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Abstract

The textual Object Constraint Language (OCL) is an of-
ficial part of the Unified Modeling Language (UML). It is
primarily used to formulate restrictions for UML class di-
agrams. Additionally, it is possible to refer to UML State-
chart states in OCL expressions to reason about currently
activated states.

However, neither the current OCL standard nor the pro-
posal for the new OCL 2.0 version integrate Statecharts on
the language definition level, i.e., the semantics of State-
chart states in the context of OCL expressions is not suf-
ficiently defined so far. To overcome this deficiency, this
article provides a formal semantics for state-oriented OCL
expressions for application with UML Statecharts.

1. Introduction

The Object Constraint Language (OCL) is part of the
Unified Modeling Language (UML) since UML version 1.3
[5]. OCL is an expression language that enables modelers to
formulate constraints in the context of a given UML model.
It is mainly used to specify invariants attached to classes and
pre- and postconditions of operations. OCL is a declarative
language, i.e., evaluation of OCL expressions does not have
side effects on the respective UML model.

In the official UML 1.5 specification, a concrete syntax
of OCL is given. Due to a missing metamodel only an in-
formal description of the semantics of OCL expressions is
provided [5, Chapter 6]. To overcome this, Warmer et al. [8]
have recently submitted a proposal with an enhanced OCL
language definition for standardization to address a better
integration of OCL with other parts of UML. In the remain-
der, we refer to that document as the OCL 2.0 proposal.
Though that proposal has not yet officially been adopted,
our work is based on that document since it comprises sev-
eral significant works concerning the development of OCL
through the recent years.

OCL enables modelers to formulate expressions in-
tended to check for currently activated Statechart states with

a Boolean operation called oclInState(s:OclState).
However, the semantics of that operation are still only infor-
mally described in the OCL 2.0 proposal, i.e., an integration
of UML Statecharts into the language concepts of OCL on
the meta level is still missing and there is no other work
that provides a formal definition of OCL and takes states
of UML Statecharts into account. In this article, we extend
OCL by a concise notion of states and provide a formal se-
mantics of OCL’s state-related operation oclInState.

The remainder of this article is structured as follows. In
Section 2, we extend object models, i.e., an existing for-
malization of UML class diagrams, to include UML State-
charts. Based upon that extension, we introduce a notion
of Statechart configurations and define a formal semantics
for the operation oclInState in Section 3. In Section 4,
we provide the dynamic semantics of Statecharts by means
of sequences of system states over extended object mod-
els and discuss when state-oriented OCL constraints have
to be checked during execution of (the implementation of)
the model. Section 5 concludes the article.

2. Extended Object Models

The OCL 2.0 proposal includes two semantic descrip-
tions. The normative description recursively uses UML
concepts to define the OCL semantics. It is structured into
different packages that constitute the relationship between
OCL types and their value domains. Evaluation of an OCL
expression then returns an element from the domain of the
type. The informative OCL semantics is provided in form
of a set theory-based approach called object model, which
is based on work of Richters [6]. It covers major parts of
the current OCL standard as well as new OCL 2.0 con-
cepts (e.g., nested collections). Unfortunately, the two se-
mantic definitions are not completely consistent, e.g., the
OclMessage concept is not yet supported in the informa-
tive semantics.

But even more significantly, both semantic descriptions
do not integrate the notion of Statechart states, although
the operation oclInState is already defined in the current
OCL standard. For example, in the context of a manufactur-



ing scenario with a machine that has a limited input buffer
to store items before processing them, the invariant

context InputBuffer inv:

self.oclInState(WaitingForDelivery)

implies self.storedItems < self.maxItems

specifies that there must be at least one vacant in-
put buffer position as long as the buffer is in state
WaitingForDelivery. The latter state represents the sit-
uation that the delivery of an item is expected, but the item
has not arrived yet.

Evaluation of an OCL expression is performed over a
single snapshot or system state, i.e., an overall description
of the current status of a model. However, two snapshots
have to be considered to evaluate operation postconditions
when the operator @pre is attached to objects or attributes.
I.e., in addition to the snapshot after operation execution
also values of the snapshot just before the operation execu-
tion have to be regarded.

