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Abstract. This article presents a UML profile for an OCL extension that enables
modelers to specify behavioral, state-oriented real-time constraints in OCL. In
order to perform a seamless integration into the upcoming UML2.0 standard, we
take the latest OCL2.0 metamodel proposal by Warmer et al. [22] as a basis. A
formal semantics of our temporal OCL extension is given by a mapping to time-
annotated temporal logics formulae.
To give an example of the applicability of our extension, we consider a modeling
approach for manufacturing systems called MFERT. We present a corresponding
UML profile for that approach and combine both profiles for formal verification
by real-time model checking.

1 Introduction

The Object Constraint Language (OCL) is part of the UML since version 1.3. It is
an expression language that enables modelers to formulate constraints in the context
of a given UML model. OCL is used to specify invariants attached to classes, pre-
and postconditions of operations, and guards for state transitions [13, Chapter 6]. But
currently, OCL misses means to specify constraints over the dynamic behavior of a
UML model, i.e., consecutiveness of states and state transitions as well as time-bounded
constraints. However, it is essential to specify such constraints to guarantee correct
system behavior, e.g., for modeling real-time systems.

In previous works, we have presented an OCL extension that enables modelers to
specify state-oriented real-time constraints [9, 10]. Due to a missing OCL metamodel
in the current official UML1.4 specification [13], we took an OCL type metamodel
presented in [1] and performed a rather heavyweight extension by directly extending
that metamodel. More recently, in reply to the OMG’s OCL 2.0 Request for Proposals,
an extensive OCL metamodel proposal has been published by Warmer et al. [22] that
addresses a better integration of OCL with other parts of UML. Though that proposal
has not been adopted by the OMG yet, we apply that metamodel since it comprises the
work of several significant contributions concerning the development of OCL in recent
years. Based on that metamodel, we present a ’lightweight’ approach by defining a
UML profile for our temporal OCL extension. For semantics, we present a mapping of
(future-oriented) temporal OCL expressions to time-annotated formulae, expressed in a
discrete temporal logics called Clocked CTL [18].

As an application example, we consider a manufacturing system. We take an exist-
ing notation called MFERT [20] which is dedicated to analysis and design of manufac-
turing systems, present a UML profile for that notation, and define the semantics for a



UML subset by a mapping to time-annotated Kripke structures, so-called I/O-Interval
Structures [19].

The two profiles are integrated by the relation of Clocked CTL formulae and I/O-
Interval Structures. It is then possible to apply real-time model checking, i.e., a given
model in the MFERT profile notation is checked if it satisfies required real-time prop-
erties specified by state-oriented temporal OCL expressions.

2 Related Work

This section gives an overview of approaches that (a) extend OCL for temporal con-
straints specification or (b) investigate alternative means to express behavioral real-time
constraints for UML diagrams.

Ramakrishnan et al. [15] extend OCL by additional rules with unary and binary
future-oriented temporal operators (e.g.,alwaysandnever) to specify safety and live-
ness properties. A very similar approach in the area of business modeling that addi-
tionally considers past-temporal operators is published by Conrad and Turowski [4].
Kleppe and Warmer [12] introduce a so-calledaction clauseto OCL. Action clauses
enable modelers to specify required (synchronous or asynchronous) executions of op-
erations or dispatching of events. Similarly, the latest OCL2.0 metamodel proposal in-
troducesmessage expressions[22]. Distefano et al. [6] defineObject-Based Temporal
Logic (BOTL) in order to facilitate the specification of static and dynamic properties.
BOTL is not directly an extension of OCL; it rather maps a subset of OCL into object-
oriented Computational Tree Logic (CTL). Bradfield et al. [3] extend OCL by useful
causality-based templates for dynamic constraints. Basically, a template consists of two
clauses, i.e., the cause and the consequence. The cause clause starts with the keyword
after followed by a boolean expression, while the consequence is an OCL expression
prefaced byeventually, immediately, infinitely, etc. The templates are formally defined
by a mapping toobservational mu-calculus, a two-level temporal logic, using OCL on
the lower level.

