
Formal Semantics of OCL Messages

Stephan Flake and Wolfgang Mueller1

C-LAB, Paderborn University
Fuerstenallee 11

33102 Paderborn, Germany

Abstract

The latest OCL 2.0 proposal provides two semantic descriptions, i.e., a metamodel-based semantics
that uses UML itself to associate the semantic domain with the language concepts and a formal
semantics based on a set-theoretic approach called object model. Unfortunately, these two seman-
tics are currently neither consistent nor complete, as (a) the formal semantics does not consider
the newly introduced concept of OCL messages and (b) both semantics lack an integration of
Statecharts and a semantic definition of state-related operations.
This article focuses on a formal semantics for OCL messages as a foundation for consistency among
the two OCL semantics. We extend object models and present an extended definition of a system
state that comprises all relevant information to be able to evaluate OCL expressions also w.r.t. OCL
messages.

Keywords: OCL 2.0, Extended Object Model

1 Introduction

The adopted OCL 2.0 proposal follows two approaches to define the semantics
of OCL. First, a semantics is described using UML itself by a metamodel-based
approach [6, Chapter 5]. Different packages are defined that represent the ab-
stract syntax on the metamodel layer M2 and the semantic domain on UML
modeling layer M1. A separate package then relates these packages by associ-
ations between elements of the semantic domain and elements of the abstract
syntax. For example, each value of the semantic domain is associated with a
type of the abstract syntax. Similarly, evaluations of OCL expressions are as-
sociated with corresponding expressions in the abstract syntax. A particular

1 Email: {flake,wolfgang}@c-lab.de

Electronic Notes in Theoretical Computer Science 102 (2004) 77–97

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.09.009

mailto:{flake@c-lab.de,wolfgang@c-lab.de}
mailto:{flake@c-lab.de,wolfgang@c-lab.de}
mailto:{flake@c-lab.de,wolfgang@c-lab.de}
http://www.elsevier.com/locate/entcs

evaluation of an OCL expression is performed over a given system snapshot,
such that a unique value is yielded as a result.

Additionally, a formal semantics is defined by a set-theoretic mathematical
approach called object model [6, App. A] based on work by M. Richters [10].
An object model is a tuple

M def
=

〈
CLASS, ATT, OP,ASSOC,≺, associates, roles, multiplicities

〉

with a set CLASS of classes, a set ATT of attributes, a set OP of opera-
tions, a set ASSOC of associations, a generalization hierarchy ≺ over classes,
and functions associates, roles, and multiplicities that give for each associ-
ation as ∈ ASSOC its dedicated classes, their role names, and multiplicities,
respectively.

In the remainder of this article, a particular instantiation of an object
model is called a system. A system is in different states as it changes over time,
i.e., the (number of) objects, their attribute values, and other characteristics
change during execution of the system. In the OCL 2.0 proposal, a system state

σ(M)
def
= 〈ΣCLASS, ΣATT , ΣASSOC〉 is formally defined as a triple consisting of

a set ΣCLASS of currently existing objects, a set ΣATT of attribute values for
the objects, and a set ΣASSOC of currently established links that connect the
objects.

However, the formal semantics provided in the OCL 2.0 proposal is not
complete, as it is not possible with the information given by a system state to
reason about currently activated Statechart states or messages that have been
sent. Thus, it is not possible to provide a formal semantics for state-related
operations and operations on OCL messages.

In our work, we focus on the completion of the formal semantics based
on object models. In a previous article, we already integrated Statecharts to
OCL by a notion of state configurations and gave a formal semantics for state-
related operation oclInState(statename:OclState) [5]. This article now
further extends that work and focuses on the formalization of OCL messages.

The remainder of this article is structured as follows. In Section 2, we
briefly explain the concept of OCL messages. Section 3 extends the formal
definition of object models by providing additional components to also cap-
ture OCL messages. Section 4 then provides a corresponding semantics by
introducing interpretation functions for OCL message-related operators and
operations. Section 5 concludes this article.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9778

2 OCL Messages

The concept of OCL messages has been newly introduced in the OCL 2.0
proposal to specify behavioral constraints over messages sent by objects. It
is based on work presented in [7,8]. Basically, an OCL message refers to a
signal sent or a (synchronous or asynchronous) operation called. While signals
sent are asynchronous by nature and the calling object simply continues its
execution, synchronous operation calls make the invoking operation wait for
a return value. In contrast, an asynchronous operation call is like sending a
signal, such that a potential return value is simply discarded. For more details
about messaging actions, see the action semantics of UML 1.5 [9, Section 2.24].
Note here that the UML action semantics also define broadcast signal actions,
while a corresponding kind of OCL message is not yet defined.

The concept of OCL messages enables modelers to specify postconditions
that require that specific signals must have been sent, operations must have
been called, or operations must have been completely executed and returned.

2.1 Syntax

A predefined parameterized type OclMessage(T) is now part of the OCL
type system within the OCL Standard Library, where the template parameter
T denotes an operation or signal. A concrete OclMessage type is therefore
described by (a) the referred operation or signal and (b) all formal parameters
of the referred operation or all attributes of the referred signal, respectively.
The operations defined for type OclMessage(T) are listed in Figure 1. Note
that it is only allowed to obtain and make use of OCL messages in operation
postconditions.

OCL messages are obtained by the message operator ^^ that is attached to
a target object. For example, the OCL expression targetObj^^setValue(17)

results in the sequence of messages setValue(17) that have been sent to
the object determined by targetObj during execution of the considered op-
eration – recall that the considered expression must have been specified in
an operation postcondition. Each element of the resulting sequence is an
instance of type OclMessage(T). For example, the type of OCL expression
targetObj^^setValue(17) is

Sequence(OclMessage(setValue(i:Integer))) .

