently
lacks sufficient specification means to cover constraints about the dynamic behavior of
such diagrams, i.e., state configurations and evolution of states as well as state transi-
tions over time cannot be expressed, so that OCL is currently not applicable for real-
time specifications.

On the other hand, formal verification methods like equivalence and model check-
ing have been well accepted through past years for some application domains. In par-
ticular, model checking has received a wide industrial acceptance for electronic sys-
tem and protocol verification. Similar to the complementary means of UML and OCL,
model checking needs a system description and a property specification as input, where
properties are typically specified by formulae in temporal logics, mostly in Computa-
tional Tree Logic (CTL). Though already frequently applied, it often turns out that the
specification of properties is regarded as a task too cumbersome for modelers and pro-
grammers who are not familiar with formal methods. With our OCL-based approach
for model checking specification, it is possible to replace cryptic CTL specifications by

more meaningful (extended) OCL specifications which are better tailored to the mental
model of programmers.

In order to make OCL applicable for real-time specification in general and for model
checking specification in particular, we introduce OCL extensions by concepts from
temporal logics based upon a time-bounded variant of CTL. As we introduce our exten-
sions on the basis of an OCL metamodel, they are seamlessly integrated into the exist-
ing OCL syntax and semantics (OCL Version 1.4). We enhance OCL by the notion of
future-oriented state configurations as well as state transitions over time. All extensions
come with a well defined semantics which is given by a translation of OCL statements
to time-bounded CTL formulae. Though we present our approach as a constraint speci-
fication over the state space of UML Statechart diagrams by addressing future-oriented
behavior, it is applicable without further modification for other state-oriented means
like Activity Diagrams and also easily adaptable to past-oriented temporal logics.

The remainder of this article is structured as follows. In the next section, we give a
brief overview of related works w.r.t. OCL extensions for formal verification. Section 3
gives an introduction to model checking and property specification by means of time-
bounded CTL. In Section 4, we introduce our OCL extensions by collections of states
and their operations and provide a semantics of the temporal operations by their relation
to temporal logic formulae. Section 5 illustrates an application example before Section
6 briefly outlines our implementation. Finally, Section 7 summarizes and concludes this
article.

2 Related Work

There currently exist very few approaches to apply OCL in the context of formal verifi-
cation frameworks, though UML Statechart diagrams already apply well as a graphical
front-end for model checking [3].

The KeY project aims to facilitate the use of formal verification for software speci-
fications [1]. As OCL currently has no formal semantics, this approach translates OCL
constraint specifications to dynamic logic (DL), an extension of Hoare logic. DL is used
as input for formal verification. In that approach, OCL is applied to specify constraints
on design patterns without modifying OCL.

Two other approaches consider temporal extensions for OCL. Distefano et al. define
BOTL (Object-Based Temporal Logic) in order to facilitate the specification of static
and dynamic properties [5]. BOTL is based on a combination of CTL and an OCL
subset. Syntactically, BOTL is very similar to temporal formulae in CTL. Another tem-
poral extension of OCL is defined by Ramakrishnan et al. [9, 10]. They extend OCL
by additional rules with unary and binary temporal operators, e.g., always and never.
Unfortunately, the resulting syntax does not combine well with current OCL concepts.
Again, temporal expressions appear to be similar to temporal logics formulae.

In contrast to previous approaches we introduce extensions to static OCL concepts
towards dynamic concepts with only minor modifications to existing OCL syntax and
semantics. In order to seamlessly integrate to existing OCL, our work is based on an
OCL metamodel [2]. We have selected that model since it clearly separates metalevel
and instance level for OclType. However, we think that an adaptation to another OCL

metamodel such as [11] is possible without significant problems. Though our exten-
sions are kept compliant with OCL syntax and existing types and operations, they also
have direct correspondence to temporal tree logic formulae for easy code generation
in a formal verification framework. Moreover, our work also covers the specification
of real-time constraints, as the underlying concepts covers Clocked CTL (CCTL), a
time-bounded variant of CTL [12].

3 Model Checking

Symbolic model checking is mainly due to pioneering work of two groups: Clarke/
Emerson and Quielle/Sifakis [4]. Temporal logic based model checking is well estab-
lished in hardware-oriented systems design for electronic circuits and protocol verifi-
cation and receives growing interest in software design. Though the general problem
is PSPACE-complete, symbolic representations like Binary Decision Diagrams allow
verifications with up to 10120 states.

For model checking, given a parallel finite state machine (the model) and a temporal
logic formula (the property specification), a model checker outputs either ’yes’ if the
model satisfies the formula or ’no’ if the formula does not hold. In the latter case,
usually a counter example can automatically be generated to show a particular model
execution sequence which leads to a situation that contradicts the formula.

In the context of model checking, model representation is mostly based on Kripke
structures (i.e., unit-delay temporal structures) which are derived from finite state ma-
chines. A Kripke structure M = (P, S, s0, T, L) is a tuple with a set of atomic proposi-
tions P , a set of states S, an initial state s0 ∈ S, a transition relation between the states
T ⊆ S × S such that every state has a successor state, and a state labeling function
L : S → 2P .

For property specification, most model checkers are based on branching-time tem-
poral tree logic specification. Temporal tree logic (TL) expresses information about
states and future state transition paths. An execution path defines one possible future
execution path starting from the current state as root. All possible execution paths es-
tablish an infinite tree with the current state as its root. One of the most frequently
applied TLs is the Computational TL (CTL).