In the domain of real-time specification, there exist two approaches. Roubtsova et
al. [16] define a UML profile with stereotyped classes for dense time as well as pa-
rameterized specification templates for deadlines, counters, and state sequences. Each
of these templates has a structural-equivalent dense-time temporal logics formula in
Timed Computation Tree Logic (TCTL). Sendall and Strohmeier [21] introduce timing
constraints on state transitions in the context of a restricted form of UML protocol state
machines calledSystem Interface Protocol(SIP). A SIP defines the temporal ordering
between operations. Five time-based attributes on state transitions are proposed, e.g.,
(absolute) completion time, duration time, or frequency of state transitions.

All approaches that provide a formal semantics are due to formal verification by
model checking. Roubtsova et al., though, do not use OCL for constraint specification
in their formal approach, as they argue that”Any extension of OCL to present properties
of computation paths breaks the idea of the language and makes it eclectic”. In contrast
to this, we think that the notion of execution paths can very well be introduced to OCL,
as shown in our previous work and this article.



3 UML Profile for Real-Time Constraints with OCL

Due to space limitations, we cannot give a detailed description of OCL in this article.
We presume that the reader has basic knowledge of OCL and refer to theResponse to
the UML2.0 OCL Request for Proposal, Version 1.5by Warmer et al. [22] for further
information about the language and the metamodel we apply. In the following, we refer
to that metamodel as theOCL2.0 metamodel proposal. In contrast to current OCL1.4,
nested collectionsare now supported in the OCL2.0 metamodel proposal, and our ap-
proach significantly relies on this new language feature.

The remainder of this section is organized as follows. In 3.1, we extend the abstract
OCL syntax. In particular, new elements are introduced to the OCL2.0 metamodel pro-
posal using the common UML extension mechanisms, i.e., stereotypes, tagged values,
and constraints. To support modeling, a concrete syntax and operations have to be de-
fined for this extension on theM1 (Domain Model) layerin the UML 4-layer architec-
ture. The grammar of the concrete syntax of [22] is introduced in 3.2 and some new
production rules are added, keeping the compliance with existing concrete OCL syn-
tax. Note that we cannot avoid the overlap with the M1 layer in an OCL profile, since
OCL pre-defines types and operations on that level. As the concrete OCL syntax only
partly provides the operations that are defined in OCL expressions, a standard library of
pre-defined OCL operations is specified in [22, Chapter 6]. Correspondingly, we define
operations in the context of temporal expressions in 3.3. The semantics of our temporal
OCL extension is finally described in Subsection 3.4.

3.1 OCL Metamodel Extensions

The OCL2.0 metamodel proposal distinguishes two packages. TheOCL type meta-
modeldescribes the pre-defined OCL types and affiliated UML types, while theOCL
expression metamodeldescribes the structure of OCL expressions. In the next para-
graphs, we further investigate states, state configurations, and sequences of state con-
figurations and introduce respective stereotypes for these concepts.

States.OCL already supports retrieval of states from Statechart diagrams that are at-
tached to user-defined classes. In the OCL type metamodel on layer M2, the respective
metaclass isOclModelElementType. Generally,OclModelElementType represents
the types of elements that areModelElements in the UML metamodel. In that case,
the model elements are states (or more precisely, instances of a concrete subclass of the
abstract metaclassState), and the corresponding instance ofOclModelElementType
on layer M1 isOclState. For each state, there implicitly exists a corresponding enu-
meration literal accessible inOclState, i.e.,OclState is seen as an enumeration type
on the M1 layer, accumulating the state names of all Statechart diagrams attached to
user-defined classes.

The only operation in OCL to access states is of formobj.oclInState(s), with
obj being an object ands being a state name of typeOclState. The operation returns
a Boolean value that indicates whethers is currently active in the Statechart forobj.

Configurations. The building blocks of Statecharts are hierarchically ordered states.
Note that we do not regard pseudo states (like synch, stub, or history states) in this



context. Acomposite stateis known as a state that has a set of sub-states. A composite
state can be aconcurrent state, consisting of orthogonal regions, which in turn are
(composite) states.Simple statesare non-pseudo, non-composite states.