One can make use of so-called unspecified values to indicate that an ac-
tual parameter does not need to have a specific value. Unspecified values are
denoted by question marks, e.g., targetObj^^setValue(?:Integer). Pa-
rameter types can be omitted in OCL message expressions, but note that

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 79

1: hasReturned() : Boolean
2: -- Returns true iff the template parameter denotes an operation
3: -- and the invoked operation has already returned.
4:
5: result() : <<The return type of the invoked operation>>
6: -- Returns the result of the invoked operation iff the template
7: -- parameter denotes an operation and the invoked operation
8: -- has already returned. Otherwise OclUndefined is returned.
9:
10: isSignalSent() : Boolean
11: -- Returns true iff the template parameter represents a signal.
12:
13: isOperationCall() : Boolean
14: -- Returns true iff the template parameter represents an
15: -- operation call.

Fig. 1. Operations for OCL Messages

they might be necessary in order to refer to the correct operation when the
operation is specified more than once with different parameter types.

To check whether a message has been sent, the hasSent operator ^ can
be used, e.g., the expression targetObj^setValue(17) results in true iff a
message setValue(17) has been sent to targetObj during execution of the
considered operation. More examples can be found in [6, Section 2.7.3].

2.2 Semantics

The semantics of OCL messages is currently only defined in the metamodel-
based semantics [6, Section 5.2]. In this context, the so-called Values package
that represents the semantic domain has a class for local snapshots. A local
snapshot is an element of the semantic domain that stores the values that are
necessary for later reference. Local snapshots are kept as an ordered list that
allows to access the history of the values of an object, e.g., attribute values
at the beginning of an operation execution. In particular, local snapshots
keep track of the sequence of messages an object has sent and the sequence of
messages that the object has received during execution of an operation.

A formal semantics of OCL messages has not yet been defined, i.e., the two
semantics for OCL are currently inconsistent. To overcome this deficiency, we
therefore extend the formal approach of object models in the next section.

2.3 Example

As an application example, we review a postcondition found in the OCL 2.0
proposal [6, Section 2.7.2]:

context Person::giveSalary(amount : Integer)

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9780

post: let message : OclMessage = company^getMoney(amount)
in
message.hasReturned() -- getMoney was sent and returned
and
message.result() = true -- getMoney call returned true

Unfortunately, this postcondition is not quite correctly specified; the ex-
pression company^getMoney(amount) does not return an OCL message, but
rather a boolean value, as the hasSent operator is applied. Instead, the mes-
sage operator ^^ must be used to extract the corresponding message(s) sent:

context Person::giveSalary(amount : Integer)
post: let messages : Sequence(OclMessage) = company^^getMoney(amount)

in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
messages->forAll(msg:OclMessage | msg.result() = true)

Note that we now have to reason about a sequence of OCL messages.
The postcondition above requires that all messages getMoney(amount) sent
to object company have already returned with result value true. If we want
to restrict that the message getMoney(amount) is sent exactly once, we have
to add an additional condition as follows:

context Person::giveSalary(amount : Integer)
post: let messages : Sequence(OclMessage) = company^^getMoney(amount)

in
messages->size() = 1 -- getMoney was sent once
and
messages->first().hasReturned() -- getMoney returned
and
messages->first().result() = true -- the call returned true

3 Extended Object Models

In the OCL 2.0 proposal, the formal definition of object models currently lacks
of components for Statechart states and OCL messages and we therefore define
an extension of object models called extended object models. In particular, the
following concepts have to be newly introduced:

• signal receptions for classes with corresponding well-formedness rules,

• Statecharts and their association with active classes,

• a formal definition of state configurations, and

• the extension of the formal descriptor of a class.

Additionally, the following information has to be added to system states to
be able to evaluate OCL expressions that make use of state-related and OCL
message-related operations:

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 81

• state configurations of all currently existing active objects,

• currently executed operations, and

• for each currently executed operation, all messages sent so far.

Subsection 3.1 explains the syntactical elements of extended object models.
In Subsection 3.2, we then present an extended version of system states. This
extension enables us to give a semantics to message-related operations that
could so far not formally be defined.

3.1 Syntax

In the remainder of this article, let A be an alphabet, N be a set of names
over A+, and T a set of types. In particular, T = TB ∪TE ∪TC ∪TS comprises

• a set of basic standard library types TB, i.e., Integer, Real, Boolean, and
String,

• a set TE of user-defined enumeration types,

• a set TC of user-defined classes, c ∈ CLASS, and

• a set of special types TS
def
= {OclV oid,OclState, OclAny}.

We call the value set ITY PE(t) (or simply I(t) when the context is clear)
represented by a type t the type domain. For convenience, we presume that
OclUndefined (in the following denoted by symbol ⊥) is included in each type

domain, such that we have, e.g., I(OclV oid)
def
= {⊥} and

I(OclAny) =
(⋃

t∈TB∪TE∪TC

I(t)
) ∪ {⊥}.

Furthermore, let c ∈ CLASS be a class and tc ∈ TC be the type of class
c. 2 Each class c is associated with a set ATTc of attributes that describe
characteristics of their objects. An attribute has a name a ∈ N and a type
t ∈ T that specifies the domain of attribute values. A class c is also associated
with a set OPc of operations and a set SIGc of signals (in UML, signals
handled by a class are specified by so-called receptions [9, Section 3.26.6]).