Concerning Statecharts, the OCL 2.0 proposal simply as-
sumes that a dedicated enumeration type called OclState

represents all state names in the OCL type system. Thus,
state names can be used as an argument of the operation
oclInState(s:OclState). However, to be able to eval-
uate an OCL expression that makes use of that operation,
the snapshot description must comprise the set of currently
activated states of all objects. This aspect is still missing in
both semantic descriptions of the OCL 2.0 proposal.

In the remainder of this section, we formally define the
syntax of extended object models that take Statecharts as a
behavioral description of classes. Compared to the original
definition of object models, we also newly introduce signal
specifications and provide an extension of the formal de-
scriptor of a class.

For that, we start with the definiton of the syntax of an
extended object model by

M
def
= 〈 CLASS,ATT,OP, SIG, SC,ASSOC,

≺, associates, roles,multiplicities〉

with sets CLASS of classes, ATT =
⋃

c∈CLASS ATTc of
attributes, OP =

⋃

c∈CLASS OPc of operations, SIG =
⋃

c∈CLASS SIGc of signals, SC =
⋃

c∈CLASS SCc of
Statecharts, ASSOC of associations, as well as a general-
ization hierarchy ≺ over classes. The functions associates,
roles, and multiplicities assign for each association as ∈
ASSOC its classes, role names, and multiplicities, respec-
tively.

In the following, we consider the tuple elements of M in
more detail. For element names in M, let A be an alphabet
and N ⊆ A+ a set of finite, non-empty names.

2.1. Types

We assume a set Σ
def
= (T,Ω), where T is a set of type

names and Ω as a set of operations over types in T . Set
T comprises types for user-defined classes (TC), types for
enumerations (TE), and basic standard library types (TB),
such as Integer, Real, Boolean, String, and OclVoid.
The latter is a subtype of any other type that allows opera-
tions with unknown values. The only value of OclVoid is
called OclUndefined and represented in the following by
symbol ⊥.

We further denote the value set IType(t) represented by a
type t as the type domain. E.g., we have IType(OclV oid) =
{⊥}. For convenience, we presume that the undefined
value is included in each type domain, i.e., ∀t ∈ T : ⊥ ∈
IType(t). Operations in Ω comprise common arithmetic op-
erations, e.g., +, -, *, / for Integer values. Furthermore, we
define so-called collection types in Σ to manage collections
of values, e.g., Set(Integer).

2.2. Classes and their Characteristics

A class is a description for a set of objects sharing the
same characteristics, i.e., attributes, operations, signals, and
associations. Note that associations are separately defined
in ASSOC.

Definition 1 (Classes and Types)
CLASS is a finite set of class names, CLASS ⊆ N . Each
class c ∈ CLASS induces a type tc ∈ TC ⊂ T , with
the same name as the class. A value val ∈ IType(tc) of a
type tc ∈ TC refers to an object of the corresponding class
c ∈ CLASS.

Each class c is associated with a set ATTc of attributes
that describe characteristics of their objects. An attribute
has a name a ∈ N and a type t ∈ T that specifies the do-
main of attribute values. Though attribute names of a class
must be pairwise distinct, attributes with the same name
may appear in several classes, which are not related by gen-
eralization. A class may also have a number of operations.
Operations are used to describe behavioral characteristics
of objects. The behavior can be specified by an associated
Statechart; we here only consider signatures of operations
that declare their interface.

Definition 2 (Operations)
The operations of class c are defined by a set OPc of oper-
ation signatures,

OPc
def
= { (ω : tc × t1 × . . .× tn → t) |

ω ∈ N , n ∈
�

0 , and t, t1, . . . tn ∈ T}.



Symbol ω determines the operation name and parameter tc
denotes the type to which operation ω is applied to. In the
case that an operation does not return any result, we set the
return type to OclVoid.