In CTL, temporal operators are always preceded by a path quantifier. Starting from
the current state, the path quantifier either specifies to consider all possible execution
paths (A) or it specifies that at least one execution path must exist (E) that satisfies
the following formula part. Temporal operators specify the ordering of events along
future-oriented execution paths. Table 1 gives an overview of the CTL operators.

In general, a CTL formula f can be built by applying the following recursive gram-
mar:

f :=

a | f ∨ f | f 6 f | f ∧ f | f ⊕ f

| EX f | EF f | EG f | E(f U f)

| AX f | AF f | AG f | A(f U f)

where a is an atomic proposition.

Table 1. Temporal Operators

Name Operator Description

next-time X f next state on the path has to satisfy f

eventually F f some arbitrary state on the path has to satisfy f

always G f every state on the path has to satisfy f

until f U g some state s on the path has to satisfy g

and all states on the path up to s have to satisfy f

There are extensions to basic model checking for the verification of real-time sys-
tems. One variation is defined by Kropf and Ruf in [12] in the context of the RAVEN
model checker. They extend Kripke structures to I/O-Interval structures and CTL to
time-bounded Clocked CTL. The major difference with respect to Kripke structures is
the introduction of a transition labeling function I : T → 2IN with [min,max]-delay
times. A state may be basically left at min-time and must be left after max-time.

Clocked CTL is a time-bounded variant of CTL with X[x], F[x,y], G[x,y], U[x,y], where
x ∈ IN0, y ∈ IN0 ∪{∞} are time bounds. The symbol ∞ is defined through: ∀i ∈ IN0 :
i < ∞. In the case of only one parameter the lower bound is set to zero by default. If
no interval is specified, the lower bound is implicitly set to zero and the upper bound is
set to infinity. If the X-operator has no time bound, it is implicitly set to one.

In order to integrate more general concepts for specification of real-time systems,
the extensions introduced in the next section refer to Clocked CTL concepts.

4 Real-Time OCL Extensions

In the domain of database systems, different types of semantic integrity constraints are
distinguished [6]. Static constraints define required properties on nontransient system
states, i.e., static properties within one system state. Transition constraints deal with
system changes between two subsequent states. In real-time systems design, we ad-
ditionally identify temporal constraints that consider sequences of state transitions in
combination with time bounds. While static and transition constraints can already be
expressed with OCL, it currently lacks means to express temporal constraints.

To overcome this, we introduce temporal OCL operations that enable modelers to
specify state-oriented behavior. The OCL extensions presented in this article reason
about possible future object states since we define the semantics based on a future ori-
ented tree temporal logic without loss of generality. Accordingly, OCL can also be
easily extended for specification of past-oriented constraints.

In the following, we first outline the concepts of our extensions based on an OCL
metamodel. Thereafter, we describe the new types and their operations as well as neces-
sary extensions to the predefined OCL type OclAny. The final paragraph of this section
gives the semantics of the new operations by their translation to Clocked CTL expres-
sions.

4.1 OCL Metamodel

At present, there are two metamodel proposals for OCL [11, 2]. We have selected the
metamodel proposed by Baar and Hähnle [2] since it seems to be considerably stable
and sufficiently generic for our purpose. That metamodel covers the complete OCL type
system and aims to overcome difficulties in specifying metalevel constraints. Figure 1
gives an overview of that metamodel in form of a UML class diagram. In that figure,
we have marked our extensions as bold, and it can be easily seen that our modifications
are only marginal. We only require the additional metaclass GenericParameter and
two new basic OCL types: OclPath and OclConfiguration.1

superType

subType

conform

*

*

name : String

<<abstract>>

OclType

CollectionType

<<abstract>>

Collectable

Class
(from Core)

DataType
(from Core)

<<enumeration>>

OclBasicKind
OclAny

Real

Integer

String

Boolean

OclExpression

OclState

OclPath

OclConfiguration

Classifier
(from Core)

OclBasicType

1 descriptor

* *

1

elementType 1

CollectionConstructor

Bag

Set

Sequence

Collection

<<enumeration>>

CollectionKind

descriptor1

superConstructor

subConstructor

0..1

<<singleton>>

GenericParameter

getInstance()

1

*

*

Fig. 1. Extented OCL Metamodel

1 Note here that compared to [2] we have removed the literal Enumeration from OclBasic-

Kind, due to issue 3143 in [14] (Enumeration instances are now retrieved from model classes
by their path name).

The main idea of this metamodel is to consider the type OclType purely as a
metatype, while all other predefined types are instances of (a subtype of) OclType,
i.e., there is no subtype relationship between OclType and the predefined types like
Integer, String, or Boolean. Instead, subtype relationships between OCL types
are explicitly modeled by the association conform. The operations attributes(),
operations(), and associationEnds() of OclType are in this metamodel only
available for instances of the metaclass Classifier by inheritance from the UML
core metamodel which does not affect OCL in its usage at the application level. Col-
lection types are aggregations of a collection kind and an element type. An additional
class CollectionConstructor is used to model the conformance between collection
kinds, e.g., type Set conforms to Collection. The metamodel comes with OCL well-
formedness rules to ensure that only predefined type names can be instantiated and that
the conformance relationships are composed along the lines of standard specifications.
Based on this metamodel, we introduce the following modifications.