We define Extended Object Models by the tuple

M def
=

〈
CLASS, ATT, OP, paramKind, isQuery, SIG, SC,

ASSOC,≺,≺sig, associates, roles, multiplicities
〉

2 Each class c ∈ CLASS induces an object type tc ∈ T that has the same name as the
class. The difference between c and tc is that we have the special value ⊥ ∈ I(tc) for all
c ∈ CLASS.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9782

with

• a set CLASS = ACTIV E ∪ PASSIV E of active and passive classes,

• a set ATT of attributes, ATT =
⋃

c∈CLASS ATTc,

• a set OP of operations, OP =
⋃

c∈CLASS OPc,

• a function paramKind : CLASS × OP × N → {in, inout, out} that gives
for each operation parameter its parameter kind (cf. [9, Section 2.5.2.31]),

• a function isQuery : CLASS × OP → Boolean that determines whether
an operation is a query operation without side effects or not (cf. [9, Section
2.5.2.7]),

• a set SIG of signals, SIG ⊇ ⋃
c∈CLASS SIGc,

• a set SC of Statecharts, SC =
⋃

c∈ACTIV E SCc,

• a set ASSOC of associations between classes,

• generalization hierarchies ≺ for classes and ≺sig for signals, and

• functions associates, roles, and multiplicities that define a mapping for
each element in ASSOC to the participating classes, their corresponding
role names, and multiplicities, respectively.

Note that we do not further describe the tuple components of extended
object models here. For more details on sets CLASS, ATT , OP , and ASSOC,
readers are referred to the corresponding sources [6,10]. We also omit the
formal syntax definitions for signals and Statecharts and refer to [5] for further
details.

The set of characteristics defined in a class together with its inherited
characteristics is called the full descriptor of a class. More formally, the full
descriptor of a class c ∈ CLASS is a tuple

FDc
def
=

〈
ATT ∗

c , OP ∗
c , SIG∗

c , SCc, navEnds∗(c)
〉

containing the complete sets of attributes, operations, signals, navigable role
names, and – in the case of an active class – the associated Statechart. For
example, the complete set of attributes of a class c is defined by

ATT ∗
c

def
= ATTc ∪

⋃
c′∈parents(c)

ATTc′ ,

where parents(c) denotes the set of (transitive) superclasses of c. The com-
plete sets OP ∗

c , SIG∗
c , and navEnds∗(c) of operations, signals, and navigable

role names are defined correspondingly.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 83

3.2 System State

The domain of a class c ∈ CLASS is the set of objects of this class and all of
its child classes. Objects are referred to by object identifiers that are unique
in the context of the whole system.

The set of object identifiers of a class c ∈ CLASS is defined by an infinite

set oid(c)
def
= {objId1, objId2, . . .}. The domain of a class c ∈ CLASS is

defined as

ICLASS(c)
def
=

⋃
c′∈CLASS with c′≺c ∨ c′=c

oid(c′).

For technical purposes, we also define ICLASS
def
=

⋃
c∈CLASS oid(c).

When a particular instantiation of an extended object model (i.e., a sys-
tem) is executed, the number of instantiated objects, their attribute values,
Statechart configurations, and other characteristics will change over time. As
pointed out earlier, the current notion of a system state with only three com-
ponents is not sufficient to be able to evaluate OCL expressions that make
use of state-related operations and OCL messages. Additionally, we need in-
formation about currently activated states, operations that have been called
and signals sent, currently executed operations, etc. In this context, we adopt
ideas of [11] to formalize currently executed operations and define functions
to capture the required additional information.

Formally, a system state for an extended object model M is a tuple

σ(M)
def
=

〈
ΣCLASS, ΣATT , ΣASSOC , ΣCONF ,

ΣcurrentOp, ΣcurrentOpParam, ΣsentMsg, ΣsentMsgParam

〉
.

In the remainder of this subsection, we explain the components of system
states in more detail, but note that ΣCLASS, ΣATT , and ΣASSOC are already
defined in [6,10].

(1) ΣCLASS
def
=

⋃
c∈CLASS ΣCLASS,c. The finite sets ΣCLASS,c contain all

objects of a class c ∈ CLASS existing in the system state, i.e.,

ΣCLASS,c ⊆ oid(c) ⊆ ICLASS(c).

Furthermore, we define sets ΣACTIV E,c for active and ΣPASSIV E,c for pas-
sive classes correspondingly.

Note that – in contrast to the current formal OCL semantics – we
notationally distinguish between object identifiers objId ∈ oid(c) and
currently existing objects objId ∈ ΣCLASS,c, i.e., we use additional un-
derlines to emphasize the fact that we refer to a currently existing object.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9784

This differentiation is of help for the definition of the semantics of OCL
messages in Section 4.

(2) The current attribute values are kept in set ΣATT . It is the union of
functions σATT,a : ΣCLASS,c → I(t), where a ∈ ATT ∗

c and t is the type
specified for a. Each function σATT,a assigns a value to a certain attribute
of each object of a given class c ∈ CLASS.

(3) ΣASSOC
def
=

⋃
as∈ASSOC ΣASSOC,as comprises the finite sets ΣASSOC,as that

contain links that connect objects. We refer to [6,10] for detailed infor-
mation about links, i.e., elements of IASSOC(as), and formalization of
multiplicity specifications.

(4) The current Statechart configurations are kept by

σCONF
def
=

⋃
c∈ACTIV E

{
σCONF,c : ΣACTIV E,c → ISC(c)

}
.

