
Modeling and Verification of Manufacturing Systems:
A Domain-Specific Formalization of UML

Stephan Flake
C-LAB, Paderborn University, Fuerstenallee 11, 33102 Paderborn, Germany

email: flake@c-lab.de

ABSTRACT
This article presents a formalization of parts of the Unified
Modeling Language (UML) w.r.t. the domain of modeling
time-dependant manufacturing systems. The formalization
approach is based upon a set of identified general formal-
ization steps. We investigate the applicability of UML
class diagrams, Statecharts, and UML’s textual Object Con-
straint Language (OCL) to model manufacturing systems
and specify required time-dependent system properties. We
then define a formal semantics for the utilized UML mod-
eling elements and the extensions we have to make due to
the considered domain. Corresponding mappings to formal
languages allow to verify whether a domain-specific UML
model satisfies required temporal properties.

KEY WORDS
Object Constraint Language (OCL) – UML Statecharts –
Formal semantics

1 Introduction

The Unified Modeling Language (UML) provides several
kinds of graphical diagrams for modeling different views
on a system [9]. Furthermore, the textual Object Constraint
Language (OCL) is part of UML. OCL is used to formulate
restrictions over values of a given model in form of invari-
ants for objects and pre- and postconditions for operations.

In past years, formal verification methods like model
checking have been successfully applied in some applica-
tion domains, e.g., electronic systems design and protocol
verification. Model checking takes a model specified by
means of state transition systems and a property specifica-
tion expressed by temporal logic formulae as an input. It
is then possible to automatically verify whether the model
satisfies the required properties. Ongoing research investi-
gates application of this verification technique to models of
(large) software systems.

For time-dependent systems, additional timing as-
pects complicate the task of developing a correct model,
and corresponding time-related requirements have to be
modeled (w.r.t. UML) and verified (w.r.t. model checking).
Both, UML and model checking have already been applied
in the domain of time-dependent systems, e.g., UML-RT
[15] or real-time model checking with UPPAAL1 .

1http://www.uppaal.com

Our approach aims to apply model checking tech-
niques to UML designs in the domain of time-dependent
manufacturing systems. In contrast to other approaches
that apply model checking to UML models, we build upon
existing OCL concepts and syntax for specifying require-
ments that regard the dynamic behavior of UML models.

As a prerequisite, some effort is required to tailor
UML’s behavior-related diagrams to the domain of time-
dependent systems. In our work, we focus on Statechart
diagrams that are used to model the reactive behavior of
objects. We investigate which of UML’s Statechart con-
cepts can be omitted, which concepts need to be newly in-
troduced for our domain, and how a suitable time-based
formal semantics can be defined. The whole formalization
is embedded into a more general formalization process that
is also described in this article.

The remainder of this article is structured as follows.
Related work is discussed in Section 2. In Section 3, we
present the formalization steps of our approach. In Section
4, the formalization approach for the domain of modeling
manufacturing systems is described. Finally, Section 5 con-
cludes the article with an outline of our experiences.

2 Related Work

Related work is found in the areas of (a) formalizing UML
Statecharts, (b) behavioral real-time modeling with UML,
and (c) formal semantics of standard OCL and temporal
extensions. Due to space limitations we can here only list
some of the relevant works in each case.

Various approaches have been published to define the
semantics of UML Statecharts (see [1] for an overview).
As the UML standard leaves open some semantic varia-
tion points (e.g., the dispatching mechanism to select an
event from the implicit event queue), each formalization
has to make choices to provide a unique definition. All ap-
proaches that we know of define a formal semantics over
a restricted set of Statechart modeling elements. For in-
stance, so-called elapsed-time events that trigger a transi-
tion after a particular passed time have not been regarded
in any formalization yet.

We are less interested in modeling real-time system
architectures and therefore do not further discuss well-
known approaches like RT-UML or the UML-RT Profile
which are concentrating on structural modeling aspects.



Instead, we focus on modeling timed behavior of ob-
jects. In this context, the UML standard notation currently
provides two ways to specify timing properties, (a) for mes-
sages in Sequence Diagrams by timing expressions and (b)
for state transitions in Statecharts by elapsed-time events
[9, Section 3.77.2]. More recently, the UML Profile for
Schedulability, Performance, and Time has been adopted
by the OMG. Though it provides a common framework of
time-related concepts, it also has just limited means con-
cerning the specification of temporal behavior. Indepen-
dently, a number of extensions of OCL have been pro-
posed to enable modelers to specify temporal properties
over occurrences of events and their timing properties, such
as deadlines, delay times, and response times, e.g., [2].
Though, state-related temporal properties cannot be de-
fined so far.