Richters [6] does not consider asynchronous signals that
are communicated between objects in the formal object
model. However, when integrating Statecharts into the ob-
ject model, signals have to be included as they are used in
Statecharts to trigger state transitions. Though signals are
generally defined independently of classes, we here assume
that we can build the set SIGc that comprises the signals,
which are handled by objects of a given class c.

Definition 3 (Signals)
The signals that can be handled by instances of a class c are
defined by the set SIGc of signal signatures,

SIGc
def
= { (ω : tc × t1 × . . .× tn) |

ω ∈ N , n ∈
�

0 , and t1, . . . tn ∈ T}.

Symbol ω denotes the signal name and tc refers to the type
that signal ω is applied to. As signals are asynchronous, no
return value is expected, such that all signal parameters are
input parameters.

2.3. Abstract Syntax of Statecharts

UML 1.5 specifies concepts for modeling discrete behav-
ior through finite state-transition systems [5, Section 2.12].
The provided state machine formalism is an object-based
variant of Harel Statecharts [4]. Generally, state machines
are applicable to various model elements within UML. We
here focus on UML Statechart Diagrams, which are used
to model the reactive behavior of objects, so that only this
Statechart interpretation is relevant for OCL’s state-related
operation oclInState. The UML 1.5 specification only
informally defines the dynamic semantics of Statecharts by
means of natural language phrases and leaves the seman-
tics open for interpretation, e.g., the dispatching policy for
selecting events from the implicit event queue. Reaction
on that selected event is performed in a so-called run-to-
completion step (RTC-step). In that context, numerous ap-
proaches have been published to formally define the execu-
tion semantics of UML Statecharts [1].

The abstract Statechart syntax defined in the follow-
ing comprises all relevant information, which is required
to fully capture the definition of a configuration of a
Statechart, i.e., a complete description of what is infor-
mally known in UML by an active state configuration that
is reached after completion of an RTC-step [5, Section
2.12.4.3]. We here do not make the assumption how an
RTC-step is executed to reach the next configuration. This
must be formally defined in the dynamic semantics of each
individual approach.

Definition 4 (Abstract Syntax of Statecharts)
Each c ∈ CLASS can have an associated Statechart SCc

representing the reactive behavior of instances of c. If c
does not have an associated Statechart, we set SCc := � ,
otherwise SCc is a tuple

SCc
def
= 〈 Sc, EV TSc, GUARDSc, ACTSc, TRc,

internalT ransc, substatesc, entryc,

exitc, doActivityc, deferrableEventsc 〉

For the matter of brevity, we omit the class annotator c for
all Statechart components in the remainder of this article.
We define the components of a Statechart SC as follows.

1. S ⊆ N is a set of states. S is the union of the following
disjoint sets

• pseudo states Pseudo, consisting of seven dis-
joint sets (a) initial states Init; (b) shal-
low history states History; (c) deep history
states DeepHistory; (d) merging states Join;
(e) splitting states Fork; (f) static conditional
branch states Junction; (g) dynamic conditional
branch states Choice;

• synchronization states Synch;

• simple states Simple;

• composite states Composite, composed of the
two disjoint sets of sequential composite states
Xor and orthogonal composite states And;

• final states Final;

Details are given in [5, Section 2.12.2]. For conve-
nience, we define

Proper
def
= And ∪Xor ∪ Simple.

2. EV TS ⊆ EXPREvts is a set of events. We presume
an expression language EXPREvts for the definition
of events such as operation calls, signals, timers, etc.
Correspondingly, we presume expression languages
for the set of GUARDS of transition conditions and
the set ACTS of transition actions (e.g., assignments,
operation calls, signals).

3. TR ⊆ (S\Final)×EV TS×GUARDS×ACTS×
(S \ Init) is a set of transitions. A transition has a
source state s ∈ S \ Final and a destination state
s′ ∈ S \ Init; it may have a trigger event e ∈ EV TS,
a guard condition g ∈ GUARDS, and an action ex-
pression a ∈ ACTS.

