
Expressing Property Specification Patterns with OCL

Stephan Flake and Wolfgang Mueller
C-LAB, Paderborn University, Fuerstenallee 11, 33102 Paderborn, Germany

email: {flake,wolfgang}@c-lab.de

Abstract

The textual Object Constraint Language (OCL) is an of-
ficial part of the Unified Modeling Language (UML). OCL
is primarily used to formulate restrictions over UML mod-
els, in particular, invariants and operation pre- and post-
conditions in the context of class diagrams. However, OCL
is missing means to specify constraints over the dynamic
behavior of a UML model. We have therefore developed a
temporal extension of OCL that enables modelers to specify
behavioral state-oriented constraints. That work provides
an alternative to the rather cryptic temporal logic formulae
that are commonly used to specify behavioral system prop-
erties.

This article now illustrates that our OCL extension al-
lows for specifying all kinds of properties that are regarded
as relevant in practice. We present according temporal OCL
expressions for property specification patterns that have
been identified in the area of formal specification.

Keywords: UML, Object Constraint Language, Patterns,
Property Specification

1. Introduction

The Object Constraint Language (OCL) is part of the
Unified Modeling Language (UML) since UML version 1.3
[10]. OCL is an expression language that enables model-
ers to formulate constraints in the context of a given UML
model. It is used to specify invariants attached to classes,
pre- and postconditions of operations, and guards for state
transitions [14]. We can here only give an outline of the
concepts of OCL and refer to the latest OCL 2.0 language
definition proposal for more details [13].

OCL is a declarative language, not a programming lan-
guage, i.e., evaluation of OCL expressions does not have
side effects on the corresponding UML model. To integrate
constraints into the visual modeling approach of UML, in-
variants, pre- and postconditions are modeled as comments
and are attached to the respective graphical model elements
in class diagrams. However, OCL constraints can become

quite complex, such that they are often specified separately.
The contextual class or operation is then explicitly provided
in a preceding context clause.

Each OCL expression has a type. Besides user-defined
model types (e.g., classes or interfaces) and some pre-
defined basic types (e.g., Integer, Real, or Boolean), OCL
also has a notion of object collection types (i.e., sets, se-
quences, and bags). Several useful operations are prede-
fined to access and select objects from such object collec-
tions.

storedItems : Integer

load(i:Item) : Boolean
unload(i:Item) : Boolean

BufferMachine

kind: MachineKind
buffers

0..2

«enumeration»

MachineKind

Mill
Drill
Wash

Figure 1. Parts of a UML Class Diagram

For example, consider the parts of a UML class diagram
shown in Figure 1. Note that classes Machine and Buffer

are related by an association with one association end called
buffers. The following OCL invariant specifies that each
object of class Machine that is of kind Wash must have ex-
actly two associated buffers:

context Machine inv:

self.kind = MachineKind::Wash

implies self.buffers->size() = 2

We briefly explain how to read that OCL invariant. The
class name that follows the keyword ’context’ specifies
the class for which the following expression should hold.
The keyword ’inv’ indicates that this is an invariant speci-
fication, i.e., for each object of the context class the follow-
ing expression must evaluate to true at all times. But note
that it is possible that an invariant is violated during execu-
tion of an operation. More precisely, an invariant therefore
has to hold only for an object when none of its operations
is currently executed. However, it is not formally defined
in the official UML 1.5 specification when invariants are
exactly to be checked, but it is commonly agreed that each
time after the object’s status has changed, its invariants have
to hold (e.g., immediately after completion of an operation).

The (optional) keyword self refers to the object for
which the expression is evaluated. Attributes, operations,
and associations can be accessed by dot notation, e.g.,
self.buffers results in a (possibly empty) set of objects
of class Buffer that are associated with the Machine object
for which the constraint is currently evaluated. The arrow
notation indicates that a collection of objects is manipulated
by one of the pre-defined OCL collection operations. For
example, operation size() applied to a collection returns
the number of elements in that collection.

Though UML has received increasing attention to model
software systems in recent years, it is missing sufficient
means to specify constraints over the dynamic behavior of
a UML model. However, it is essential to be able to for-
mulate such temporal constraints already in early phases of
development in order to specify correct system behavior, in
particular in the domain of time-dependent systems. While
other research approaches focus on UML Collaboration and
Sequence Diagrams and consider temporal OCL constraints
for event communication (e.g., [2, 9]), we here investigate
consecutiveness of states and state transitions in UML Stat-
echarts.