There is not yet a formal semantics of OCL provided
in UML 1.5, but the latest OCL 2.0 submission [8] has
adopted a formal semantics developed by M. Richters [10].
In that document, a metamodel for OCL is defined and a se-
mantics is given by a formal description of class diagrams
(so-called object models) and a meaning function that maps
OCL expressions to a semantic domain, i.e., objects and
basic data values. Nevertheless, there are still deficien-
cies w.r.t. integration of Statecharts. Although there is a
standard operation called oclInState(), there is no cor-
responding semantics provided, as object models lack of a
Statechart description with states and state configurations.

Formalizations of UML to perform model checking
is also addressed by other approaches (e.g., [3]), but these
either do not consider time or have only limited means for
expressing temporal properties due to the chosen verifica-
tion tool. We take an approach that enables property spec-
ification by means of an extended version of OCL that is
consistent with existing OCL concepts and syntax [6].

3 Formalization Steps

Our approach follows an iterative formalization process
that takes the particular circumstances concerning UML
into account. On the one hand side, UML has so many con-
cepts that a complete formalization is not feasible, and on
the other hand side, domain-specific modeling usually re-
quires additional concepts that are not covered in the UML
standard. We therefore propose the following stepwise for-
malization approach. It can also be regarded as a more
general guideline to formalizing parts of UML towards a
particular domain.

Step 1: Select a subset of UML diagrams. The
large number of publications concerning the formalization
of (parts of) UML demonstrate that it is already a com-
plex task to give a precise semantics to even a single kind
of UML diagram. But eventually, formalization efforts
will more and more focus on the relationship and inter-
dependencies of different UML diagrams. We therefore re-
gard the selection of a subset of UML diagrams as a first
step of the formalization process. This set of diagrams

highly depends on the regarded application domain, e.g.,
modeling of real-time systems, business process modeling,
or consistency analysis among UML diagrams.

Our application domain is modeling of manufacturing
systems, and we choose class diagrams for structural and
Statecharts for behavioral modeling. For additional prop-
erty specification, we make use of OCL.

Step 2: Apply syntactical restrictions. As UML
provides a variety of modeling concepts within the dia-
grams chosen in Step 1, further syntactical restrictions have
to be applied prior to formalization. By doing this, one
might already have a particular semantic target domain in
mind, though we do not require this yet in this step (cf.
Step 5). The outcome of this step is a (preliminary) source
domain referred to as UML|dom. Note that at this stage
UML|dom has only an informal semantics.

Step 3: Clarify open semantic issues. UML often
relies on under-specification and non-determinism. But in
many cases, semantic issues are (unintentionally) not con-
sidered in the official UML specification. Regardless of
intentional or unwanted semantic variation points, all un-
clear issues in UML|dom have to be identified. In each
case, a decision has to be made that clearly describes how
to resolve that semantic issue in a unique manner.

Note that this does not imply that non-determinism is
completely eliminated. In contrast, non-determinism can
even be explicitly allowed. For example, in some domains
it might be appropriate for analysis purposes that the event
dispatching mechanism in Statecharts is represented by a
random function, i.e., a non-deterministic choice out of a
set of events.

Precision at this stage is still established by means of
(informal) natural language. In the ideal case, the resulting
documentation enables modelers to understand the seman-
tics of UML|dom without further knowledge of the actual
formalization, i.e., the semantic target domain as well as
the mapping of UML|dom to that domain. However, this
aspect is seen controversially in the formal methods com-
munity and cannot generally be assumed. Nevertheless,
initiatives like the precise UML group2 aim to provide a se-
mantics of UML that eventually reduces the efforts needed
in this formalization step.

Step 4: Introduce domain-specific concepts. Due to
some concepts that are special for the regarded domain, the
chosen UML|dom might not provide sufficient concepts
yet. These have to be added, either by UML “lightweight”
extension mechanisms, (i.e., UML Profiles with stereo-
types, tagged values, and constraints), or by “heavyweight”
extensions that introduce completely new language con-
cepts on the UML metalevel (i.e., the language definition
or abstract syntax). However, a formal semantics of such
new concepts must still be defined in any case.

For instance, for the purpose of model execution anal-
ysis, we might want to be able to specify potential tim-
ing intervals for operation executions in manufacturing sys-

2http://www.puml.org



tems. Though UML allows to define corresponding syntac-
tical extensions, giving an actual semantics to these is out
of the scope of UML. Consequently, when UML|dom is to
be syntactically extended, Step 3 has to be revisited, as new
semantic issues have occurred that need clarification.