Each function σCONF,c assigns a complete state configuration comprising
all activated (sub)states to each object of a given class c ∈ ACTIV E.
Set ISC(c) denotes the possible state configurations of the Statechart SCc

associated with active class c. A formal definition of state configurations
can be found in [5].

Additional runtime information has to be taken into account to be able
to evaluate expressions that access OCL messages. This mainly concerns the
currently executed operations and the histories of signals and messages sent.
This relates to the local snapshots defined in the metamodel-based semantics
for OCL 2.0 [6, Section 5.2].

3.2.1 Currently Executed Operations

Let ID be an infinite enumerable set, e.g., ID = N, and let OpStatus
def
=

{executing, returning}. At the starting point of an operation execution, a
unique identifier opId ∈ ID is associated with the current operation exe-
cution. Thus, an operation execution can uniquely be identified by a given
object objId ∈ ΣCLASS,c, an operation signature op ∈ OP ∗

c , and an operation
identifier opId ∈ ID. The set of currently executed operations is defined by

ΣcurrentOp
def
=

⋃
c∈CLASS

{
σcurrentOp,c : ΣCLASS,c × OP ∗

c →
P(ICLASS × OP × ID × ID × OpStatus)

}
.

Each function σcurrentOp,c gives a set of tuples of the form 〈sourceId, sourceOp,
sourceOpId, opId, status〉 that uniquely identify all currently executed oper-
ations for a given object and operation name. Elements sourceId, sourceOp,

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 85

and sourceOpId refer to the operation execution that originally invoked the
considered operation op with identifier opId. These elements are necessary to
have a reference for returning a potential result value after termination of an
operation execution. We require that the associated operation identifier opId
must not change until the execution of that operation terminates.

A flag status ∈ OpStatus indicates the current status of operation execu-
tion. Compared to the messaging actions specified in UML 1.5, we here omit
statuses ready and complete [9, Section 2.19.2.3], as they are currently not
necessary in the context of OCL.

Actual parameter values of executed operations are kept in ΣcurrentOpParam.

ΣcurrentOpParam
def
=

⋃
c∈CLASS

{
σcurrentOpParam,c : ΣCLASS,c × OP ∗

c × ID
→ I?(t1) × . . . × I?(tn) × I?(t)

}
.

For all t ∈ T , we define I?(t)
def
= I(t) ∪ {?}. Symbol ? denotes the unassigned

status of a value. This symbol must not be mixed up with the undefined value
denoted by ⊥ and is also different from the String literal ’?’.

A function σcurrentOpParam,c gives the actual parameter values of the cur-
rently executed operations for a given object, operation signature, and opera-
tion execution identifier. For each c ∈ CLASS, we define σcurrentOpParam,c as
follows, where op = (ω : tc × t1 × . . . × tn → t) ∈ OP ∗

c :

σcurrentOpParam,c(objId, op, opId)
→⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈val1, ..., valn, returnV al〉, if 〈srcId, srcOp, srcOpId, opId, executing〉
∈ σcurrentOp,c(objId, op)

∨ 〈srcId, srcOp, srcOpId, opId, returning〉
∈ σcurrentOp,c(objId, op)

∅, otherwise.

In the definition above, vali ∈ I?(ti) denotes a value defined for type ti ∈
T , 1 ≤ i ≤ n. For a parameter at position i with paramKind(c, op, i) ∈
{in, inout}, the corresponding value vali is predetermined by the operation
call. Parameters with paramKind(c, op, i) = out carry the unassigned value
? until the end of operation execution. The return value returnV al ∈ I?(t)
is also kept unassigned until the operation terminates. We require that all
parameter values do not change until operation termination.

When the status of operation execution changes from executing to return-
ing, the parameters of kind inout and out as well as the return value returnV al

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9786

are updated and get a value = ?. 3 If an operation is not returning a result, the
result type t of operation op is OclV oid. In that case, we set returnV al = ⊥
when the operation terminates. Note that these updates only have an effect
for synchronous operation calls, as result values of asynchronous operation
calls are discarded according to the UML specification.

3.2.2 Messages Sent

To be able to evaluate OCL expressions that use the message operator ^^, we
have to store the history of messages sent for each executed operation. For
each object objId ∈ ΣCLASS,c and each of its currently executed operations op
with identifier opId, we define a function σsentMsg,c(objId, op, opId) that gives
the set of messages sent together with their corresponding target objects.

When a message is sent from an execution of operation op with identifier
opId to a target object with identifier targetId, that target object must ac-
tually exist (otherwise we could not refer to it), but it may already have been
destroyed when the execution of operation op terminates. This is the reason
why we cannot use the set ΣCLASS as the base set for target objects, as that
set only keeps currently existing objects. Instead, the signature of function
σsentMsg,c has to use the general set ICLASS of target object identifiers.

We define the set of messages sent by

ΣsentMsg
def
=

⋃
c∈CLASS

{
σsentMsg,c : ΣCLASS,c × OP ∗

c × ID →
P(ICLASS × (SIG ∪ OP) × ID)

}
.

The set ID in the value set P(ICLASS × (SIG ∪ OP) × ID) is used to
refer to the correct message identifier when returning a value for synchronous
operation calls. It would be sufficient to have an identifier that is unique in
the context of the source object, e.g., named IDsourceId, but we here simply
reuse set ID for the sake of concision.

An element 〈targetId,msg, callId〉 ∈ σsentMsg,c(objId, op, opId) denotes
that a message with signature msg and call identifier callId has been sent
from the object objId to an object with identifier targetId as part of the
operation execution with signature op and identifier opId.