– A unique generic parameter is defined in a singleton class GenericParameter.
A generic parameter is required in declarations for instances of CollectionCon-
structor as a placeholder for a concrete basic OCL type. In OCL standard doc-
uments, this generic parameter is usually denoted as T, e.g., Collection(T). As
OclType has no operations in this metamodel, it is possible to regard GenericPa-

rameter as a subtype of OclType, and we add well-formedness rules to ensure the
correct instance name:

context GenericParameter

inv: self.name = ’T’

context OclType

inv: self.allInstances->isUnique(name)

– Two new basic type names OclConfiguration and OclPath are added as literals
to the enumeration OclBasicKind; detailed descriptions can be found in the next
section.

4.2 States and Configurations

Current OCL already supports the retrieval of states from Statechart diagrams. States
are regarded to be of type OclState. However, this type is only marginally outlined in
the OCL standard and thus needs to be elaborated with respect to its combined usage
with UML Statechart diagrams and the underlying formal model of state machines2

which is a part of the UML metamodel3. In that metamodel, state machines may have
several kinds of states which are given as subtypes of the metaclass StateVertex. For
our work, we are only interested in the states that represent a specific behavior, namely
composite and simple states, and we do not consider pseudo, synch, stub, final, and
submachine states here. The following code illustrates our extension of OclState that

2 see [7], Section 3.75
3 see [7], Section 2.12

introduces new attributes and operations compliant to the UML state machine meta-
model.4

DataType <<enumeration>> StateType {

composite,

simple

}

OclBasicType OclState <supertype> OclAny {

stateType : StateType;

isConcurrent : Boolean;

isRegion : Boolean;

parentState() : OclState;

subStates() : Set(OclState);

isActive() : Boolean;

notActive() : Boolean;

anySubState() : OclState;

}

We outline and informally describe the properties of OclState using the terms and
identifiers of the UML state machine metamodel. Let s be an instance of type Ocl-

State. The enumeration attribute stateType points out whether s is a composite or a
simple state. The boolean attribute isConcurrent indicates whether s contains concur-
rent substates (denoted as regions), and the boolean attribute isRegion checks whether
s is a substate of a concurrent state. The state machine metamodel defines an asso-
ciation connecting states and their direct substates, and the corresponding association
ends are subvertex and container. For s, we define the operations subStates()
and parentState() which return the states accessible via this association. In the
case of a top level state, s.parentState() returns undefined. Correspondingly,
s.subStates() returns an empty set, if s is a simple state. isActive() evaluates
to true if s is currently active. Its dual notActive() becomes true if s is not active.
We also need the operation anySubState() which returns one non-deterministically
chosen substate. When no substates are defined, the operation returns undefined.

Compliant with common OCL practice5, we take some implicit presumptions for
the remainder of this article. We assume that there is at most one Statechart diagram
(resp. one state machine) for each classifier. In order to be directly accessible from OCL,
all simple and composite states of a state machine have to be available as instances of
OclState. Their properties are set according to their state machine specification.

Configurations. Currently, the only possibility to retrieve information about states in
OCL is given by the boolean operation oclInState() of type OclAny. This is not
sufficient since in concurrent Statechart diagrams an overall state can only be uniquely

4 A grammar of the language we are using for declarations of basic and generic OCL types can
be found in Appendix A.

5 see [7], Section 7.5.10: States are already directly accessible in OCL expressions.

described by tuples of substates and thus needs additional operations on them. We refer
to such a tuple as a configuration. More precisely, we consider a configuration as a
set of simple states that uniquely and completely describe an overall state of a given
Statechart diagram.

Fig. 2. Concurrent Statechart Diagram

Figure 2 gives an example of a concurrent Statechart diagram. That example has
the top level state S which also denotes the classifier this Statechart diagram belongs to.
Here, the initial configuration can be described by Set{X::A::J,X::B::M}. For this
Statechart, S.oclInState(X::A::J) returns true in current OCL, although X::A::J

is not a complete configuration of S. When investigating complete configurations on the
level of simple states, we currently have to write

S.oclInState(X::A::J) and S.oclInState(X::B::M)

since only the operation oclInState() is available. It is easy to see that such spec-
ifications are not easily manageable for complex Statecharts. To overcome this, we
introduce the new basic type OclConfiguration and add the operation config():

Set(OclConfiguration) to OclAny. This operation returns the set of all valid con-
figurations, i.e., all sets of simple states that are required to uniquely cover complete
configurations. Table 2 gives some usage examples of config() when applied to the
Statechart of Fig. 2. The notion of configuration also applies to substates, e.g., X::A
and X::A::J. Note here that in the resulting sets all configurations are given by their
complete path names and that the name of the topmost state is not included in the path
of a configuration.

The operation config() returns a set of configurations, or more precisely, a set of
sets of simple states, which is not flattened like other OCL operations on collections
are. Note here that not necessarily all configurations have the same number of states,
e.g., {Y} and {X::A::J,X::B::M} are both valid configurations for S. The operation
config() checks configurations for their validity. For instance,

context S

inv: self.config->includes(c:OclConfiguration |

c = Set {X::A::J,X::B::M})

checks if Set{X::A::J,X::B::M} is a valid configuration for S. This also includes a
check for the newly introduced OCL type OclConfiguration.