In a Statechart with composite and concurrent states, a ’current state’ cannot be ex-
actly identified, as more than one state can be active at the same time. Consequently,
UML1.4 provides the notion ofactive state configurations[13, Section 2.12.4.3] as fol-
lows. If a Statechart is in a simple state which is part of a composite state, then all the
composite states that (transitively) contain that simple state are also active. As compos-
ite states in the state hierarchy may be concurrent, currently active states are represented
by a tree of states starting with a unique root state and with individual simple states at
the leaves. However, to uniquely identify an active state configuration, it is sufficient
to list the comprising simple states, which we denote as abasic configurationor valid
configuration. Figure 1 gives a Statechart example with corresponding basic configura-
tions.
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List of States:

S

S::X

S::Y

S::X::A

S::X::B

S::X::A::J

S::X::A::K

S::X::A::L

S::X::B::M

S::X::B::N

List of Basic Configurations:

Set{S::X::A::J, S::X::B::M}

Set{S::X::A::J, S::X::B::N}

Set{S::X::A::K, S::X::B::M}

Set{S::X::A::K, S::X::B::N}

Set{S::X::A::L, S::X::B::M}

Set{S::X::A::L, S::X::B::N}

Set{S::Y}

Fig. 1.Statechart Example with Lists of States and Basic Configurations

For valid configurations, we introduce the new collection typeConfiguration-
Type in the context of the OCL type metamodel, as illustrated in Figure 2a1. Instances
of ConfigurationType are restricted sets on the M1 layer. Such sets are restricted to
have elements that are enumeration literals of typeOclState. A possible corresponding
formula to express this property in OCL is

context ConfigurationType inv:

self.oclIsKindOf(SetType) and self.elementType.name = ’OclState’

Execution Paths.Execution paths of Statecharts can be represented by sequences of
valid configurations. To model execution paths, we introducePathType in Figure 2a,
whose instances are sequences on the M1 level that are restricted to have a certain
element type. In that case, the element type must be an instance ofConfiguration-
Type. Written as an OCL formula, we require:

context PathType inv:

self.oclIsKindOf(SequenceType) and self.elementType.name =’Set(OclState)’

1 For our stereotype definitions, we make use of the graphical notation suggested in the official
UML 1.4 specification [13, Sections 3.17, 3.18, 3.35 and 4.3].
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Fig. 2. New OCL Types and Expressions – Gray boxes are taken from the metamodel in [22]

Temporal Expressions.Concerning the OCL expression metamodel, we introduce a
new kind of operation call (cf. Figure 2b):TemporalExp represents a temporal expres-
sion that refers to execution paths. It is the abstract superclass ofPastTemporalExp
andFutureTemporalExp for past- and future-oriented temporal expressions. We need
these two stereotypes in order to define a semantics for according temporal operations
(see Section 3.4).

Execution Path Literals. As we want to reason about execution paths by means of
states and configurations, we also need a mechanism to explicitly specify execution
paths with annotated timing intervals by literals. We therefore define the stereotype
PathLiteralExp, as illustrated in Figure 3. The following restrictions apply here,
leaving out the corresponding OCL formulae for the matter of brevity.

1. The collection kind ofPathLiteralExp is CollectionKinds::Sequence.
2. Each sequence element has a lower bound and an upper bound.
3. Lower bounds must evaluate to non-negative Integer values.
4. Upper bounds must evaluate to non-negative Integer values or to the String’inf’

(for infinity). In the first case, the upper bound must be greater or equal to the
corresponding lower bound.