4. internalT rans : Proper → P(EV TS ×
GUARDS × ACTS) gives the set of internal tran-
sitions for a given state S ∈ Proper. When triggering
an internal transition in a state s, the entry- and exit-
actions of s are not executed.



5. substates : Composite → P(S) gives all substates
of a state, such that

(a) there is a unique state top ∈ Composite such
that ∀s ∈ Composite : top 6∈ substates(s),

(b) ∀s ∈ And : substates(s) ⊆ Composite,1

(c) ∀s ∈ Composite \ {top} there is exactly one
path 〈s1, . . . , sn〉 ∈ Compositen , such that
s1 = top ∧ sn = s ∧ si+1 ∈ substates(si) for
1 ≤ i ≤ n− 1.

6. Functions entry, doActivity, exit : Proper →
ACTS give the actions which are executed when a
state is entered, active, or left, respectively.

7. deferrableEvents : Proper → P(EV TS) gives
the set of events to be retained for later consumption.

Definition 4 covers most of the abstract Statechart syntax
as defined in the official UML 1.5 specification [5, Section
2.12.2]. We only leave out minor details, which are of no
importance in the remainder of this article, e.g., local vari-
ables and the bounds of synch states.

2.4. Associations

Associations are used to model structural relationships
between classes. We give no formal definitions for asso-
ciations, role names (i.e., association-end names), associ-
ation multiplicities, and their syntactical restrictions here,
since they are kept unchanged due to the definition in [6].
In the following, we will make use of function navEnds :
CLASS → P(N ) to denote the set of role names that can
be directly accessed from a given class by navigating the
associations this class participates in.

2.5. Generalization

By generalization, we refer to a taxonomic relationship
between two classes, in which a general class is specialized
into a more specific class.

Definition 5 (Generalization, Child and Parent Classes)
A generalization hierarchy ≺ is an irreflexive partial order
on CLASS, i.e., ≺ is an irreflexive, anti-symmetric, and
transitive relation. Pairs in ≺ describe generalization rela-
tionships between two classes.

For c1, c2 ∈ CLASS with c1 ≺ c2, c1 is called a child
class of c2, and c2 is called a parent class of c1. A child
class transitively inherits characteristics (attributes, opera-
tions, signals, and associations) of its parent classes.

1This is a well-formedness rule of the UML standard (see [5, Section
2.12.3.1]). In many alternative formal syntax definitions, even s

′
∈ Xor

is required in this case, yielding a normal form of alternating Xor- and
And-states in the state hierarchy.

We define function parents : CLASS → P(CLASS)
for collecting all transitive parents of a given class by

parents(c)
def
= {c′ | c′ ∈ CLASS∧c ≺ c′}. The complete

set of attributes of c is then defined by

ATT ∗
c

def
= ATTc ∪

⋃

c′∈parents(c)

ATTc′ .

The complete sets OP ∗
c , SIG∗

c , and navEnds∗(c) of op-
erations, signals, and navigable role names are defined ac-
cordingly.

While the problem of consistency among generalization
of classes and inheritance of characteristics for attributes
and operations has been widely studied for object-oriented
languages, consistency among inheritance of behavior in
object-oriented design notations like UML has received less
attention. UML only provides an informal description of
three different inheritance policies for state machines [5,
Section 2.12.5.3]. In contrast, different formal notions
for behavioral consistency have already been identified in
[2, 7].

As we cannot restrict our general definition to a specific
form of behavioral inheritance consistency, we assume that
there is some suitable policy provided that guarantees be-
havioral consistency among the Statecharts that participate
in a generalization hierarchy.

2.6. Full Descriptor of a Class

The UML standard restricts the abstract syntax of mod-
els by well-formedness rules, e.g., a class may not define an
operation, attribute, or role name that is already defined in
one of its parent classes. Such constraints are already for-
mally captured in [6] by the full descriptor of a class. We
here extend that notion by signals and Statecharts.