Table 2. Sample Usages of the Operation config()

Expression Result

S.config {X::A::J, X::A::K, X::A::L} × {X::B::M, X::B::N} ∪ {Y}

S.config→size 3 ∗ 2 + 1 = 7

X::A.config {X::A::J, X::A::K, X::A::L}

X::A.config→size 3

X::A::J.config {X::A::J}

X::A::J.config→size 1

The next section presents basic operations for instances of that type, while Section
4.3 investigates on dynamic issues of configurations with respect to the runtime execu-
tion of state machines.

Operations of OclConfiguration. As we interpret OclConfiguration as a new built-
in type for a representation of specific sets of OclStates, most operations of Ocl type
Set can be reused. We only have to elaborate on operations that return collections,
since the result might be an arbitrary set of OclStates rather than a valid configuration.
Therefore, we cannot directly adopt operations like union(), intersection(), including(),
excluding(), symmetricDifference(), select(), reject(), collect() for OclConfigurations
without modification. Nevertheless, access to those set operations is still possible via
type cast operations, e.g., asSet().

Again, we use the grammar given in Appendix A to present the operations defined
for OclConfiguration.

OclBasicType OclConfiguration <supertype> OclAny {

--

-- operations adopted from generic type Set

--

= (c:OclConfiguration) : Boolean;

<> (c:OclConfiguration) : Boolean;

size () : Integer;

count (s:OclState) : Integer;

isEmpty () : Boolean;

notEmpty () : Boolean;

exists (e:OclExpression) : Boolean;

forAll (e:OclExpression) : Boolean;

includes (s:OclState) : Boolean;

includesAll (t:Set(OclState)) : Boolean;

excludes (s:OclState) : Boolean;

excludesAll (t:Set(OclState)) : Boolean;

--

-- new operations

--

isActive () : Boolean;

notActive () : Boolean;

--

-- type cast operations

--

asSet () : Set(OclState);

asBag () : Bag(OclState);

asSequence () : Sequence(OclState);

}

Except the two newly introduced operations isActive() and notActive() all other
operations of OclConfiguration can be immediately adopted from the generic types
Collection and Set6. The semantics of isActive() and notActive() is described
in the style of the official OCL specification as follows, where cfg denotes an instance
of OclConfiguration in the context of a classifier C.

--

cfg->isActive() : Boolean

True if all states of cfg are active.

pre: C.config->includes(cfg)

post: result = cfg->forAll(s : OclState | s.isActive)

--

cfg->notActive() : Boolean

True if at least one of the states of cfg is not active.

pre: C.config->includes(cfg)

post: result = not cfg->isActive

--

To access OclConfiguration properties, we make use of the arrow-operator. This so-
lution is chosen to keep the compliance with existing OCL and its syntax for collection
operations, although OclConfiguration is defined as a basic type.

OclPath. In order to reason over execution sequences of state machines, we require
means to represent sequences of configurations. Note here that our notion of sequence
assumes strong successorship, i.e., no other configuration may occur between two sub-
sequent elements of a specified sequence. Additionally, a configuration in a sequence
may hold for a certain time or a time interval. In that case, a time specification is ap-
pended to the expression as an additional qualifier.

Instances of a new basic type OclPath – representing sequences of OclConfigura-
tions – are declared by the following grammar:

6 see [7] Section 7.8.2

cfgSequence := "Sequence" "{" cfgExprList "}"

cfgExprList := cfgExpr (qualifiers)?

("," cfgExpr (qualifiers)?)*

cfgExpr := ("not")?

(configuration

| "(" configurationList ")"

)

configuration := stateName

| "Set" "{" stateName ("," stateName)* "}"

configurationList := configuration ("or" configuration)*

stateName := pathName

qualifiers := "[" actualParameterList "]"

where the non-terminals pathName, qualifiers, and actualParameterList are de-
fined according to the official OCL Grammar. Note here that OCL already covers se-
quence declarations through literalCollection, so that there is no need to add or
modify rules with that respect.

In the above grammar, qualifiers refers to a [min,max]-time interval specifica-
tion corresponding to the Clocked CTL time intervals introduced in Section 3. Thus,
this expression has one or two comma seperated subexpressions. The latter is of type
Integer × (Integer ∪ {′inf ′}), specifying discrete [min,max]-time intervals with an
optional infinite upper bound. In the case of only one subexpression, that expression has
to evaluate to type Integer and specifies both lower and upper bound. Configuration
expressions without qualifiers implicitly have the interval [1,’inf’] as a default.

For an OclPath example, we take the Statechart diagram in Fig. 2 and define in the
context of S:

let V = X::A

let W = X::B

The following let-expression specifies a sequence for state S::X which changes from
the initial configuration {V::J,W::M} to {V::K,W::M} after some time, is staying
in this configuration between 5 and 50 time units, then changes to {V::L,W::M} or
{V::K,W::N}, remaining in this configuration for exactly 10 time units, and finally
changes to configuration {V::L,W::N}.

let p = Sequence { Set {V::J,W::M},

Set {V::K,W::M} [5,50],

(Set {V::L,W::M} or Set {W::K,W::N}) [10]

Set {V::L,W::N}

}

OclPath Operations. An instance of OclPath is interpreted as a possible execution
sequence composed of OclConfigurations for a given Statechart diagram, resp. state
machine. Similar to OclConfiguration, the existing OCL sequence operations can
be immediately applied to OclPath. Nevertheless, we do not define all common se-
quence operations for OclPath, as many of them would result in arbitrary collections

of OclConfigurations which are not valid OclPaths. Note here that access to all common
sequence operations is still available through type casting.