We only have to keep information about messages sent during the corre-
sponding invoking operation execution. Before and after operation execution,

3 Note that rules for such updates are part of the dynamic semantics. We here have to
assume that updates are correctly performed and have the desired effect.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 87

we simply set σsentMsg,c(objId, op, opId) = ∅. More formally, we have

σsentMsg,c(objId, op, opId)
→⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ 〈targetId, msg, callId〉 }
, if 〈srcId, srcOp, srcOpId, opId, executing〉

∈ σcurrentOp,c(objId, op)

∨ 〈srcId, srcOp, srcOpId, opId, returning〉
∈ σcurrentOp,c(objId, op)

∅, otherwise.

Additionally, we have to store the actual parameter values of each message

sent. We therefore define ΣsentMsgParam
def
=

⋃
c∈CLASS

{
σsentMsgParam,c :

ΣCLASS,c × OP ∗
c × ID × ICLASS × (SIG ∪ OP) × ID

→ I?(t1) × . . . × I?(tn) × I?(t)
}

.

The number n and the types ti, 1 ≤ i ≤ n, are determined by the formal
parameters of the corresponding message signature, i.e., either a signal sig =
(ω : tc × t1 × . . . × tn) ∈ SIG∗

c or an operation op = (ω : tc × t1 × . . . × tn →
t) ∈ OP ∗

c .

Each function σsentMsgParam,c is defined by

σsentMsgParam,c(objId, op, opId, targetId, msg, callId)
→⎧⎪⎪⎨
⎪⎪⎩

〈val1, . . . , valn, returnV al〉, if 〈targetId,msg, callId〉 ∈
σsentMsg,c(objId, op, opId)

∅, otherwise.

The values vali ∈ I?(ti) document the parameter values of the message sent.
We set all parameters of kind out and the return variable returnV al to ? by
default, i.e., these parameter values are left unassigned until they are calcu-
lated. Basically, they are only relevant for synchronous operation calls, where
values = ? are assigned after termination of the called operation. Again, note
that potential results are discarded anyway for asynchronous operation calls.
For signals sent, the domain of return type t is set to I?(OclV oid) by default
and the return value simply remains unassigned.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9788

Help Sets and Functions.

In the remainder of this article, we need some help sets and functions.
These are basically subsets of ΣsentMsg and ΣsentMsgParam and sub-functions
of σsentMsg,c and σsentMsgParam,c, respectively. As their formal definitions are
straight-forward, we omit them here for the sake of brevity.

Signals sent during execution of an operation are kept in set ΣsentSig.
Within this set, functions σsentSig,c return the history of signals sent. Actual
parameter values are kept in set ΣsentSigParam with functions σsentSigParam,c.

Operations called are kept in set ΣcalledOp. We make use of functions
σcalledOp,c that return the history of operations called. Set ΣcalledOpParam keeps
the actual parameter values of called operations, and functions σcalledOpParam,c

are used to access the actual parameter values of operations called.

To further distinguish synchronous and asynchronous operation calls, sets
ΣcalledSynchOp and ΣcalledAsynchOp are employed. Within each set, we have func-
tions σcalledSynchOp,c and σcalledAsynchOp,c that return the history of called syn-
chronous and asynchronous operations for a given operation execution. Actual
parameter values are kept in sets ΣcalledSynchOpParam and ΣcalledAsynchOpParam

and are accessed by functions σcalledSynchOpParam,c and σcalledAsynchOpParam,c.

We now have all necessary components to be able to evaluate general OCL
expressions, i.e., also those that access OCL messages.

4 Semantics of OCL Messages

First, we formally define the domain of type OclMessage by

I(OclMessage)
def
=

⋃
c∈CLASS,op∈OP ∗

c
I(OclMessage(op))

∪ ⋃
c∈CLASS,sig∈SIG∗

c
I(OclMessage(sig)),

where the set I(OclMessage(op)) for a given operation op = (ω : tc × t1 ×
. . . × tn → t) ∈ OP ∗

c is defined as follows:

I(OclMessage(op)) = ID × ICLASS × I(t1) × . . . × I(tn).

Set ID refers to the unique call identifiers (callId) of sent messages. Set
ICLASS is used to keep the object identifier of the target object to which the
message is sent.

The formal definition of set I(OclMessage(sig)) for a signal sig = (ω :
tc × t1 × . . . × tn) ∈ SIG∗

c is very similar, i.e.,

I(OclMessage(sig)) = ID × ICLASS × I(t1) × . . . × I(tn).

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 89

We are now able to give a syntax for postcondition expressions w.r.t. OCL
message operators and a corresponding semantics in the next subsection. A
semantics of operations on OCL messages is then given in Subsection 4.2.

4.1 OCL Message Operators

We here focus on the formalization of the more general message operator ^^, as
the hasSent operator ^ can easily be derived as follows. Given a target object
expression targetExpr and an OCL message declaration msg(msgArgs), we
can substitute the OCL expression targetExpr^msg(msgArgs) by

targetExpr^^msg(msgArgs)->size() > 0 .

Note that this identity is not quite correctly treated in the OCL 2.0 pro-
posal, as the definition of OclMessageExpCS says that the number of messages
sent to the target object is exactly = 1 (instead of > 0) [6, Section 4.3].

Syntax. The basic syntactical elements of OCL expressions are defined by a
so-called data signature ΣM = (TM,≤, ΩM) [6, Section A.2.8], where

• TM is the set of type expressions TExpr(t) for types t ∈ TB ∪ TE ∪ TC ∪ TS

[6, Section A.2.5],

• ≤ is a type hierarchy over TM [6, Section A.2.7], and

• ΩM is the set of operation signatures, ΩM = ΩTM ∪ ΩB ∪ ΩE ∪ ΩC ∪ ΩS.