3.2 Concrete Syntax Changes

Having defined new classes for temporal expressions on the abstract syntax level, mod-
elers are not yet able to use these extensions, as they specify OCL expressions by means
of a concrete syntax. In Chapter 4 of the OCL2.0 metamodel proposal, a concrete syntax
is given that is compliant with the current OCL1.4 standard. The new concrete syntax is



PathLiteralPart<<stereotype>>

<<taggedValue>> upperBound[1]
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Fig. 3.Parts of the OCL Expression Metamodel with Stereotypes for Execution Paths

defined by an attributed grammar with production rules in EBNF that are annotated with
synthesised and inherited attributes as well as disambiguating rules.Inherited attributes
are defined for elements on the right hand side of production rules. Their values are de-
rived from attributes defined for the left hand side of the according production rule.
For instance, each production rule has an inherited attributeenv (environment) that
represents the rule’s namespace.Synthesised attributesare used to keep results from
evaluating the right hand sides of production rules. For instance, each production rule
has a synthesised attributeast (abstract syntax tree) that constitutes the formal mapping
from concrete to abstract syntax.Disambiguating rulesallow to uniquely determine a
production rule if there are syntactically ambiguous production rules to choose from.

In the following, we present some additional production rules for the concrete syn-
tax of the OCL2.0 metamodel proposal. A mapping to the extended abstract OCL syntax
is provided for each new production rule.

OperationCallExpCS2

Eight different forms of operation calls are already defined in the OCL2.0 concrete
syntax. In particular, it is distinguished between infix and unary operations, operation
calls on collections, and operation calls on objects (with or without ’@pre’ annotation)
or whole classes. We additionally introduce rule [J] for temporal operation calls.

[A] OperationCallExpCS ::= OclExpressionCS[1] simpleNameCS

OclExpressionCS[2]

[B] OperationCallExpCS ::= OclExpressionCS ’->’ simpleNameCS

’(’ argumentsCS? ’)’

[C] OperationCallExpCS ::= OclExpressionCS ’.’ simpleNameCS

’(’ argumentsCS? ’)’

...

[J] OperationCallExpCS ::= TemporalExpCS

2 All non-terminals are postfixed by ’CS’ (short forConcrete Syntax) to better distinguish be-
tween concrete syntax elements and their abstract syntax counterparts.



We here only list the synthesised and inherited attributes for syntax [J]. Disambiguating
rules are defined in the particular rules for temporal expressions.

Abstract Syntax Mapping:

-- (Re)type the abstract syntax tree ast to the according metaclass.

OperationCallExpCS.ast : OperationCallExp

Synthesised Attributes:

-- Build the abstract syntax tree (in this case a simple assignment).

[J] OperationCallExpCS.ast = TemporalExpCS.ast

Inherited Attributes:

-- Derive the namespace stored in env from left hand side of the rule

[J] TemporalExpCS.env = OperationCallExpCS.env

TemporalExpCS
A temporal expression is either a past- or future-oriented temporal expression.

[A] TemporalExpCS ::= PastTemporalExpCS

[B] TemporalExpCS ::= FutureTemporalExpCS

We here omit the rather simple attribute definitions. Basically, the abstract syntax map-
ping definesTemporalExpCS.ast to be of typeTemporalExp, the synthesised at-
tributeast is built from the right hand sides, and the inherited attributeenv is derived
from TemporalExpCS.

FutureTemporalExpCS
A future-oriented temporal expression is a kind of operation call. We additionally intro-
duce the symbol ’@’ to indicate a subsequent temporal operation. Note that an operation
call in the abstract syntax has a source, a referred operation, and operation arguments
(cf. Figure 2b), so the abstract syntax treeast must be built with corresponding syn-
thesised attributes.

FutureTemporalExpCS ::= OclExpressionCS ’@’ simpleNameCS

’(’ argumentsCS? ’)’

Abstract Syntax Mapping:

FutureTemporalExpCS.ast : FutureTemporalExp

Synthesised Attributes:

FutureTemporalExpCS.ast.source = OclExpressionCS.ast

FutureTemporalExpCS.ast.arguments = argumentsCS.ast

FutureTemporalExpCS.ast.referredOperation =

OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,

if argumentsCS->notEmpty()

then argumentsCS.ast->collect(type)

else Sequence{} endif )

Inherited Attributes:

OclExpressionCS.env = FutureTemporalExpCS.env

argumentsCS.env = FutureTemporalExpCS.env

Disambiguating Rules:

-- The operation name must be a (future-oriented) temporal operator.

[1] Set{’post’}->includes(simpleNameCS.ast)

-- The operation signature must be valid.