The typeOclPath is defined as follows where the semantics of all operations can be
directly derived from the generic OCL types Collection and Sequence7 .

OclBasicType OclPath <supertype> OclAny {

--

-- basic operations derived from OclCollection

--

= (p:OclPath) : Boolean;

<> (p:OclPath) : Boolean;

size () : Integer;

isEmpty () : Boolean;

notEmpty () : Boolean;

count (t:OclConfiguration) : Integer;

exists (e:OclExpression) : Boolean;

forAll (e:OclExpression) : Boolean;

includes (t:OclConfiguration) : Boolean;

includesAll (s:Set(OclConfiguration)) : Boolean;

excludes (t:OclConfiguration) : Boolean;

excludesAll (s:Set(OclConfiguration)) : Boolean;

--

-- basic operations derived from OclSequence

--

at (i:Integer) : OclConfiguration;

first () : OclConfiguration;

last () : OclConfiguration;

append (t:OclConfiguration) : OclPath;

prepend (t:OclConfiguration) : OclPath;

subSequence (l:Integer,u:Integer) : OclPath;

--

-- type cast operations

--

asSet () : Set(OclConfiguration);

asBag () : Bag(OclConfiguration);

asSequence () : Sequence(OclConfiguration);

}

4.3 Temporal Operations

Temporal operations have to be introduced to obtain object values with respect to certain
points in time. Since our application domain is future-oriented branching time logic, we
focus our definition only on future-oriented operations. However, same concepts also
apply to past operators and can be introduced correspondingly.

7 see [7] Section 7.8.2

For our extension we first consider the @pre operator which is already available in
OCL. This operator is only allowed in operation postconditions and used to recall the
value of an object when the operation was called. Correspondingly, we define @post

that regards future points in time. For a seamless integration of that operator, we in-
terpret the symbol @ as an individual operator, such as the dot- and arrow-operators.
This means to take pre and post as operations of OclAny and restrict the @-operator
to be used only for those temporal operations. Under these assumptions we only need
very few minor changes w.r.t. the OCL grammar, so that main syntax and semantics of
OCL can be kept. For a complete summary of all OCL grammar changes, the reader is
referred to Appendix B.

Extensions to OclAny. The OCL basic type OclAny is the abstract superclass of all
OCL basic types and all other model classes (i.e., instances of the metatypes Class or
DataType w.r.t. a given UML class diagram). In order to introduce temporal operations
to OCL we extend OclAny with the operations pre(), post(), and next(). For the
sake of completeness, the operation config() (cf. Section 4.2) is also listed in the
following code fragment.

OclBasicType OclAny {

-- keep standard OclAny operations

....

-- new operations

config () : Set(OclConfiguraion);

pre () : OclAny;

post () : Set(OclPath);

next () : Set(OclConfiguration);

}

As the return type of operation pre() can here only be declared as OclAny, we have
to ensure type consistency by an additional postcondition. We define post() as an
operation that returns a set of OclPaths, i.e., a set of possible future execution sequences.
It is to be defined as a set since there can be various possible orders of executions in a
Statechart diagram. Operation next() returns a set of all possible configurations after
one time unit. Furthermore, we allow the declaration of a [min,max]-time interval in
combination with post(), as already introduced for OclPath.

The informal semantics is given as follows, where obj denotes an instance of
OclAny.

--

obj@pre() : OclAny

This operation may be used in operation postconditions only. It

returns the value of obj at the time of entering the respective

operation.

post: result.oclIsTypeOf(obj)

--

obj@post()[a,b] : Set(OclPath)

Returns a set of possible future execution sequences in the

interval [a,b]. The configurations of time points a and b are

included.

--

obj@post()[b] : Set(OclPath)

Same as obj@post[b,b]. b must be of type Integer.

--

obj@post() : Set(OclPath)

Same as obj@post[1,’inf’].

--

obj@next() : Set(OclConfiguration)

Similar to obj@post[1,1], but @next returns a set of

OclConfigurations that are valid after the next time step.

--

Until-Operator. For our temporal OCL extension, we have to introduce a logical
until operator to be able to express causal dependencies between subsequent con-
figurations. To define the semantics, we first have to define a validation relation |= over
OCL expressions that result in OclConfigurations:

Definition 1. Given a time step t, a classifier S, its configuration c at time step t, and
an OclExpression expr. Let res be the result from evaluating expr at time step t, then

(c, t) |= expr :⇔















expr.evaluationType = OclConfiguration

and S.config→includes(expr)

and c = res

We say that expr is satisfied by c at time step t, if and only if expr evaluates to a valid
instance res of OclConfiguration in the context of S and c equals res.

The binary logical operator until is defined for pairs of OclExpressions that both
evaluate to instances of type OclConfiguration. Optionally, until can be supplied
with an interval declaration according to the grammar rules introduced for [min,max]-
time intervals in Section 4.2. Implicitly, the interval is set to [1,’inf’] by default.

The logical operator until is defined as follows.

Definition 2. Given a time step t, a classifier S, and its configuration c at time step t.
Let p be an instance of OclPath whose configurations are all valid in S. Let expr1,
expr2 be two OCL expressions.