Definition 6 (Full Descriptor of a Class)
The full descriptor of a class c ∈ CLASS is a tuple

FDc
def
= 〈ATT ∗

c , OP
∗
c , SIG

∗
c , SCc, navEnds

∗(c)〉

containing all attributes, operations, signals, navigable role
names, and an (optional) associated Statechart.

The following well-formedness rules apply for signals
and Statecharts in the full descriptor:

1. A signal may only be defined once in a full class de-
scriptor. Formally, we require that two signals with
same names and parameter types are automatically de-
fined for the same type.

∀ (ω : tc × t1 × . . .× tn) ∈ SIG∗
c ,

∀ (ω′ : tc′ × t′1 × . . .× t′n) ∈ SIG∗
c :

(ω = ω′ ∧ t1 = t′1 ∧ . . . ∧ tn = t′n) =⇒ tc = tc′ .



2. Operation and signal names (in combination with the
corresponding parameters) must be pairwise distinct.

∀ (ω : tc × t1 × . . . tn → t) ∈ OP ∗
c ,

∀ (ω′ : tc′ × t1 × . . . tn) ∈ SIG∗
c : ω 6= ω′.

Note that types t1, . . . , tn are fixed for ω′ by the pa-
rameter types of ω.

3. To guarantee syntactical consistency among State-
charts and class definitions, each operation call expres-
sion in Statechart SCc must have an associated opera-
tion signature specified in OP ∗

c′ , where c′ is the class
of the called object. Correspondingly, each signal ex-
pression must have an according signature in SIG∗

c′ .

Since we abstract from a particular expression syntax
of EV TSc and ACTc, we do not give a formalization
in more details here.

Note that it is allowed for operations and signals to have the
same name as attributes or role names, because the concrete
syntax of OCL allows to distinguish between both.

3. Static Semantics

Based on the general syntax of extended object models,
we now define system states, i.e., a formal description of
objects and their characteristics in an instantiation of an ex-
tended object model M at a particular point of time. We
first have to define the domain of classes by means of ob-
ject identifiers and state configurations.

The domain of a class c ∈ CLASS is the set of objects
of this class and all child classes. We refer to objects by
identifiers that are unique in the context of the whole sys-
tem. In the remainder, no distinction will be made between
objects and their identifiers.

Definition 7 (Object Identifiers and Domain of a Class)
The set of object identifiers of a class c ∈ CLASS is de-

fined by an infinite set oid(c)
def
= {oid1, oid2, . . .}. The

domain of a class c ∈ CLASS is defined as

ICLASS(c)
def
=

⋃

c′∈CLASS|(c′≺c ∨ c′=c)

oid(c′).

3.1. State Configurations

For UML Statecharts, the term ’current state’ cannot
be applied without disambiguities, as Statecharts can have
composite (i.e., nested and orthogonal) states and thus may
reside in more than one state at the same time. UML there-
fore provides the notion of active state configurations as
follows.

If the Statechart is in a simple state that is contained in
a composite state, then all the composite states that (transi-
tively) contain the simple state are active as well. Further-
more, since composite states in the state hierarchy may be
concurrent, the currently active states are represented by a
tree of states starting with the single state topc at the root
down to individual simple leaf states si ∈ Simplec. Defi-
nition 8 defines state configurations where we make use of
function superstatec that gives the direct superstate of a
state s ∈ Sc:

superstatec :















Sc → Compositec

s 7→







s′, if ∃s′ ∈ Compositec

with s ∈ substatesc(s′),
� , else

In contrast to UML, we also consider final states in state
configurations, since final states might be active after an
RTC-step. Note here that a final state, which is a direct child
of the outermost state topc is not part of any state configura-
tion, since entering that state is equivalent to the destruction
of the corresponding object. Additionally, we explicitly ex-
clude immediate states. Immediate states are proper states
that have an outgoing triggerless transition and no associ-
ated activity; they are entered and directly left within the
same RTC-step. Consequently, immediate states can never
be part of a state configuration. Thus, we simply refer to the
set Immediatec that includes all immediate proper states
of a Statechart SCc and omit a formal definition. Further-
more, we make use of the following help sets for classes
c ∈ CLASS with SCc 6= � :