Step 5: Mapping to a semantic domain. This step is
about the actual formalization, i.e., (a) choosing an appro-
priate semantic domain Target and (b) defining a mapping
(or: meaning function) Mdom from UML|dom to Target

that complies to the restrictions informally gathered in Step
3. The semantic domain is preferably and most usually an
already existing formal language for which analysis tools
are available. Note that there is probably no existing formal
language that is directly suitable as a semantic domain.3 In
this case, Step 2 has to be revisited to fix that problem.

Note. The proposed steps have to be interpreted as being it-
erative and (partly) branching. At certain stages, one might
identify the need to add or leave out concepts of UML|dom

and then has to review the syntactical and semantical ef-
fects on UML|dom to adjust the mapping to the semantic
domain. Moreover, when the formalization can naturally
be divided, the steps might partly be carried out in parallel
for distinct parts, especially in early stages. However, these
parallel parts are then to be formally integrated, which is a
topic out of scope of this article.

4 Domain-Specific Formalization

Figure 1 gives an overview of our formalization approach
in the domain of modeling manufacturing systems. We de-
composed the whole approach into four different activity
parts (indicated by gray boxes). Figure 1 also illustrates
the dependencies among the different activities.

Formal Verification of Real-Time Properties over MFERT

Class Diagrams

Object Models

Timed Variant of
UML Statecharts

Informal
Language

Application

Formalization

UML

Statecharts OCL

MFERT
State-Based

Real-Time OCL Properties

Step 1:

Select UML subset

Step 2:

Apply syntactical restrictions

Step 3:

Clarify

open semantic issues

Step 4:

Introduce

domain-specific concepts

Step 5:

Mapping to semantic domain

Figure 1. Overview of the Formalization Approach

First, we integrate the notational concepts of UML
Statecharts into the existing formal description of class di-
agrams by M. Richters [10]. Basically, the resulting so-
called extended object models base upon a set-theoretic
definition of the UML metamodel parts for class diagrams

3Other formalization approaches therefore suggest to first select a se-
mantic domain and then formalize UML correspondingly, e.g. [4].

and Statecharts. In parallel, we develop a timed variant of
UML Statecharts. Note that this activity is positioned in
Figure 1 as a more domain-specific task, because timing is-
sues are a non-standard concept of UML Statecharts, while
extended object models basically concern standard UML.
Integrating these two formal models and applying further
restrictions leads to our domain-specific modeling notation
called MFERT.

MFERT is an acronym for “Modell der FERTigung”
(German for “Model of Manufacturing”) and provides
means for specification of planning and control assign-
ments in manufacturing processes [13]. For MFERT, we
define a mapping MMFERT to the semantic domain of la-
beled transition systems called I/O-Interval Structures [12].

Additionally, we define an extension of OCL (called
RT-OCL) that allows for specification of temporal state-
based properties. For these OCL expressions, we pro-
vide another mapping MRT -OCL to formulae in a temporal
logic called Clocked Computation Tree Logic (CCTL) [11].
This means that we actually have two meaning functions,
i.e., Mdom consists of MMFERT and MRT -OCL (Fig. 2).

Variants of
Class Diagrams and Statecharts

Semantic Domain
Source Domain UML|dom

(Informal) Semantics:

of I/O-Interval Structures
and

over CCTL formulae

Execution runs

satisfaction relation

Natural Language Descriptions

(Formal) Semantics:

Clocked Computation Tree Logic (CCTL)

MMFERT

MRT-OCLTemporal OCL Variant

I/O-Interval Structures

Figure 2. Semantic Domain Mapping

A semantics for the combination of MFERT notation
and temporal state-based OCL expressions is then automat-
ically available, as the two formal target languages already
have a well-defined formal relationship, i.e., CCTL formu-
lae have a well-defined semantics over execution runs of
I/O-Interval Structures. In this context, the model checking
tool RAVEN [11] is able to verify whether a model (a set of
I/O-Interval Structures) satisfies a given property (a CCTL
formula).

In the following subsections, we discuss the individ-
ual formalizations in some more detail, although we cannot
give formal definitions due to a lack of space.