(c, t) |= (p : OclPath | expr1 until[a, b] expr2)

:⇔

there exists an i, a ≤ i ≤ min(p.size, b), such that (p.at(i), t + i) |= expr2

and for all j, 1 ≤ j < i, holds: (p.at(j), t + j) |= expr1

Translating Temporal OCL Expressions to CCTL. We can now formally define our
temporal OCL extensions by their translation to Computational CTL formulae as they
were introduced in Section 3. We focus on OCL invariants, so that all corresponding
CCTL formulae start with the AG operator, i.e., with ’always globally’. Table 3 lists
temporal OCL operations that directly match to CCTL expressions. In that table, expr
is of type OclExpression and configuration of type OclConfiguration. The ta-
ble gives a translation by templates and it should be easy to see how it is applied to
nested expressions. Due to space limitations we additionally use a compact form for the
OCL expressions in that table, e.g., we use

obj@post[a,b]->exists(forAll(expr))

instead of explicitly declaring the iterators:

obj@post[a,b]->exists(p:OclPath |

p->forAll(c:OclConfiguration | expr))

Table 3. Temporal OCL Expressions and Equivalent CCTL Formulae

Temporal OCL Expression Respective CCTL Formula

inv: obj@post[a,b]→exists(forAll(expr)) AG EG[a,b](expr)

inv: obj@post[a,b]→exists(exists(expr)) AG EF[a,b](expr)

inv: obj@post[a,b]→exists(includes(configuration)) AG EF[a,b](configuration)

inv: obj@post[a,b]→exists(expr1 until[c,d] expr2] AG EG[a,b] E(expr1 U[c,d] expr2)

inv: obj@post[a,b]→forAll(forAll(expr)) AG AG[a,b](expr)

inv: obj@post[a,b]→forAll(exists(expr)) AG AF[a,b](expr)

inv: obj@post[a,b]→forAll(includes(configuration)) AG AF[a,b](configuration)

inv: obj@post[a,b]→forAll(expr1 until[c,d] expr2] AG AG[a,b] A(expr1 U[c,d] expr2)

Configuration sequences translate to CCTL formulae as follows. Let e1, e2, ..., en

be elements of a sequence declaration, where ei can be either simple OclConfigura-
tions or complex expressions, specified with time intervals [ai, bi]. The temporal OCL
expression

obj@post[a,b]→includes(Sequence{e1 [a1, b1], e2[a2, b2], ..., en})

translates to the CCTL formula

AG[a,b] EF(E(e1 U[a1,b1] E(e2 U [a2,b2] E(...E(en−1 U[an−1,bn−1] en)...)))).

Note here that the path quantifier, which is applied to each sequence element, depends
on the preceding operations.

5 Example

The following section outlines the previously described concepts by the example of
a Holonic Manufacturing System (HMS) case study. The HMS case study was intro-
duced by the IMS Initiative TC 5. It is composed of a set of different manufacturing
stations and a transport system as shown by the virtual 3D model in Fig. 3. The differ-
ent manufacturing stations transform workpieces, e.g., by milling, drilling, or washing.
Additional input and output storages are for primary system input and output. The trans-
port system consists of a set of AGVs (Automated Guided Vehicles), i.e., autonomous
vehicles that carry workpieces between stations. We assume that stations have an input
buffer for incoming workpieces and that each AGV can take only one workpiece at a
time.

Fig. 3. 3D Model of the Manufacturing Scenario.

The whole system is basically characterized by the following application flow.

– An AGV vi is idle until it receives a request for delivery from a station sk. Then, it
1. sends the distance di from its current position to sk,
2. moves to sk on notification of acceptance from sk,
3. takes the workpiece from sk and moves it to the next destination,
4. moves to a parking position and returns to Step 1.

– Once having located a completed workpiece at its output, a station sk

1. sends a request for delivery to the next destination station sdest,
2. is waiting for a notification from sdest for a specific time period,
3. returns to Step 1 if sdest does not reply or answers with a reject to the request,
4. broadcasts a request for delivery to all AGVs,
5. is collecting messages with distances di from idle AGVs vi for a specific time

period,
6. returns to Step 4 if no AGV replies,
7. selects one AGV vi from all received distances di, notifies AGV vi for its

acceptance and notifies the other AGVs for their rejection.

5.1 UML Statechart Diagrams

We assume that AGVs, stations, and the input and output storages are all modeled by
class diagrams and that their behavior is given by Statechart diagrams. We focus here on
the subaspects of the specification of a station input buffer that is in charge of delivery
request management. The corresponding Statechart diagram (see Fig. 4) is separated
into two parallel substates, one for handling messages from other stations which re-
quest an notification acceptance for delivery (Acceptor). The second one processes the
loading after the acceptance of a delivery (Loader).

Fig. 4. Statechart Diagram of the Input Buffer

To model behavior over time, we are using text annotations. In our example, there
is a time interval assigned to state Loading: ”load in [20,40]” means that Loading
takes between 20 and 40 time units. If the buffer fails for some reason, e.g., a sensor
is sending a failure signal, the buffer enters a failure state, notifies the AGVs and other
stations, and gives an error report.

5.2 OCL Constraints

We now specify some example constraints for the buffer of the previously described
Statechart diagram, applying our OCL extension with temporal operations.