The formal syntax of general valid OCL expressions is then inductively
defined, such that more complex expressions are recursively built from simpler
ones. The syntax of OCL expressions is given by the set

Expr
def
=

⋃
t∈TM

Exprt

and an additional function to capture free variables. The set Post-Expr of
valid OCL postcondition expressions is defined in the same way as Expr, but
with additional rules for allowing operation oclIsNew(), operator @pre, and
a predefined result variable named result [6, Section A.3.2.2].

Additionally, the following rule viii. introduces a new kind of postcondition
expression w.r.t. OCL messages. Note here that we also have to consider
signals for message expressions. We therefore make use of set ΨM to refer to
the set of signals defined in an instantiation of an object model M.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9790

viii. if (a) etarget ∈ Post-Exprt, and
(b) either (ω : tc × t1 × . . . × tn → t) ∈ ΩM

or (ω : tc × t1 × . . . × tn) ∈ ΨM, and
(c) ei ∈ Post-Exprti for all i ∈ {1, . . . , n},

then etarget^^ω(e1, . . . , en) ∈ Post-Exprt

as well as etarget^ω(e1, . . . , en) ∈ Post-Exprt.
This maps into OclMessageExp in the abstract syntax of
the OCL 2.0 proposal.

Semantics. Generally, the semantics of expressions is defined in the context of
a given environment τ = 〈σ(M), β〉 with a system state σ(M) and a variable
assignment β : V art → I(t). A variable assignment β maps variable names to
values [6, Section A.3.1.1]. In the following, let Env be the set of environments
τ = 〈σ(M), β〉.

While the semantics of an OCL expression e is usually defined by a function
I[[e]] : Env → I(t), we have to consider two environments in the case of oper-
ation postconditions, i.e., the environments τpre (at the beginning of operation
execution) and τpost (at time of termination). Thus, the interpretation function
for expressions e specified in postconditions becomes I[[e]] : Env×Env → I(t).

We now define the semantics of OCL message operators over environments
(τpre, τpost) in the context of a given object objId ∈ ΣCLASS,c and an executed
operation with signature op ∈ OP ∗

c and identifier opId (implicitly, we assume
that the operation execution has just terminated).

First, we define a help set MSGetargetˆˆω(e1,...,en) that keeps all relevant
messages sent.

MSGetargetˆˆω(e1,...,en)
def
={

〈callId, eV altarget, v1, . . . , vn〉 | ∃c′ ∈ CLASS :

eV altarget = I[[etarget]](τpre, τpost) ∈ ICLASS(c′) \ {⊥}
∧ ∀i ∈ {1, . . . , n} : eV ali = I[[ei]](τpre, τpost) ∈ I?(ti) \ {⊥}
∧ ∀i ∈ {1, . . . , n} : (eV ali = ? ⇒ eV ali = vi)

∧ (∃msg = (ω : tc′ × t1 × . . . × tn → t) ∈ OP ∗
c′

∨ ∃msg = (ω : tc′ × t1 × . . . × tn) ∈ SIG∗
c′

)
, such that

〈eV altarget, msg, callId〉 ∈ σsentMsg,c(objId, op, opId)

∧ ∃anyV al ∈ I?(OclAny) : 〈v1, . . . , vn, anyV al〉 ∈
σsentMsgParam,c(objId, op, opId, eV altarget, msg, callId)

}
.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 91

Informally, the elements 〈callId, eV altarget, v1, . . . , vn〉 of this set are deter-
mined as follows. The target object identifier eV altarget is evaluated from etarget

and must be well-defined in the sense that it is different from ⊥. Similarly, all
evaluations eV ali of the parameter expressions ei must be well-defined. For
consistency reasons, those eV ali that evaluate to an actual value (i.e., a value
= ?) must be equal to vi.

Furthermore, there must be a message signature msg, such that the triple
〈eV altarget, msg, callId〉 represents a message sent from object objId within
the regarded operation execution. And finally, the values vi must be equal to
the actual parameter values that are stored (and potentially updated) for the
investigated messages sent. Variable anyV al is only introduced for technical
reasons to allow for an arbitrary value of the return value.

In the following, let m be the number of elements in MSGetargetˆˆω(e1,...,en).
For each i ∈ {1, . . . , m}, let xi = 〈callIdi, eV altarget, v1,i, . . . , vn,i〉 be a dis-
tinct element of set MSGetargetˆˆω(e1,...,en) with callIdj < callIdj+1 for all
j ∈ {1, . . . , m − 1}.

Because of the unique call identifiers of messages sent, the latter condition
induces an order on the elements xi ∈ MSGetargetˆˆω(e1,...,en), such that we can
define the corresponding sequence of messages sent as follows, using double
angle brackets to denote a sequence of elements.

I[[etarget^^ω(e1, . . . , en)]](τpre, τpost)
def
= 〈〈x1, x2, . . . , xm〉〉

If at least one I[[ei]](τpre, τpost), 1 ≤ i ≤ n, evaluates to ⊥, the whole
expression evaluates to the empty sequence, as we have explicitly required
I[[ei]](τpre, τpost) ∈ I?(t) \ {⊥} in the definition of MSGetargetˆˆω(e1,...,en). Alter-
natively, as the OCL 2.0 proposal does not consider this issue, we can define
a semantics that evaluates to ⊥ in this case.