This article is based upon previous works concerning a
temporal OCL extension that enables modelers to specify
state-oriented real-time constraints [5, 7]. A formal seman-
tics was defined by a mapping to time-annotated temporal
logic formulae, but note that only a limited subset of the
complete formal logic is obtained by that mapping [6]. In
this article, we now show that the chosen approach is pow-
erful enough to express system properties that frequently
appear in practical systems development. We take the prop-
erty specification patterns identified by Dwyer et al. [3, 4]
and demonstrate that it is possible to formulate according
temporal OCL expressions in each case. Note that beyond
those general patterns, our OCL extension also covers ex-
plicit timing aspects, i.e., additional timing intervals can
be attached to temporal OCL expressions to further delimit
pattern scopes.

In the next section, we briefly present the pattern sys-
tem of Dwyer et al. In Section 3, we give the mapping
of property specification patterns to temporal OCL expres-
sions. Due to space limitations, we can only provide an in-
formal semantics description of the temporal OCL expres-
sions.

2. Property Specification Patterns

Experiences in the domain of formal specification have
shown that the full power of temporal logics, which allow
for arbitrarily nested formulae, is not needed in practice. In
this context, Dwyer et al. have developed a pattern system
based upon more than 500 property specifications from dif-
ferent projects in the area of finite-state verification [3, 4].

That pattern system provides a structured set of commonly
occurring property specifications and examples of how to
translate these into different formal specification languages,
such as Linear Temporal Logic (LTL), Computation Tree
Logic (CTL), or Graphical Interval Logic (GIL). These for-
mulae can be directly applied in different verification tools,
e.g., the model checking tools SPIN (accepts LTL) or SMV
(accepts CTL).1 As such verification tools require rather
cryptic temporal logic formulae as one part of the input for
the verification task, the pattern approach aims to support
developers in a way that abstracts from the formal syntax of
temporal logics.

2.1. Scopes

Dwyer et al. have identified different scopes applicable
to a pattern. A scope is the part of the system execution path
over which a pattern has to hold. Five basic kinds of scopes
have been identified, as illustrated in Figure 2:

• Globally (i.e., the entire execution path),

• Before R (i.e., execution up to a state R),

• After Q (i.e., execution after a state Q),

• Between Q and R (i.e., all parts of the execution path
from state Q to another state R), and

• After Q until R (i.e., all parts of the execution path from
state Q to another state R, including those parts where
R never occurs).

Global

Before R

After Q

Between Q and R

After Q until R

R R

Q Q

Q Q R Q R Q

Q Q R Q

Figure 2. Specification Scopes of [3]

For state-delimited scopes with distinct delimiters Q and
R, the interval in which the property is evaluated is closed at
the left and open at the right end. Thus, the scope consists
of all states beginning with the starting state and up to – but
not including – the ending state. It is possible, however, to
define scopes that are open-left and closed-right as well.

1For an introduction to temporal logics and an overview of verification
tools, see, e.g., [1].

Note that most scopes may appear repetitively or with an
unlimited future, as illustrated in Figure 2. These scopes
are therefore embedded in invariants. Scope ’Before R’ is
not an invariant, as we only investigate executions up to the
first occurrence of R in this case. Patterns with that scope
are only applied to paths starting at the initial state.

2.2. Patterns

The patterns themselves are hierarchically ordered as
shown in Figure 3. In an online repository, for each pat-
tern, each scope, and each formalism an according formal
description is provided [3]. To illustrate the approach, we
take the absence pattern as an example. Table 1 shows ac-
cording CTL formulae for each scope in the context of the
absence pattern.

Property Specification Patterns

Occurrence Order

Absence UniversalityExistence

Bounded Existence

Precedence Response

Chain Precedence Chain Response

Figure 3. Property Specification Patterns

The absence pattern describes a part of an execution path
that is free of a certain state P. We take a closer look at
the pattern ’P is false before R’ in Table 1. A first
intuitive attempt to specify an according CTL formula for
that case would be A(!P W R). This formula makes use of
the weak until operator W and means that along all possible
execution paths P is not entered from the initial state until
the first state in which R is true, if any. In particular, if R is
never entered along an execution path, then P must also not
be entered along that path.