[2] not FutureTemporalExpCS.ast.referredOperation.oclIsUndefined()



If other temporal operations than @post() need to be introduced at a later point
of time, only disambiguating rule [1] has to be modified accordingly. For instance,
@next() might be introduced as a shortcut for @post(1,1).

A corresponding extension to past temporal operations can be easily introduced,
e.g., by means of the operation namepre(). In the remainder of this article, we only
focus onFutureTemporalExpCS. Note thatpre andpost as operation names cannot
be mixed up with pre- and postcondition labels or the @pre time marker, because
operations require subsequent brackets.

PathLiteralExpCS
Path literal expressions are a special form of collection literal expressions, as they rep-
resent sequences of explicitly specified configurations. In order to allow interval defini-
tions in sequences of configurations, some new production rules have to be formulated.
As these are quite similar to the existing production rules for collection literals, defini-
tions ofast andenv are left out for brevity reasons.

[A] CollectionLiteralExpCS ::= CollectionTypeIdentifierCS

’{’ CollectionLiteralPartsCS? ’}’

[B] CollectionLiteralExpCS ::= PathLiteralExpCS

In syntax [A],CollectionTypeIdentifierCS simply distinguishes between literals
for collections (e.g.,’Set’, ’Bag’) andCollectionLiteralPartsCS is an enumer-
ation of OCL expressions. Option [B] is added to provide a notation for sequences of
configurations. For each configuration in aPathLiteralExpCS, a timing interval may
be associated which specifies how long a configuration is active. If no interval is speci-
fied, the bounds are implicitly set to[0,’inf’].

PathLiteralExpCS ::= ’Sequence’ ’{’ PathLiteralPartsCS ’}’

...

PathLiteralPartsCS[1] ::= PathLiteralPartCS (’,’ PathLiteralPartsCS[2] )?

...

PathLiteralPartCS ::= OclExpressionCS IntervalCS?

Abstract Syntax Mapping:

PathLiteralPartCS.ast : PathLiteralPart

Synthesised Attributes:

PathLiteralPartCS.ast.item = OclExpressionCS.ast

PathLiteralPartCS.ast.lowerBound = if IntervalCS->notEmpty()

then IntervalCS.ast.lowerBound

else ’0’ endif

PathLiteralPartCS.ast.upperBound = if IntervalCS->notEmpty()

then IntervalCS.ast.upperBound

else ’inf’ endif

Inherited Attributes:

OclExpressionCS.env = PathLiteralPartCS.env

IntervalCS.env = PathLiteralPartCS.env

Disambiguating Rules:

[1] OclExpressionCS.ast.type.oclIsKindOf(ConfigurationType)

Basically, intervals are of the syntactical form[a,b], with a as a non-negative Integer,
andb either an Integer withb ≥ a or the String literal’inf’.



3.3 Standard Library Operations

In our previous work [9], we introduced two new built-in types calledOclConfig-
uration andOclPath on the M1 layer to handle temporal expressions. We present
an alternative approach that avoids to introduce new types and instead operates on the
already existing OCL collection types.

Configuration Operations. For configurations as a special form of sets of states, we
have to elaborate on operations applicable to sets that return collections, since the result-
ing collection can be an invalid configuration with an arbitrary set of states. Neverthe-
less, general collection operations [22, Section 6.5.1] can be directly applied to config-
urations. These are=, <>, size(), count(), isEmpty(), notEmpty(), includes(), include-
sAll(), excludes(), and excludesAll(). In addition, iterator operations exists(), forAll(),
any(), one() are applicable as well [22, Section 6.6.1]. Other OCL set operations on
valid configurations, e.g., union() and intersection(), generally result in arbitrary sets
of states rather than in valid configurations. We generally allow such operations, but
explicitly mention that they have to be used with care.

Execution Path Operations.Similar to configurations, many of the existing OCL se-
quence operations can immediately be applied to execution paths. These operations are
=, <>, size(), isEmpty(), notEmpty(), exists(), forAll(), includes(), includesAll(), ex-
cludes(), excludesAll(), at(), first(), last(), append(), prepend(), subSequence(), asSet(),
asBag(), and asSequence(). Correspondingly, some sequence operations may evaluate
to invalid execution paths, e.g., select() and collect().