ProperStayc
def
= Properc \ Immediatec,

Stayc
def
= ProperStayc ∪

{f ∈ Finalc | f 6∈ substatesc(topc)},

Definition 8 (State Configurations for a State)
Let c ∈ CLASS with SCc 6= � . A state configuration C
with respect to a state s is a maximal set of states that the
Statechart can be simultaneously in with state s as a root
state. Function cfgc that maps a state s ∈ ProperStayc to
the set of configurations C with respect to s is defined by

cfgc :























ProperStayc → P(P(Stayc))
s 7→ { C ⊆ P(Stayc) | s ∈ C ∧

∀s′ ∈ C ∩ Andc : substatesc(s′) ⊆ C ∧
∀s′ ∈ C ∩Xorc : |substatesc(s

′) ∩ C| = 1
∧ ∀s′ ∈ C \ {s} : superstatec(s′) ∈ C }

Definition 9 (State Configurations)
The set ISC(c) of overall state configurations for a class
c ∈ CLASS with SCc 6= � is determined by cfgc(topc).
For convenience, we define ISC(c) for all c ∈ CLASS by

ISC(c)
def
=

{

cfgc(topc) if SCc 6= �
� if SCc = � .
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Figure 1. Statechart Example

Example. Figure 1 gives a Statechart example with state
configurations. All proper states except immediate state K

have an outgoing transition with a specified triggering event
ei, 1 ≤ i ≤ 6. To textually refer to final states in UML
Statecharts, we have introduced FinalState as a new key-
word. Note here that S::FinalState is not part of the
configuration set.

3.2. System State

In the following, we call an instantiation of an extended
object model a system. A system can be in different states as
it varies over time, i.e., the number of objects, their attribute
values, Statechart configurations, and other characteristics
change when executing the system. To define system de-
tails, we have to define what a single system state exactly
consists of. It is important to point out here that different
notions of a system state are generally possible. This is due
to the scope of model analysis one wants to perform.

In Richters’ original work on object models, a system
state is a tuple consisting of (a) the current set of objects,
(b) their attribute values, and (c) the current connections
between objects (so-called links) based on the set of associ-
ations [6, Section 5.2]. However, as Richters did not con-
sider Statecharts, he cannot manage state-related operations
and thus does not provide the semantics for the OCL stan-
dard operation oclInState. We therefore have to extend
system states by a notion of state configurations.

Additionally, for a concise definition of system state se-
quences (see Section 4) we need to define the control flow
between operations (for OCL preconditions) and which op-
erations are terminated lately (for OCL postconditions). For
that, we adopt ideas of [9] to formalize this aspect by intro-
ducing the tuple components ΣOP and ΣPARAM .

Definition 10 (System State)
A system state for an extended object model M is a tuple

σ(M)
def
= 〈 ΣCLASS,ΣATT ,ΣCONF ,

ΣASSOC ,ΣOP ,ΣPARAM 〉, where

1. ΣCLASS
def
=

⋃

c∈CLASS ΣCLASS,c comprises the fi-
nite sets ΣCLASS,c ⊂ oid(c) that contain all currently
existing objects of a class c ∈ CLASS.

2. The current attribute values are kept in ΣATT . This set
consists of functions σATT,a, where index ’a’ stands
for an attribute of a given class c ∈ CLASS. For-

mally, we have ΣATT
def
=

⋃

c∈CLASS {σATT,a : ΣCLASS,c → IType(t) |
〈a, tc, t〉 ∈ ATT ∗

c }.

3. The current Statechart configurations are captured by

ΣCONF
def
=

⋃

c∈CLASS {σCONF,c : ΣCLASS,c → ISC(c)}.

Each function σCONF,c assigns a state configuration
to each object oid of a given class c ∈ CLASS. If
SCc = � . We set σCONF,c(oid) := � .

4. ΣASSOC
def
=

⋃

as∈ASSOC ΣASSOC,as comprises the
finite sets ΣASSOC,as that contain links that connect
objects. A set of links ΣASSOC,as must satisfy all mul-
tiplicity specifications defined for an association as. A
formalization of this requirement can be found in [6,
page 47].