Table 1. CTL Formulae for Absence Pattern [3]

P is false . . .

. . . globally AG(!P)

. . . before R A((!P | AG(!R)) W R)

. . . after Q AG(Q -> AG(!P))

. . . between Q and R AG((Q & !R) -> A((!P |AG(!R)) W R))

. . . after Q until R AG((Q & !R) -> A(!P W R))

Dwyer et al. always consider the case that scope delim-
iters Q and R might not appear on execution paths. Now con-
sider the case that on every execution path P becomes even-
tually true, but R will afterwards never be entered. In this

case, the property ’P is false before R’ should also
be true. However, our first formula A(!P W R) developed
above does not cover this case and results in false in this
case. One solution to resolve this issue is to add the sub-
formula (P & AG(!R)) as an alternative to sub-formula
!P, resulting in

A((!P | (P & AG(!R))) W R) .

As it holds ¬a∨ (a∧b) ≡ ¬a∨b, we can simplify the latter
formula to its final version as it appears in Table 1:

A((!P | AG(!R)) W R) .

As demonstrated, it always takes additional effort to include
the case that scope delimiters Q and R might not appear
at all on execution paths. Such assumptions unnecessar-
ily complicate the resulting formulae. Instead, we propose
a slightly different approach with inherent assumptions re-
quiring that scope delimiters will eventually appear on all
paths. Only if an assumption of such kind holds, a pattern
can then be applied. Otherwise, a statement about valid-
ity cannot be given. By this approach, it is guaranteed that
all possible executions really comply to the intended scope.
Users of the pattern system need therefore pay less attention
to whether delimiter states Q and R occur or not.

Moreover, mappings to respective temporal logic for-
mulae, e.g., CTL, are significantly simplified and easier to
adapt for further usage. As an example, Table 2 on the next
page shows the absence pattern with additional assumptions
and an according simplified mapping to CTL formulae. As-
sumptions can also be easily mapped to CTL and have to
be checked separately. When an assumption is false over a
given model, the actual property that is investigated cannot
be validated.

While the patterns provided in the pattern system by
Dwyer et al. already cover a broad range of requirements,
it might still be necessary to adjust them for particular and
more complex properties. There are a number of ways how
this can be performed, e.g., by parameterization, logical
combination, and changes in pattern scopes [3]. But note
that users of the pattern system are usually not able to mod-
ify the temporal logic formulae without a concise under-
standing of the underlying semantics of the formal logics.

3. State-Oriented Temporal OCL Expressions

In this section, we demonstrate how to express patterns
of the pattern system presented in Section 2 by means of
our temporal state-oriented OCL extension. We here take
the absence pattern as an example and provide according
temporal OCL expressions in Table 3. To understand the
OCL expressions in that table, we informally explain their
semantics in the remainder.

Table 2. CTL Formulae for Absence Pattern with Additional Assumptions

Assumption Pattern CTL Formula

P is globally false AG(!P)

R becomes true on all paths [CTL: AF(R)] P is false before R A(!P U R)

Q becomes true on all paths [CTL: AF(Q)] P is false after Q AG(Q -> AG(!P))

Q and R always again become true on all paths
[CTL: AG AF(Q) & AG AF(R)]

P is false between Q and R AG((Q & !R) -> A(!P U R))

Q always again becomes true on all paths [CTL: AG AF(Q)] P is false after Q until R AG((Q & !R) -> A(!P W R))

Table 3. OCL Expressions for Absence Pattern (Assumptions implicitly as in Table 2)

P is false . . .

. . . globally inv: not self.oclInConf(P)

. . . before R init: self@post()->forAll(g | g->startsWith(Sequence{not P, R}))

. . . after Q inv: self.oclInConf(Q) implies self@post()->forAll(g | g->excludes(P))

. . . between Q and R
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not P, R}))

. . . after Q until R
inv: self.oclInConf(Q) implies

not self@post()->exists(g | g->startsWith(Sequence{not R, P}))

UML Statecharts are for modeling the reactive object be-
havior of objects. Basically, they are an object-oriented ver-
sion of Harel Statecharts [8]. In a UML Statechart, the term
’current state’ cannot be applied without causing confusion,
as it can have composite (i.e., nested and orthogonal) states
and thus may reside in more than one state at the same time.
We better speak of a state configuration, i.e., the set of states
that uniquely determines the currently active states in the
Statechart. Consequently, in contrast to the original pat-
terns, P, Q, and R denote configurations in the remainder.
Nevertheless, note that in the simplest case a configuration
consists of one state. As configurations uniquely determine
the current state-related status of an object, conditions of
form ’P and not Q’ are equal to the simple formula ’P’,
as two distinct configurations of a Statechart can by defini-
tion never occur at the same time.