Furthermore, it is not clearly defined in the OCL 2.0 proposal whether
the target object that is specified as part of the message expression must
still exist at the time of checking the postcondition. In order not to loose
generality, we think it should be allowed to also refer to objects that might
have been destroyed while the operation was still executing. Consequently,
we cannot assume that I[[etarget]](τpre, τpost) evaluates to an object eV altarget

that still exists at the time of postcondition evaluation. Instead, we interpret
I[[etarget]](τpre, τpost) as an object identifier ∈ ICLASS(c′) only. To further indi-
cate that we are only referring to an object identifier here, we do not underline
eV altarget.

The meaning of eV altarget = ⊥ is now that the object identifier eV altarget is
not defined w.r.t. the complete execution of the operation under consideration.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9792

In this case, I[[etarget^^ω(e1, . . . , en)]](τpre, τpost) results in the empty sequence.

4.2 OCL Message Operations

The signatures of the four predefined OCL message operations are

IhasReturned:OclMessage→Boolean : I(OclMessage) → I(Boolean),

Iresult:OclMessage→OclAny : I(OclMessage) → I(OclAny),

IisOperationCall:OclMessage→Boolean : I(OclMessage) → I(Boolean), and

IisSignalSent:OclMessage→Boolean : I(OclMessage) → I(Boolean).

As existing OCL syntax does not need to be adjusted for message opera-
tions, we here only have to define a semantics for message operations. Gen-
erally, the semantics of an operation (ω : tc × t1 × . . . × tn → t) ∈ OP ∗

c is
recursively defined by

I[[ω(e1, . . . , en)]](τpre, τpost)
def
=

I(ω)(τpost)
(

I[[e1]](τpre, τpost), . . . , I[[en]](τpre, τpost)
)

.

We define the semantics of OCL message operations over environments
(τpre, τpost) in the context of a given object objId ∈ ΣCLASS,c and an executed
operation with signature op = (ω : tc × t1 × . . .× tn → t) ∈ OP ∗

c and identifier
opId (implicitly, we assume that the operation execution has just terminated).

4.2.1 Operations hasReturned() and result()

Note that operations hasReturned() and result() only make sense over
synchronous operation calls, as results of asynchronous operation calls are
discarded according to UML 1.5. We can therefore directly apply function
σcalledSynchOp,c to check whether an OCL message 〈callId, targetId, v1, . . . , vn〉 ∈

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 93

I(OclMessage) has returned, i.e.,

I(hasReturned)(τpost)()
(〈callId, targetId, v1, . . . , vn〉

) def
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if ∃msg ∈ OP :

〈targetId, msg, callId〉 ∈ σcalledSynchOp,c(objId, op, opId)

∧ σcalledSynchOpParam,c(objId, op, opId, targetId, msg, callId)

= 〈val1, . . . , valn, returnV al〉, such that

returnV al = ?

∧ ∀i ∈ {1, . . . , n} : (vi = ? ⇒ vali = vi)

false, otherwise.

Condition returnV al = ? guarantees that the operation has returned, as
that parameter value is updated to an element of I(t) after the corresponding
operation termination.

The semantics of operation result() is defined in a very similar way,
as function σcalledSynchOp,c can also be applied to determine the result of a
synchronous message call.

I[[result()]](τpre, τpost)
(〈callId, targetId, v1, . . . , vn〉

) def
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

returnV al, if ∃msg ∈ OP :

〈targetId, msg, callId〉 ∈ σcalledSynchOp,c(objId, op, opId)

∧ σcalledSynchOpParam,c(objId, op, opId, targetId, msg, callId)

= 〈val1, . . . , valn, returnV al〉, such that

returnV al = ?

∧ ∀i ∈ {1, . . . , n} : (vi = ? ⇒ vali = vi)

⊥, otherwise.

4.2.2 Operations isSignalSent() and isOperationCall()

The semantics of operations isSignalSent() and isOperationCall() are
easily obtained based on the formal definition of operation hasReturned().

The main difference is that functions σcalledSynchOp,c and σcalledSynchOpParam,c

are replaced correspondingly, as we now have to consider synchronous and
asynchronous operation calls for isOperationCall() and signals sent for op-
eration isSignalSent().

Furthermore, condition returnV al = ? is not needed, as we do not inves-
tigate whether a message has returned yet. For the sake of brevity, we here

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9794

only provide the formal semantics of operation isOperationCall():

I[[isOperationCall()]](τpre, τpost)
(〈callId, targetId, v1, . . . , vn〉

) def
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if ∃msg ∈ OP :

〈targetId,msg, callId〉 ∈ σcalledOp,c(objId, op, opId)

∧ σcalledOpParam,c(objId, op, opId, targetId, msg, callId)

= 〈val1, . . . , valn, returnV al〉, such that

∀i ∈ {1, . . . , n} : (vi = ? ⇒ vali = vi)

false, otherwise.

5 Conclusion and Outlook

Based upon our previous work that already captures Statecharts and state-
related operations, we presented further extensions to object models and sys-
tem states, such that a formal semantics for OCL messages and corresponding
operators and operations could be given. This article is therefore to be seen
as a direct contribution to the finalization process of OCL 2.0.

One important aspect in the formalization is that we identified the situa-
tion that a target object (i.e., an object to which a message was sent) might
no longer exist at time of postcondition evaluation. In turn, when an asyn-
chronous operation call is dispatched or a signal sent is consumed in a target
object, the source object (i.e., the object to which the invoking operation be-
longs) might already be destroyed. It is therefore necessary to refer to object
identifiers instead of “real” objects in the semantic definition of OCL mes-
sages.