5. ΣOP
def
=

⋃

c∈CLASS{σOP,c : ΣCLASS,c × OPc →
P(

�
)} is a set of functions σOP,c, where each of those

functions determines the identities of currently exe-
cuted operations for a given object oid and operation
name op. The identity of a currently executed opera-
tion is implicitly given by an associated natural number
that must not change during execution of that opera-
tion.

6. ΣPARAM
def
=

⋃

c∈CLASS{ σPARAM,c : ΣCLASS,c ×OPc ×
�

→
IType(t1) × ...× IType(tn) × IType(t)}

is a set of functions that give the parameter values of
each of the currently executed operations. For each
c ∈ CLASS, we define function σPARAM,c as fol-
lows, where op = (ω : tc × t1 × . . .× tn → t) ∈ OPc:

σPARAM,c(oid, op, i) 7→
{

〈val(t1), ..., val(tn), val(t)〉, if i ∈ σOP,c(oid, op)
� , otherwise



In the definition above, val(tj) ∈ IType(tj) denotes
an arbitrary value defined for type tj ∈ T , 1 ≤ j ≤ n.
The same holds for val(t) ∈ IType(t). If an operation
does not return a result, the result type t of operation
op is OclVoid. In that case, we set val(t) :=⊥.

There are additional Statechart characteristics that can
also be taken into account to be part of a system state, e.g.,
event queues and changes occurring to them, additional in-
formation required for re-entering composite states via his-
tory states, etc. However, the definition presented here is
sufficient to reason about currently activated states and ex-
ecuted operations and thus completely fulfills our present
needs.

3.3. Semantics of oclInState

The signature of the operation oclInState is given by
oclInState : OclAny × OclState → Boolean, where
OclAny is the supertype of all basic OCL types TB , enu-
meration types TE , and user-defined types TC . The domain
of OclAny is formally defined by

IType(OclAny) = (
⋃

t∈TB∪TE∪TC

IType(t)) ∪ {⊥}.

The semantics of oclInState over a given system state
σ(M), an existing object oid ∈ ΣCLASS,c, and a state lit-
eral s ∈ IType(OclState) is then defined by function

I(oclInState)(oid, s)
def
=































































true, if SCc 6= �
∧ s ∈ Stayc

∧ s ∈ σCONF,c(oid),
false, if SCc 6= �

∧ s ∈ Stayc

∧ s 6∈ σCONF,c(oid),
⊥, if SCc 6= �

∧ s 6∈ Stayc ∪ {⊥},
⊥, if SCc = � ,
⊥, if s = ⊥ .

Note here that oclInState returns ⊥ when there is no
associated Statechart SCc or when state s is not a suitable
proper or final state of SCc. It would also be possible to
return false instead, but neither UML 1.5 nor the OCL 2.0
proposal give any information about this issue.

4. Dynamic Semantics

We can now consider sequences of system states as
traces. At this point, we have to decide and formally define
a valid trace, i.e., when a new system state has to be ap-
pended to the trace at execution time. When checking OCL
constraints, we are not interested in every single attribute

value change that occurs during execution of an operation.
Instead, we are interested in system states in which an op-
eration has been completed or a signal has been consumed.

In the simplest case, i.e., when (an implementation of)
the system is executed on a single CPU, there is a clear tem-
poral relationship among subsequent trace elements. But
when (the implementation of) the system is distributed, we
have a partial order between configurations of different ob-
jects. This problem can be solved, for instance, by intro-
ducing a global clock.

Definition 11 (Trace)
A well-defined system state sequence called trace for an in-
stantiation of an extended object model M is an (infinite)
sequence of system states as defined in Definition 10,

trace(M)
def
= 〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . . 〉

We assume that σ(M)[0] denotes the initial system state.
Given a system state σ(M)[i], i ∈

�
0 , the next system state

σ(M)[i+1] is added to the trace when one of the following
holds during execution:

• an operation is called,

• an operation has terminated,

• a new Statechart state configuration is reached.