We first request that new workpieces have to periodically arrive at the input buffer
within time intervals of at most 100 time units. In other words, state Loading can
always be reached again within 100 time units. The corresponding OCL expression is

context Buffer

inv: Loader@post[1,100]->forAll(p:OclPath|p->includes(Loading))

Note that Buffer::Loader is a composite sequential state and that its configura-
tions can be expressed by single states. The next invariant defines that a buffer must not
accept a new order when still waiting for a delivery:

context Buffer

inv: self@post->forAll(p:OclPath | p->excludes(

Set{Acceptor::Accepting, Loader::WaitingForDelivery}))

Finally, we present an example for an application of a configuration sequence and
the usefulness of let-expressions in complex constraints. We request that immediately
after an order is accepted, Buffer::Acceptor returns to state WaitingForOrder and
Buffer::Loader changes to WaitingForDelivery. Thereafter, the order should ar-
rive within 100 time units at the buffer, and state Loading is entered, while Acceptor
must not be in state Accepting.

context Buffer

def: let waitForOrder = Acceptor::WaitingForOrder

let waitForDeliver = Loader::WaitingForDelivery

inv: let acceptPath =

Sequence {

Set{Acceptor::Accepting,Loader::Idle}[1],

Set{waitForOrder,waitForDelivery}[1,100],

Set{not Acceptor::Accepting,Loader::Loading}

} in

self@post->includes(acceptPath)

6 Implementation

The temporal extensions as presented here are integrated into our OCL parser and type
checker (see Fig. 5). The checker is implemented in Java 1.3 using Swing components.
The visual capture loads and edits OCL types, model descriptions, and OCL constraints
in parallel. The parsers are implemented with JavaCC (www.webgain.com) based on
an early implementation of OCL Version 1.1 [8]. Correctly parsed types are integrated
into type tree structures. Class models and Statecharts are currently modeled by tex-
tual means. For this, we have implemented a system to parse textual descriptions of
class models and Statecharts. Constraints with temporal operations are automatically
translated to CCTL formulae for model checking.

Fig. 5. OCL Parser and Type Checker

7 Summary and Conclusion

We have presented an OCL extension for the specification of real-time constraints in
state-oriented UML diagrams. Our extensions were outlined on the basis of an OCL
metamodel. The presented approach has demonstrated that an OCL extension for real-
time specification is possible with only little changes to syntax and semantics of current
OCL. It has been demonstrated that extensions into that direction are not in conflict
with general OCL concepts. Due to the increasing importance of real-time systems we
think that enhancements for real-time systems specification are worth to be considered
in future official OCL versions.

The semantics of our extensions are given by their translation to Clocked CTL for-
mulae which also provides a sound basis for a combined UML and OCL application
for formal verification by model checking. The presented extensions are based on a
future-oriented temporal logic. However, the general concepts can be easily extended
to past-oriented constraints and to a generalization to capture various additional logics.

Acknowledgements

This work has been supported by the DFG project GRASP within the DFG Priority
Programme ”Integration von Techniken der Softwarespezifikation für ingenieurwis-
senschaftliche Anwendungen”. We appreciate the help of Prof. P.H.P. Bhatt for valuable
discussions and proof reading.

References

[1] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel, and P. H.
Schmitt. The KeY Approach: Integrating Object Oriented Design and Formal Verification.
In M. Ojeda-Aciego, I. P. de Guzmán, G. Brewka, and L. M. Pereira, editors, 8th Euro-
pean Workshop on Logics in AI (JELIA), Malaga, Spain, volume 1919 of Lecture Notes in
Computer Science, pages 21–36. Springer-Verlag, Oct. 2000.

[2] T. Baar and R. Hähnle. An Integrated Metamodel for OCL Types. In R. France, B. Rumpe,
J.-M. Bruel, A. Moreira, J. Whittle, and I. Ober, editors, Proc. of OOPSLA 2000, Workshop
Refactoring the UML: In Search of the Core, Minneapolis, Minnesota, USA, 2000.

[3] U. Brockmeyer and G. Wittich. Tamagotchis Need Not Die – Verification of STATEMATE
Designs. In B. Steffen, editor, Tools and Algorithms for the Construction and Analysis of
Systems, volume 1384 of Lecture Notes in Computer Science, pages 217–231. Springer-
Verlag, 1998.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT PRESS, 1999.

[5] D. Distefano, J.-P. Katoen, and A. Rensink. On a Temporal Logic for Object-Based Sys-
tems. In S. F. Smith and C. L. Talcott, editors, Proc. of FMOODS’2000 – Formal Methods
for Open Object-Based Distributed Systems IV, Stanford, CA, USA, September 2000.

[6] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley World
Student Series, 3rd edition, 2000.

[7] Object Management Group (OMG). UML Unified Modeling Language Specification, Ver-
sion 1.3, March 2000. URL: http://www.omg.org/technology/documents/formal/uml.htm
(last visited on July 11th, 2001).

[8] OCL Parser, Version 0.3, 1997. URL: http://www-4.ibm.com/software/ad/library/standards/
ocl-download.html (last visited on July 11th, 2001).

[9] S. Ramakrishnan and J. McGregor. Extending OCL to Support Temporal Operators. In
Proc. of the 21st International Conference on Software Engineering (ICSE99), Workshop
on Testing Distributed Component-Based Systems, Los Angeles, May 1999.