The following concepts and operations have been newly
introduced to OCL to be able to express the specifica-
tion patterns. Note that we keep compliant with the ex-
isting standard OCL syntax and reuse as often as possible
existing collection operations like forAll(), exists(),
includes(), and excludes().

1. The only state-related operation of the current OCL
standard as well as the new OCL 2.0 proposal is called
oclInState(s:OclState). It is defined over objects
of user-defined classes that have an associated State-
chart. Operation oclInState(s:OclState) returns
true if state s is currently active.

Additionally, we define and make use of operation
oclInConf(c:Set(OclState)) for Statechart con-
figurations. This operation returns true if the object is
in configuration c at time of evaluation.

2. In addition to OCL invariants declared by the keyword
inv, we introduce a new clause called init. In con-
trast to an invariant over an object obj that has to hold
each time after obj’s status has changed, the expres-
sion of an init-clause has to hold only at the starting
point of execution. Nevertheless, note that the expres-
sion of the init-clause may be a temporal OCL ex-
pression.

3. Temporal OCL expressions are a new concept intro-
duced to enable specification of dynamic, behavioral
constraints. In our approach, temporal OCL expres-
sions make use of a special temporal operation with
signature post(a:Integer,b:OclAny). To further
emphasize that this is a temporal operation, we make
use of a leading separator @ instead of the common
dot-notation. The operation can be applied to objects
of user-defined classes that have an associated State-
chart.

When @post(a,b) is evaluated at a certain point of
time t, we obtain the set of possible configuration se-
quences in the timing interval [t+a,t+b]. If parame-
ters a and b are omitted, we set a = 1 and b = ’inf’

(short for infinity to cover infinite future executions).

4. We have defined an extended syntax for explicit speci-
fication of configuration sequences. This syntax is par-
ticularly tailored to the needs for formulating general
execution paths that may be subject to some additional
conditions. Basically, we allow that logical unary and
binary operators such as ’not’, ’and’, ’or’ are applied
to sequence elements [6]. For the real-time domain,
we also allow explicit timing intervals in this context,
but note that these are not required for the general pat-
terns we investigate in this article. E.g., the sequence
specification

Sequence{ not P [1,100], P [1,’inf’], Q }

means that configuration P must not be true until
within 100 time units configuration P is reached, and
afterwards configuration Q must eventually become
true. When the timing interval for one of the first
n − 1 sequence elements is left out, it is implicitly
set to [1,’inf’], but note that consecutive configu-
ration specifications must still eventually become true
(so-called strong until semantics).

5. We newly introduce the boolean operation
startsWith(g:Sequence(T)), which can be
applied to sequences of objects of some type T. That
operation checks whether a given sequence starts with
a sequence specified by parameter g.

In particular, when T is equal to type Set(OclState)
and the elements of T denote state configurations, we
can make use of operation startsWith() to formu-
late restrictions over Statechart execution paths, using
the syntax for configuration sequences as illustrated
under item 4.

Using operation startsWith() is similar to se-
lecting a subsequence with the standard OCL op-
eration subSequence(a:Integer,b:Integer) and
then matching the extracted subsequence with g. But
unfortunately, we cannot a priori provide an upper
bound b from our particular viewpoint of possibly in-
finite execution runs, such that we cannot make use of
existing OCL operations.

For the sake of completeness, Tables 4, 5, 6, and 7 at the
end of this article provide according temporal OCL expres-
sions for the other main property specification patterns.

Application Example. We consider the class diagram of
Figure 1 and assume that class Machine has an associ-
ated Statechart modeling a process loop by means of con-
secutively running through configurations Idle, Loading,
Working, and Unloading. In the respective Statechart in
Figure 4, we have (informally) annotated the actions to load,

transform, and unload an item by timing intervals for the es-
timated minimal and maximal times needed to execute these
actions.