In the remainder, we apply the [i]-annotation also for the
components and functions of the tuple σ(M)[i], i ∈

�
0 . We

presume that the following restrictions apply to traces:

1. Two adjacent sequence elements may differ in at most
one begin or end of operation execution per object.
We denote the overall number of current operation ex-
ecutions for an object oid of class c in system state
σ(M)[i] by

ψ(oid)[i]
def
=

∑

op∈OPc

|σOP,c(oid, op)[i]|.

For each pair of adjacent system states σ(M)[i] and
σ(M)[i+1], i ∈

�
0 , in trace(M), it must hold that

∀c ∈ CLASS,∀oid ∈ ΣCLASS,c[i] :

oid ∈ ΣCLASS,c[i+1] =⇒

abs(ψ(oid)[i] − ψ(oid)[i+1]) ≤ 1

2. Each operation call occurring in the trace must even-
tually be terminated, i.e., for all operations op ∈ OPc

of an object oid in a system state σ(M)[i], i ∈
�

0 , it
must hold that

∀execOp ∈ σOP,c(oid, op)[i] ∃j ∈
�
, j > i :

execOp 6∈ σOP,c(oid, op)[j] ∧
∀i ≤ k ≤ j : oid ∈ ΣCLASS,c[k]



The formula above requires additionally that an object
must not be destroyed when one of its operations is
still executed.

3. Values of input parameters of operations must not
change, as OCL only accepts input parameters for op-
erations. For operation return types t 6= OclV oid, the
value of the (implicitly defined) result variable changes
from ⊥ to a well-defined value val(t) ∈ IType(t)
when the operation call terminates.

Traces as defined above should be seen as a rather gen-
eral approach to capture those parts of the system runtime
information that is necessary to reason about (sequences of)
system states.

Evaluating OCL Constraints. It is quite obvious when
to check pre- and postconditions for operations, i.e., just
before and just after execution of the according operation.
Invariants of an object, in contrast, have to be checked each
time the system state changes w.r.t. that object. It is often
assumed that the status of an object changes only through
operation calls. While this might be suitable in some ap-
plication domains, the situation becomes different when
objects are modeled in combination with Statecharts. In
UML Statecharts, elapsed time events and change events
can be specified to trigger transitions, e.g., after(1 sec)

or when(x > 100). These are basically monitors that per-
manently check for a condition to become true and then
raise an internal event to trigger the according transition in
the next RTC-step. Thus, a new Statechart configuration is
entered without any operation call. Similarly, signals con-
sumed by an RTC-step also cause a new Statechart config-
uration to be entered. Invariants must therefore be checked
in such cases as well. More formally, we evaluate invariants
for an object oid ∈ ΣCLASS,c[i] at location i of trace(M),
i ≥ 1, when the following holds

oid 6∈ ΣCLASS,c[i−1] ∨ // object is new
σCONF,c(oid)[i] 6= σCONF,c(oid)[i−1] ∨

ψ(oid)[i] 6= ψ(oid)[i−1].

Additionally, for i = 0, we check invariants for all objects
that exist in the initial state σ(M)[0].2

5. Conclusion

Statechart states are already used in OCL on the syntac-
tical level, but their semantics in the context of OCL ex-
pressions have not been sufficiently investigated so far. We
therefore have formalized UML Statechart configurations
and integrated them into a formalization of UML class di-
agrams. Based on that, we have defined a semantics for

2Note here that the check point is not defined by OCL.

OCL expressions that make use of the OCL standard oper-
ation oclInState. This is an essential step towards com-
pleting the formal semantics of OCL to make it applicable
for state-based reasoning. However, a formalization of the
OCL message concept is still missing.

The presented work is a generalization of our previous
work that introduced a state-oriented temporal OCL exten-
sion [3]. Our ongoing work focuses on formal verification
by model checking over (parts of) UML models with re-
spect to temporal OCL constraints for property specifica-
tion.
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