4.1 Extended Object Models

The first formalization part considers UML class diagrams
and Statecharts, mainly on the syntactical level. For an ap-
propriate formalization, we have to break the circular UML
language definition approach and provide a corresponding
mathematical definition. The syntax of class diagrams has
already been defined in an appropriate set-theoretical way
in [10]. We add some more object-related concepts to that
definition, such as signals that instances of a class may re-
ceive. But most importantly, we integrate a formal syntax



description of Statecharts. Almost all concepts of UML
Statecharts are included in that formal description called
extended object models; we only omit StubStates and Sub-
machineStates, as these are directly substitutable by the ac-
tual composite states they represent. The complete syntac-
tical definition is straightforward and can be derived from
the UML metamodel.

Semantically, an interesting aspect arises from in-
tegrating Statecharts into class diagrams, namely, inheri-
tance of behavior specified by Statecharts. Literature dis-
tinguishes between different kinds of consistent behavioral
inheritance (e.g., weak, strong, or observation consistency
[14]). These definitions make use of the dynamic execu-
tion of Statecharts by means of traces, which are execu-
tion runs through (the processes derived from) Statecharts.
In contrast, UML provides an informal description of three
inheritance policies called subtyping, strict inheritance, and
general refinement [9, Section 2.12.5.3]. The latter two are
introduced because of coding issues and cannot be com-
pared with the conceptual behavioral inheritance policies
as known from corresponding literature.

Nevertheless, one clear notion of behavioral inheri-
tance has to be provided, probably not yet for the general
description of extended object models, but at a later stage
when the domain-specific modeling language UML|dom is
completely defined.

4.2 Time-Based Statecharts

In this subsection, we discuss the behavioral modeling part
in more detail, as quite a few design choices have to be
made.

First, according to formalization Step 2, we have
to select a reasonable sublanguage of the extensive UML
Statechart syntax, and for each of the omitted language el-
ements we here justify why we do not support it in our
approach. The semantics of the chosen sublanguage is in-
formally described along the lines of the so-called run-to-
completion step (RTC-step), i.e., one complete reaction of
an object on a received and dispatched event (cf. Step 3).
On the other hand side, we have to extend the UML State-
chart syntax to capture additional timing issues (domain-
specific additions, cf. Step 4). In particular, we need con-
cepts to be able to specify non-deterministic timing inter-
vals attached to operations and time events. The main dif-
ficulty here is that the UML standard does not make any
assumptions about elapsing time. Thus, a new semantics
must be provided for RTC-steps that has some underlying
inherent notion of time.

We here only provide an overview of our timed State-
chart variant. A complete definition and mapping to labeled
transition systems (cf. Step 5) can be found in [5].

General Syntactical Restrictions. Among the different
state notions within the UML, only composite states, sim-
ple states, history states, final states, and initial Pseu-

doStates are considered. The following kinds of states can
generally be simulated by other means and thus do not
have to be considered as separate concepts in a formaliza-
tion. StubStates and SubmachineStates are just used for
syntactical convenience and can be substituted by the ac-
tual composite states they represent. SynchStates are used
to model synchronizations among orthogonal regions. Ba-
sically, they can be simulated by additional internal sig-
nals. Junction PseudoStates are splits or merges of transi-
tions and can simply be replaced by specifying correspond-
ing simple state-to-state transitions. Choice PseudoStates
are dynamic conditional branches that can be simulated by
adding intermediate states, provided that visiting these in-
termediate states does not take any additional time (as it
is possible in the RTC-step semantics). In our timed se-
mantics, though, each transition consumes at least one time
unit, and therefore this kind of states cannot be directly sup-
ported.

There are some more concepts in UML Statecharts
that we can explicitly abstract from in a formalization. In-
ternal Transitions do not trigger entry- and exit-actions and
are sometimes even seen as unnecessary, as internal transi-
tions are actually modeling behavior that belongs to a sub-
state. Though standard UML allows parameters not only
for operation calls but also for asynchronous signals, we
do not regard event parameters. Note that these can be
simulated by specifying a set of parameterless events, built
based upon the cross product of the parameters’ value sets.
Deferred events can be simulated by regenerating them as
often as they are to be deferred.

Many formalizations of UML Statecharts do not al-
low interlevel transitions, as they do not comply to compo-
sitionality. While this might apply to approaches that inves-
tigate refinement issues, one cannot on the other hand deny
that certain interlevel transitions ease the task of modeling,
as they simply reduce graphical complexity. Thus, one ap-
proach to still support interlevel transitions is to carefully
select and allow certain kinds of interlevel transitions and
provide a corresponding semantics. Note that UML already
restricts interlevel transitions by means of well-formedness
rules specified in OCL. In the same way, additional rules to
further restrict the set of allowed interlevel transitions can
easily be formulated for a particular domain. Finally, local
variables of UML Statecharts can be omitted in formaliza-
tions, as these can be simulated by attributes defined in the
class the Statechart is attached to.