Machine

Idle

Working

Loading

Unloading

entry/ unload(i) entry/ transform(i)

acceptItem(i:Item)

entry/ load(i)

[outBufferAvailable]

load() in [20,30]

transform() in [10,20]unload() in [20,30]

Figure 4. Machine Statechart

In this scenario, we require that 100 time units after load-
ing of an item has started, the machine must have com-
pletely processed the item and changed to state Idle again.
An according temporal OCL invariant is

context Machine

inv: self.oclInConf(Loading) implies

self@post(1,100)->forAll(g |

g->includes(Sequence{Working,Unloading,Idle}))

This kind of property is heavily related to what is called
chained precedence and response in the original pattern sys-
tem. But note that we additionally can make use of time
limitations.

Expressing Assumptions with OCL. To capture the ad-
ditional assumptions we make concerning the occurrence of
scope delimiters, different approaches are imaginable. One
idea uses only standard OCL language concepts. The ex-
pression

if <assumption> then <pattern>

else OclUndefined

endif

makes use of the three-valued logic of OCL that includes
OclUndefined as the third logical value. For example, the
complete OCL invariant for pattern ’P is false after

Q’ is defined as follows.

inv: if @post()->forAll(g | g->includes(Q)) then

self.oclInConf(Q) implies

self@post()->forAll(g | g->excludes(P))

else

OclUndefined

endif

Note that OCL has a three-valued logic, i.e., OCL type
Boolean actually comprises the values true, false, and
OclUndefined. In the expression above, OclUndefined
is returned when the if-condition does not hold. Unfortu-
nately, such an expression cannot directly be mapped to a
temporal logic like CTL or LTL due to a missing third logi-
cal value.

Another idea is to extend OCL and introduce a dedi-
cated new clause, e.g., named assume, to express an as-
sumption in the same manner as a precondition of an oper-
ation. For instance, the assumption ’R becomes true on

all paths’ can then be expressed by

assume: @post()->forAll(g | g->includes(R)) .

Similarly, it has already been suggested by other authors
to introduce means to formulate exceptions with OCL, such
that undesired situations can be specified [12] and dealt with
[11]. We can make use of such an approach to specify an ac-
cording exception for each assumption simply by negating
the assumption expression. When the exception evaluates
to true, the assumption does not hold, and the respective
pattern cannot be validated.

The advantage of this approach is that such assumption
and exception expressions can directly be mapped to tem-
poral logic formulae for further usage in verification tools.

4. Conclusion

We considered the property specification patterns by
Dwyer et al. and found that some implicit assumptions
about scope delimiters make it unnecessarily hard to map
the patterns to a specific formal language like, e.g., CTL.
We therefore separated implicit assumptions about scope
delimiters from the actual patterns.

We then investigated whether the modified patterns can
be expressed over UML Statechart configurations by means
of OCL. It turned out that standard OCL concepts are not
sufficient for that task. We therefore introduced some new
operations and additional clauses to make OCL powerful
enough to formulate all patterns accordingly.

We think that this work can help to increase the ac-
ceptance of formal specification in the domain of object-
oriented modeling with UML. Developers familiar with the
UML standard should easily understand our OCL exten-
sion, as – in contrast to other approaches – it keeps com-
pliant with current OCL syntax and language concepts.

Acknowledgements

The work described in this article receives funding by the
DFG project GRASP within the DFG Priority Programme
1064 ’Integration von Techniken der Softwarespezifikation
für ingenieurwissenschaftliche Anwendungen’.

References

[1] B. Berard et al. Systems and Software Verification: Model-
Checking Techniques and Tools. Springer, 2001.

[2] M. Cengarle and A. Knapp. Towards OCL/RT. In L.-H.
Eriksson and P. Lindsay, editors, Formal Methods – Getting
IT Right, International Symposium of Formal Methods Eu-
rope, Copenhagen, Denmark, volume 2391 of LNCS, pages
389–408. Springer, July 2002.

[3] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. A System
of Specification Patterns, September 1998. URL: http://-
www.cis.ksu.edu/santos/spec-patterns.

[4] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in Property Specifications for Finite-State Verification.
In 21st International Conference on Software Engineering
(ICSE99), Los Angeles, CA, USA, May 1999.