We further had to extend the domain I(t) of types t ∈ T by an unassigned
value to allow for symbol ? in message expressions, i.e., I?(t) = I(t) ∪ {?}.
This maps to the UnspecifiedValueExp in the OCL metamodel. But note
that we could also make use of that symbol for the unassigned status of return
values prior to assigning an actual result value.

For OCL messages, we used explicit call identifiers to distinguish messages
sent from source objects to target objects. When returning from a synchronous
operation call, this identifier can be used to update the corresponding param-
eter values. This is an abstraction from the UML semantics that assumes that
a specific reply object is generated and sent [9, Section 2.24].

The formal semantics of OCL 2.0 is now almost complete. What is still
missing are formal definitions for def-clauses and operations on OrderedSet.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 95

However, this is quite easy to achieve; operations defined for ordered sets are
basically the same as for sequences, and def-clauses can directly be mapped to
so-called OclHelper variables and operations. OclHelper variables and oper-
ations, in turn, are stereotyped attributes and operations of classifiers. Such
variables and operations can be used in OCL expressions just like common
attributes and operations. Thus, it only has to be ensured that no naming
conflicts occur, while additional semantic issues do not occur.

One important remaining task is to complete the metamodel-based OCL
semantics. First of all, Statechart states are still not considered at all in
the metamodel-based OCL semantics. But also consistency among the two
semantics should be reviewed.

Only few reports are currently available about the applicability of OCL
in practice, e.g., [12]. But different publications of recent years indicate that
there is a need for temporal extensions of OCL, e.g., [1,2,3,4,11]. We think
that a dynamic semantics based upon system states as presented in this article
is a suitable basis for defining a formal semantics of temporal OCL extensions.
To demonstrate the applicability of this approach, a state-oriented temporal
OCL extension has already been developed [5].

Acknowledgement

This work receives funding by the Deutsche Forschungsgemeinschaft in the
course of the project GRASP within the DFG Priority Programme 1064 “Inte-
gration von Techniken der Softwarespezifikation für ingenieurwissenschaftliche
Anwendungen” and partial funding by the DFG Special Research Initiative
614 “Selbstoptimierende Systeme des Maschinenbaus”.

References

[1] J. Bradfield, J. Küster Filipe, and P. Stevens. Enriching OCL Using Observational Mu-
Calculus. In R.-D. Kutsche and H. Weber, editors, 5th International Conference on
Fundamental Approaches to Software Engineering (FASE 2002), April 2002, Grenoble, France,
volume 2306 of LNCS, pages 203–217. Springer, 2002.

[2] M. Cengarle and A. Knapp. Towards OCL/RT. In L.-H. Eriksson and P. Lindsay, editors,
Formal Methods – Getting IT Right, volume 2391 of LNCS, pages 389–408. Springer, July 2002.

[3] S. Conrad and K. Turowski. Temporal OCL: Meeting Specifications Demands for Business
Components. In Unified Modeling Language: Systems Analysis, Design, and Development
Issues. IDEA Group Publishing, 2001.

[4] D. Distefano, J.-P. Katoen, and A. Rensink. On a Temporal Logic for Object-Based Systems.
In S. Smith and C. Talcott, editors, Proc. of FMOODS’2000 – Formal Methods for Open
Object-Based Distributed Systems IV, Stanford, CA, USA, September 2000. Kluwer Academic
Publishers.

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–9796

[5] S. Flake and W. Müller. Formal Semantics of Static and Temporal State-Oriented OCL
Constraints. Software and System Modeling (SoSyM), Springer, 2(3), 2003. To appear. Online
version available at http://link.springer.de under Digital Object Identifier 10.1007/s12270-003-
0026-x.

[6] A. Ivner, J. Högström, S. Johnston, D. Knox, and P. Rivett. Response to the UML2.0 OCL RfP,
Version 1.6 (Submitters: Boldsoft, Rational, IONA, Adaptive Ltd., et al.). OMG Document
ad/03-01-07, January 2003.

[7] A. Kleppe and J. Warmer. Extending OCL to Include Actions. In A. Evans, S. Kent, and
B. Selic, editors, UML 2000 - The Unified Modeling Language. Advancing the Standard. York,
UK, volume 1939 of LNCS, pages 440–450. Springer, 2000.

[8] A. Kleppe and J. Warmer. The Semantics of the OCL Action Clause. In T. Clark and
J. Warmer, editors, Object Modeling with the OCL: The Rationale behind the Object Constraint
Language, pages 213–227. Springer, 2002.

[9] OMG, Object Management Group. Unified Modeling Language 1.5 Specification. OMG
Document formal/03-03-01, March 2003.

[10] M. Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD
thesis, Universität Bremen, Bremen, Germany, 2001.

[11] P. Ziemann and M. Gogolla. An Extension of OCL with Temporal Logic. In J. Jürjens, M. V.
Cengarle, E. B. Fernandez, B. Rumpe, and R. Sandner, editors, Critical Systems Development
with UML, pages 53–62. Technische Universität München, Institut für Informatik, 2002.

[12] S. Zschaler. Evaluation der Praxistauglichkeit von OCL-Spezifikationen. Master’s thesis,
Technical University of Dresden, Faculty of Computer Science, August 2002. (in German).

S. Flake, W. Mueller / Electronic Notes in Theoretical Computer Science 102 (2004) 77–97 97

	Introduction
	OCL Messages
	Syntax
	Semantics
	Example

	Extended Object Models
	Syntax
	System State

	Semantics of OCL Messages
	OCL Message Operators
	OCL Message Operations

	Conclusion and Outlook
	Acknowledgement
	References

