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Abstract

In recent years, the Unified Modeling Language (UML)
has received increasing attention from designers of real-
time systems. Several approaches apply and enrich the
UML notation for modeling of real-time applications. In
addition to that, UML modelers can make use of the Ob-
ject Constraint Language (OCL) to restrict their models by
additional constraints.

Currently, OCL and real-time extensions of the UML
only provide limited means to express temporal constraints.
In particular, OCL lacks sufficient means to specify con-
straints over the dynamic behavior of a UML model, i.e.,
the evolution of states and state transitions as well as time-
bounded constraints. However, it is essential to be able to
specify such constraints for real-time systems to guarantee
correct system behavior. We argue for a consistent exten-
sion of OCL that enables modelers to express state-related
time-bounded constraints.

1. Real-Time UML

Domain-specific approaches frequently make use of the
UML stereotype extension mechanism to introduce new
model elements for their particular needs (see [9], Section
3.18). One of the most popular approaches to apply UML
to the domain of real-time systems is the UML-RT profile
based on the ROOM methodology [11]. Nevertheless, sev-
eral other real-time extensions of UML exist that also en-
able designers to adequately model the structural issues of
real-time systems.

Concerning real-time behavior, the UML standard no-
tation currently provides two ways to specify timing prop-
erties, (a) for messages in Sequence Diagrams by timing
expressions and (b) for state transitions in Statecharts by
elapsed-time events (see [9], Sections 3.60 and 3.77). For
advanced modeling of real-time behavior, extensions on be-
havioral UML diagrams can be applied. For instance, tim-
ing bounds for state durations could be modeled using a
stereotype on the metaclass State, semantically based on
Harel’s definition of Statecharts [7].

2. Object Constraint Language

The Object Constraint Language (OCL) is part of the
UML since version 1.3. It is an expression language that
enables modelers to formulate constraints in the context of
a given UML model. OCL is used to specify invariants
attached to classes, pre- and postconditions of operations,
and guards on state transitions (see [9], Chapter 6). It is
a declarative language, not a programming language, i.e.,
evaluation of OCL expressions does not have side effects
on the corresponding UML model. To integrate constraints
into the visual modeling approach of UML, invariants, pre-
and postconditions are modeled as comments and attached
to the respective model elements in class diagrams.

Each OCL expression has a type. Besides user-defined
model types (e.g., classes or interfaces) and some pre-
defined basic types (e.g., Integer, Real, or Boolean),
OCL has the notion of object collection types, i.e., Set,
Sequence, and Bag. OCL defines several useful operations
to access and select objects from such object collections.

To give an example, assume that we have a model with
classes Machine and Buffer and an association buffers

between these classes. The following invariant ensures that
each instance of class Machine has at least one buffer:

context Machine

inv: self.buffers->notEmpty()

The class name that follows the context keyword spec-
ifies the class for which the following expression should
hold. The keyword self refers to each object of the con-
text class. Attributes, operations, and associations can be
accessed by dot notation, e.g., self.buffers results in a
(possibly empty) set of instances of Buffer. The arrow no-
tation indicates that a collection of objects is manipulated by
one of the pre-defined OCL collection operations. For ex-
ample, operation notEmpty() returns true, if the accessed
set is not empty.

As OCL is a modeling language, it does not take runtime
issues into account. Modelers must decide how to translate
OCL expressions into executable code and when constraints
are to be checked during runtime. Moreover, it is not possi-
ble with OCL to specify what actions are to be taken if an
invariant does not hold at a specific point in time.



3. Temporal Extension of OCL

Works on temporal extensions for OCL basically in-
troduce temporal logic operators (e.g., eventually, always,
or never) that enable modelers to specify required occur-
rences of actions, events, and states [3, 4]. Unfortunately,
the resulting syntax of these extensions does not combine
well with current OCL concepts, as temporal expressions
are very similar to rather cryptic temporal logic formulae.
Moreover, none of the approaches explicitly considers real-
time.

In contrast to these approaches, we propose an exten-
sion to OCL with only minor modifications on the language
metalevel, so that the use of current OCL is not affected.
Our extension is based on a metamodel presented in [1],
however, adaptation to other metamodels is possible, e.g. to
[10]. The formal semantics of our extension is given by a
direct correspondence to time-annotated temporal tree logic
formulae.

For modeling object behavior, the UML makes use of
Statechart diagrams that are attached to classes (see [9],
Chapter 3). With OCL, it is already possible to check
the current state of an object, using the pre-defined type
OclState and the operation oclInState(). For more
extensive reasoning about states, we introduce a new type
OclConfiguration that deals with parallel substates and
represents possible overall descriptions of Statecharts. Se-
quences of such configurations are specified by the new type
OclPath.

This enables modelers to specify required sequences of
states. For example, the following invariant requires that
for each instance of Machine, at each point of time, within
the next 100 time units, on all possible execution paths, the
states Loading and Working must be subsequently entered:

context Machine

inv: self@post[1,100]->forAll(p:OclPath |

p->includes(Sequence{Loading,Working}))

This notation is compliant with existing OCL syntax. The
operation @post is newly introduced and can be used for
all user-defined types. It extracts the set of possible future
execution paths, optionally restricted by a timing interval,
i.e., the result of that operation is a set of OclPath objects.

The UML does not define a notion of a (global) time, so
that clocks are usually explicitly modeled by user-defined
classes. The formal semantics of our work, however, is
defined by a mapping of time-annotated Statecharts to ex-
tended Kripke structures and a mapping of our OCL ex-
tension to a time-bounded variant of Computational Tree
Logic, called Clocked CTL. More details about the seman-
tics and an application of our OCL extension in a formal
verification environment can be found in [5] and [6].

4. The Future of OCL

As OCL is currently only loosely coupled to the UML on
the metalevel of language definition, the standardization ini-
tiative OMG has initiated a request for proposals to define
a consistent OCL metamodel. The submitted proposals can
be retrieved from [8]. However, specific real-time aspects
are not considered in these proposals.

The evolution, application, and extension of OCL is
comparable to the evolution of the UML in general: Mod-
elers, both in academia and industry, identify deficiencies
when they apply the language in their specific domain and
extend the language for their needs. Examples can be found
in the area of business processes, databases, and real-time
systems. An extensive overview on OCL’s applications, ex-
tensions, and semantics is given in [2].

We are sure that in the near future more domain-specific
extensions of OCL will be developed, including real-time
systems as well.
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