[5] S. Flake and W. Mueller. A UML Profile for Real-Time Con-
straints with the OCL. In UML 2002 – The Unified Mod-
eling Language. Model Engineering, Concepts, and Tools.
Dresden, Germany, volume 2460 of LNCS, pages 179–195.
Springer, 2002.

[6] S. Flake and W. Mueller. An OCL Extension for Real-Time
Constraints. In T. Clark and J. Warmer, editors, Object Mod-
eling with the OCL: The Rationale behind the Object Con-
straint Language, volume 2263 of LNCS, pages 150–171.
Springer, February 2002.

[7] S. Flake and W. Mueller. Specification of Real-Time Proper-
ties for UML Models. In Proc. of the 35th Hawaii Interna-
tional Conference on System Sciences (HICSS-35), Hawaii,
USA, January 2002. IEEE Computer Society.

[8] D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 8(3):231–274,
June 1987.

[9] A. Kleppe and J. Warmer. Extending OCL to include Ac-
tions. In UML 2000 – The Unified Modeling Language.
Advancing the Standard. York, UK, volume 1939 of LNCS,
pages 440–450. Springer, 2000.

[10] OMG. Object Management Group. Unified Modeling Lan-
guage 1.5 Specification. OMG Document formal/03-03-01,
March 2003. URL: http://www.omg.org/technology/docu-
ments/formal/uml.htm.

[11] S. Sendall and A. Strohmeier. Specifying Concurrent Sys-
tem Behavior and Timing Constraints Using OCL and UML.
In UML 2001 – The Unified Modeling Language. Modeling
Languages, Concepts, and Tools. Toronto, Canada, volume
2185 of LNCS, pages 391–405. Springer, October 2001.

[12] N. Soundarajan and S. Fridella. Modeling Exceptional Be-
havior. In UML’99 – The Unified Modeling Language. Be-
yond the Standard. Fort Collins, CO, USA, volume 1723 of
LNCS, pages 691–705. Springer, 1999.

[13] J. Warmer et al. Response to the UML2.0 OCL RfP, Version
1.6 (Submitters: Boldsoft, Rational, IONA, Adaptive Ltd., et
al.). OMG Document ad/03-01-07, January 2003.

[14] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1999.

Table 4. OCL Expressions for Existence Pattern (Assumptions as in Table 2)

P becomes true . . .

. . . globally init: self@post()->forAll(g | g->includes(P))

. . . before R init: self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

. . . after Q inv: self.oclInConf(Q) implies self@post()->forAll(g | g->includes(P))

. . . between Q and R
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

. . . after Q until R
inv: oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

Table 5. OCL Expressions for Universality Pattern (Assumptions as in Table 2)

P is true . . .

. . . globally inv: self.oclInConf(P)

. . . before R init: self@post()->forAll(g | g->startsWith(Sequence{P, R}))

. . . after Q
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->forAll(conf | conf = P))

. . . between Q and R
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{P, R}))

. . . after Q until R
inv: self.oclInConf(Q) implies

not self@post()->exists(g | g->startsWith(Sequence{not R, not P and not R}))

Table 6. OCL Expressions for Precedence Pattern (Assumptions as in Table 2)

S precedes P . . .

. . . globally init: not self@post()->exists(g | g->startsWith(Sequence{not S, P}))

. . . before R init: self@post()->forAll(g | g->startsWith(Sequence{not P, S or P}))

. . . after Q
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{Q, not P, S}))

. . . between Q and R
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not P, S or R}))

. . . after Q until R
inv: self.oclInConf(Q) implies

not self@post()->exists(g | g->startsWith(Sequence{not S and not R, P}))

Table 7. OCL Expressions for Response Pattern (Assumptions as in Table 2)

S responds to P . . .

. . . globally inv: self.oclInConf(P) implies self@post()->forAll(g | g->includes(S))

. . . before R
inv: self.oclInConf(P) implies

self@post()->forAll(g | g->startsWith(Sequence{not R, S}))

. . . after Q
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->includes(Sequence{P, true[0,’inf’], S})

. . . between Q and R
inv: self.oclInConf(Q) implies self@post()->forAll(g |

g->includes(Sequence{P, not R [0,’inf’], S, not R [0,’inf’], R}))

. . . after Q until R
inv: self.oclInConf(Q) implies self@post()->forAll(g |

g->startsWith(Sequence{not R, P, not R[0,’inf’], S}))