Temporal Operations for OclAny. We introducepost(a,b) as a new temporal oper-
ation ofOclAny and allow the @-operator to be used only for such temporal operations.
@post(a,b) returnsa set of possible future execution pathsin the interval [a,b]. First,
all possible execution paths that start with the current configuration are regarded, and
then the timing interval [a,b] determines the subpaths that have to be returned by the
operation. The result has to be asetof paths, as there are typically different orders of
executions possible in the future steps of a Statechart. Note that in an actual execution
of a Statechart there is of course only exactly one of the possible execution paths se-
lected. An informal semantics ofpost(a,b) is given as follows. Letobj be an object
in the context of OCL.

obj@post(a:Integer,b:OclAny) : Set(Sequence(Set(OclState)))

pre: a >= 0 and

( (b.oclIsTypeOf(Integer) and b >= a) or

(b.oclIsTypeOf(String) and b = ’inf’) )

The operation returns a set of possible future execution paths in the

interval [a,b], including the configurations of time points a and b.

Further operations, such as @next() or @post(a:Integer) can be easily added [9].
These are operations basically derived from @post(a,b).



3.4 Semantics of Temporal Expressions

To define the semantics for the future-oriented temporal extension, we provide a map-
ping from instances ofFutureTemporalExpCS to Clocked Computational Tree Logic
(CCTL) formulae [18]. CCTL is an extension of classical CTL and introduces timing
intervals to temporal logic operators.

By definition, OCL invariants for a given type must be true for all its instances at
any time [22, Section 2.3.3]. Consequently, corresponding CCTL formulae have to start
with theAG operator (’OnAll pathsGlobally’), i.e., the expression followingAG must be
true on all possible future execution paths at all times. Table 1 lists OCL operations that
directly match to CCTL expressions. In that table,expr denotes a Boolean OCL ex-
pression.cctlExpr is the equivalent Boolean expression in CCTL syntax.cfg denotes
a valid configuration andcctlCfg is the corresponding set of states in CCTL syntax.p
andc are iterator variables for execution paths and configurations, respectively.

Table 1.Mapping Temporal OCL Expressions to CCTL Formulae

Temporal OCL Expression CCTL Formula

inv: obj@post(a,b)→exists( p| p→forAll(c | expr)) AG EG[a,b](cctlExpr)

inv: obj@post(a,b)→exists( p| p→exists(c| expr)) AG EF[a,b](cctlExpr)

inv: obj@post(a,b)→exists( p| p→includes(cfg)) AG EF[a,b](cctlCfg)

inv: obj@post(a,b)→forAll( p | p→forAll(c | expr)) AG AG[a,b](cctlExpr)

inv: obj@post(a,b)→forAll( p | p→exists(c| expr)) AG AF[a,b](cctlExpr)

inv: obj@post(a,b)→forAll( p | p→includes(cfg)) AG AF[a,b](cctlCfg)

Consider as an example the last row of Table 1. When taking the particular interval
[1,100] and a configuration from Figure 1 forcfg, the resulting OCL expression is:

inv: obj@post(1,100)->forAll(p | p->includes(Set{S::X::A::K,S::X::B::M}))

We read that formula as: At any time, given the current configuration of the Statechart
associated to objectobj, all future execution pathsp starting from the current configura-
tion reach – at a certain point of time within the timing interval [a,b] – the configuration
represented bySet{S::X::A::K,S::X::B::M}.3

For mapping path literal expressions, lete1, e2, ..., en be the path literal parts of
PathLiteralExpCS with timing intervals [ai, bi]. The temporal OCL expression

inv: obj@post(a,b)→includes( Sequence{e1[a1, b1], e2[a2, b2], ..., en} )
maps to CCTL applying thestrong until temporal operator (i.e.,expr1 U[a,b] expr2

requires thatexpr1 must be true betweena andb time units untilexpr2 becomes true)
as follows.

AG[a,b] EF( E(e1 U[a1,b1] E(e2 U[a2,b2] E(... E(en−1 U[an−1,bn−1] en)...))))