[10] S. Ramakrishnan and J. McGregor. Modelling and Testing OO Distributed Systems with
Temporal Logic Formalisms. In 18th International IASTED Conference Applied Informa-
tics’2000, Innsbruck, Austria, 2000.

[11] M. Richters and M. Gogolla. A Metamodel for OCL. In R. France and B. Rumpe, editors,
UML’99 – The Unified Modeling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, volume 1723 of Lecture Notes in Computer Science,
pages 156–171. Springer-Verlag, 1999.

[12] J. Ruf and T. Kropf. Symbolic Model Checking for a Discrete Clocked Temporal Logic
with Intervals. In E. Cerny and D. Probst, editors, Conference on Correct Hardware Design
and Verification Methods (CHARME), pages 146–166, Montreal, Canada, October 1997.
IFIP WG 10.5, Chapman and Hall.

[13] J. Warmer. The Draft 1.4 OCL Grammar, Version 0.1c. Technical report, Klasse Objecten,
June 2000. URL: http://www.klasse.nl/ocl/ocl-grammar-01c.pdf (last visited on July 11th,
2001).

[14] J. Warmer. UML 1.4 RTF: OCL Issues – Changes from 1.3 to 1.4. Technical report, Klasse
Objecten, March 2000. URL: http://www.klasse.nl/ocl/ocl-issues.pdf (last visited on July
11th, 2001).

Appendix A

Grammar

The here presented grammar in EBNF is for the definition of OCL predefined types
based on the metamodel discussed in Section 4.1. A type definition consists of the type
name, preceded by its mandatory metatype name, and succeeded by optional supertypes
and the definition body. We have added a non-terminal umlStereotype to be able to
declare types as ”abstract” or as ”enumeration”. We allow sequences of names in the
rule definitionBody to define enumeration types. The grammar rule returnType

is modified in comparison to its OCL definition, as we allow parameter names and
operation names in a return type, e.g., e.evaluationType.

Moreover, we had to modify the rule for operationName; logical operation names
like implies and not can be removed (cf. [14], issue 3138).

typeDefinitions ::= "<startTypeDef>" (typeDefinition)*

"<endTypeDef>"

typeDefinition ::= metatypeSpecifier (umlStereotype)?

typeSpecifier (supertypes)?

"{" definitionBody "}"

metatypeSpecifier ::= "CollectionConstructor" | "CollectionType"

| "OclBasicType" | "Class" | "DataType"

umlStereotype ::= "<<" name ">>"

typeSpecifier ::= simpleTypeSpecifier

| collectionType

supertypes ::= "<supertype>"

typeSpecifier ("," typeSpecifier)*

definitionBody ::= (operation | attribute)*

| (name (’,’ name)*)?

operation ::= operationName

"(" (formalParameterList)? ")"

(":" returnType)? ";"

operationName ::= name | "=" | "+" | "-" | "<" | "<="

| ">=" | ">" | "/" | "*" | "<>"

formalParameterList ::= name ":" typeSpecifier

("," name ":" typeSpecifier)*

returnType ::= (collectionKind

"(" pathName ("." operationName)? ")"

)

| (pathName ("." operationName)?)

attribute ::= name ":" simpleTypeSpecifier ";"

collectionType ::= collectionKind "(" simpleTypeSpecifier ")"

collectionKind ::= "Set" | "Bag" | "Sequence" | "Collection"

simpleTypeSpecifier ::= pathName

pathName ::= name ("::" name)*

Example

For the previous grammar, the definition of the generic type Set is specified as follows:

CollectionConstructor Set(T) <supertype> Collection(T) {

= (s : Set(T)) : Boolean;

<> (s : Set(T)) : Boolean;

select (e : OclExpression) : Set(T);

reject (e : OclExpression) : Set(T);

including (t : T) : Set(T);

excluding (t : T) : Set(T);

union (s : Set(T)) : Set(T);

union (b : Bag(T)) : Bag(T);

intersection (s : Set(T)) : Set(T);

intersection (b : Bag(T)) : Set(T);

- (s : Set(T)) : Set(T);

collect (e : OclExpression) : Bag(e.evaluationType);

symmetricDifference (t : T) : Set(T);

}

Set inherits all operations from Collection because of the subtype relationship. Note
here that operations = and <> are explicitly listed because of their different semantics
in the generic types Set, Sequence, and Bag.

Appendix B

This appendix gives a listing of all OCL rules that had to be modified for our extension
with respect to OCL version 1.4 RTF [13].

1. Add a new keyword until to the list of logical operators. Note that we do not re-
strict the qualifiers to conform to a well-formed interval declaration here, although
this can be easily realized.

logicalOperator ::= "and" | "or" | "xor" | "implies"

| ("until" (qualifiers)?)

2. Add the @-operator as a third property access facility to the grammar rule post-

fixExpression. It may be used only for temporal operations.

postfixExpression ::= primaryExpression

(("." | "->" | "@") propertyCall)*

3. Remove the rule timeExpression from the OCL grammar, as @pre is now de-
rived through postfixExpression. Note that we now regard pre as an operation
defined in OclAny.

4. Remove the term (timeExpression)? from the rule propertyCall to obtain a
consistent grammar again. The resulting rule is

propertyCall ::= pathName (qualifiers)?

(propertyCallParameters)?