Though we have given only simplified examples here, more complex should be easily
derived from the above.

3 This kind of formula is often categorized asliveness property.



4 MFERT

MFERT4 provides means for specification and implementation of planning and con-
trol assignments in manufacturing processes [20]. In MFERT, nodes represent either
storages for production elements or production processes.Production Element Nodes
(PENs) are used to model logical storages of material and resources and are drawn as
annotated shaded triangles.Production Process Nodes(PPNs) represent logical loca-
tions where material is transformed and are drawn as annotated rectangles. PENs and
PPNs are composed to a bipartite graph connected bydirected edgeswhich define the
flow of production elements. MFERT graphs establish both a static and a dynamic view
of a manufacturing system. On the one hand, the nodes are statically representing the
participating production processes and element storages. On the other hand, edges rep-
resent the dynamic flow of production elements (i.e., material and resources) within the
manufacturing system.

Two examples for MFERT graphs are shown in Figure 4. On the left hand side, a
production of tables is illustrated, and on the right hand side, transportation of items
between processing steps is modeled. The latter is a small outtake of a model that is
composed of different manufacturing stations and transport vehicles (AGVs) that trans-
port items between stations.

Assembling

Legs

Screws

Tops

Workers

Tables

ItemsBuffered

SupplyingItems

AGVs

ItemsBeforeMill

Transporting

(a) Table Production

(b) Transporting Items between Machine Buffers

with Automated Guided Vehicles (AGVs)

Fig. 4.Sample MFERT Graphs

In MFERT, the processing is specified by finite state machines (FSMs) that are
associated with PPNs. Although several variations to formally define the behavior of
MFERT PPNs are presented in literature5, we focus in our work on FSMs and their
hierarchical variants like Harel’s Statecharts [11]. For instance, an FSM assigned to the
nodeAssembling in Figure 4a may specify that the production of a table requires 4
legs, 1 table top, 16 screws, and 1 worker for mounting the table.

4 MFERT stands for ”Modell der FERTigung” (German for: Model of Manufacturing).
5 E.g., Quintanilla uses a graphical representation called interaction diagrams and formally de-

fines them in [14].



4.1 UML Profile for MFERT

Modeling the static and dynamic aspects of manufacturing systems can be done by
UML class diagrams. For that, we introduce stereotypes that represent production pro-
cesses, storages, and element flow by the virtual metamodel shown in Figure 5, where

1. aProductionDataType defines a tuple of data types. Only query and constructor
operations are allowed for production data types, which may only aggregate or be
composed ofDataTypes orProductionDataTypes.

2. TheElementList stereotype represents a parameterized interface that provides
certain operations to manage lists with elements of a certainProductionData-
Type. We assume that appropriate operations for lists are specified.

3. MFERTNode is the abstract superclass ofProductionProcessNode andProduc-
tionElementNode. MFERT nodes may only inherit from other MFERT nodes of
the same kind. Associations between two MFERT nodes have to be modeled using
ElementFlow associations. There is at most one relationship between each pair of
MFERT nodes, which is either a generalization or anElementFlow association.

4. ProductionProcessNodes (PPNs) consume from and send production elements
to ProductionElementNodes. Each PPN has its own thread of control, i.e., the
instances are active objects.

5. ProductionElementNodes (PENs) store production elements for further process-
ing by subsequent PPNs. Two lists with production elements (ElementLists) are
managed by a PEN; one for incoming, one for outgoing production elements. The
two lists are storing elements of a certainProductionDataType that is specified
by the tagged valueelementType.

6. ElementFlow represents a restricted association between MFERT nodes. Tagged
valuessource andtarget refer to the two classifiers that are determined by the as-
sociation ends ofElementFlow. We restrict multiplicity of these association ends
to 1, as anElementFlow association shall indicate a relationship between two in-
stances of MFERT nodes. Though it is allowed to navigate onElementFlow asso-
ciations in both ways, we graphically represent these associations as directed edges
towards the target end to indicate the direction of element flow.

Due to space limitations, it is only a summary of the model-inherent restrictions de-
fined by the profile. For a complete outline we refer to [8], where a complete definition
of the MFERT profile is given including OCL constraints, the formal MFERT model,
and a mapping to I/O-Interval Structures.

Validation/Verification Constraints. For validation and verification of MFERT de-
signs, we have to restrict UML class diagrams as follows.

1. We require that each concrete MFERT node is complete in the sense that its behav-
ior description is given in form of a single Statechart diagram.

2. An MFERT node may communicate with a non MFERT node by operation call,
signal or attribute modification, which is not considered for verification.

3. Variables must have a finite value range to be applicable for verification by means
of model checking, i.e., attributes can only be enumerations or finite subsets of type
Integer.
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Fig. 5.MFERT Stereotypes

4.2 Dynamic Semantics of MFERT

We have identified different execution semantics of MFERT for different purposes, e.g.,
for analysis, control, or planning [8]. Here, we take the so-calledsynchronous semantics
that allows a direct mapping to I/O-Interval Structures. The termsynchronousin this
context refers to immediate receiving of signals without timing delay between different
I/O-Interval Structures.

The dynamic semantics forproduction process nodesis defined by an abstract in-
terpreter cycle that controls the execution of the according FSMs. We assume that each
PPN has its own thread of control and runs independently of a global signal. Each inter-
preter cycle starts with selection of a transition with a true condition. After the selection
phase, some checks on adjacent PENs are necessary; some actions associated with the
selected transition can have an effect on adjacent PENs, e.g., by consuming production
elements from preceding nodes. In the final phase, the selected transition fires, a new
state is entered and the interpretation cycle starts from the beginning.

For production element nodes, cyclic shifting of elements from the input sequence
to the output sequence is controlled by an additional interpretation cycle. Queries and
manipulations on the sequences are handled independently of the interpretation and are
performed with mutual exclusive access to avoid conflicts.

As we restrict all data types to be finite, we can directly map MFERT models as
defined by the UML profile in Section 4.1 to the formal MFERT model. PPNs and
PENs are directly mapped to I/O-Interval Structures. For I/O-Interval Structures derived
from PENs, mainly data types have to be mapped. Transition rules are only necessary
for cyclic shifting of elements from the input to the output sequences. For I/O-Interval
Structures derived from PPNs, we get the transition rules from the required Statechart
diagrams.



4.3 Example

As an example, we take the model of Figure 4b and require that each item that is
loaded at bufferItemsBuffered must be transported within 120 time units to the
next bufferItemsBeforeMill. In the context of PPNTransporting, with its internal
statesLoading andUnloading, the corresponding temporal OCL invariant may be

context Transporting inv:

self.oclInState(Loading) implies self@post(1,120)->includes(Unloading)

For further readings, more examples can be found in [8, 10].

5 Summary and Conclusion

We have presented a UML profile for specification of real-time constraints on the basis
of the latest OCL2.0 metamodel proposal. The approach demonstrates that an OCL
extension by means of a UML profile towards temporal real-time constraints can be
seamlessly applied on the M2 layer. Nevertheless, some extensions have to be made
on the M1 layer in order to enable modelers to use our temporal OCL extensions. The
presented extensions are based on a future-oriented temporal logic. However, current
work additionally investigates the extension to past-oriented and additional logics.

As an example, we applied our temporal OCL extensions to MFERT. A semantics
is given to both, MFERT profile and temporal OCL expressions, by a mapping to syn-
chronous time-annotated finite state machines (I/O-Interval Structures) and temporal
logics formulae (CCTL), respectively. This provides a sound basis for formal verifica-
tion by real-time model checking with RAVEN [17].

We have implemented an editor for MFERT [5]. Code generation for I/O-Interval
Structures is currently under implementation. The temporal OCL extensions as pre-
sented here are integrated into our OCL parser and type checker [9]. The type checker
can translate constraints with temporal operations to CCTL formulae.

Our temporal OCL extension has also been used as a specification means for railway
systems requirements [2]. In order to investigate the potential for domain-independent
application of our approach, we currently map the generalproperty patternsidentified
by Dwyer et al. [7] to according temporal OCL expressions.
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