Statechart Syntax Definition. As a result from the pre-
vious considerations, the syntax of a UML Statechart can
essentially be defined the tuple

〈 S,H, shallowHistory, deepHistory, init, final,

EV TS,GUARDS,ACTS, TR,

substates, defaultHistory, entry, exit, doActivity 〉.

We here only informally describe the elements of that tuple
and refer to [7] for more details.



S is a set of states. It is composed of the disjoint
sets of simple and composite states. Composite states
in turn are either sequential (Xor-states) or orthogonal
(And-states). H is a set of history states, and functions
shallowHistory and deepHistory determine for a given
composite state its (potential) history state.

EV TS, GUARDS, and ACTS are sets of events,
boolean conditions, and actions, respectively. Appropriate
expression languages must be available to formulate events,
conditions, and actions. In the latest UML version 1.5, an
action semantics and sample well-known action languages
such as the Action Specification Language4 or the Bridge-
Point Action Language5 are described to tackle this issue.
Note that the effects of these actions must have a corre-
sponding foundation in the semantics description.

TR represents a set of transitions. Each transition
connects two states and may take a triggering event, a
guard, and an action. UML does not allow transitions to
cross borders of an And-state with a source outside of that
And-state. We here additionally do not allow a transition
to start in a substate of an And-state x leading to a state
outside of x, as this might cause an inconsistency with on-
going activities in an orthogonal state.

Function substates determines all direct substates of
a composite state. Function defaultHistory defines the
default state to enter for each history state. Functions entry

and exit give the actions to take when a state is entered or
left, respectively. Function doActivity specifies the activ-
ity to take when a state is activated.

Semantics. As the purpose of our formalization is anal-
ysis of timing behavior, we may abstract from particular
selection algorithms for dispatching events from the event
queue and assume that the dispatching mechanism non-
deterministically takes one event at a time from the event
queue. Non-deterministic choice also applies for conflict-
ing transitions, i.e., when transition selection cannot be
uniquely resolved even if all preference rules were applied.
Note that in other domains, certain deterministic policies
might be required instead.

Concerning timing issues, the UML standard does not
make assumptions w.r.t. the RTC-step semantics of State-
charts, e.g., it is possible for transitions to both be instanta-
neous or to take time [9, Section 3.75.1]. The same holds
for states; they can be instantaneous as well as having a
notable duration, e.g., when an activity is specified.

In a formal definition of time-based UML State-
charts, we have to provide a precise execution semantics
w.r.t. evolving time. So we have to decide how time is
evolving and how much time is needed in the affected op-
erational parts of Statecharts. We identify the three opera-
tional parts (a) RTC-step, (b) actions, and (c) communica-
tion (i.e., calls). For each of these, we now briefly discuss
their time-related behavior under the premises of the do-
main of manufacturing systems.

4http://www.kc.com
5http://www.projtech.com

Time-based RTC-step. In the first part of an RTC-
step, an event is chosen from the event queue, i.e., some
dispatching mechanism has to select an event. We restrict
on clock-synchronous semantics, i.e., an object dispatches
a new event from its event queue to be processed by the cor-
responding Statechart only at the tick of the (global) clock
in the moment when the previous RTC-step is completed.

In the second part of each RTC-step, based on the dis-
patched event, the transition(s) to take have to be deter-
mined by evaluating guards and considering priority rules,
and the actual transition execution has to take place, i.e.,
some actions might have to be executed when the transi-
tion(s) fire(s). Basically, the system will change from one
stable source configuration denoting the current status of
the object to a destination configuration denoting the sub-
sequent stable state configuration right after the RTC-step.

When considering evolving time as an inherent char-
acteristic of the system, two subsequent stable state con-
figurations cannot occur at the same point of time. Thus,
we assume at least a minimal expired time of one time unit
between two stable state configurations.

We also have to decide at which point of time the state
configuration actually changes. We assume that the source
configuration becomes inactive when all exit actions and
the transition action have been completed.

Timed Actions. Though UML assumes that actions
do not take time (as opposed to “activities”), this is no
longer valid in the considered domain, as we assume that
at least a minimal time unit is elapsed when executing an
action. Thus, a timing scheme for actions has to be de-
fined, e.g., that an assignment to a variable takes one time
unit, an asynchronous signal call takes one time unit, and a
synchronous operation call takes until a corresponding re-
sponse is received (i.e., it depends on a timing scheme for
communication).

Communication. We assume a perfect underlying
communication technology, i.e., none of the communicated
events will be lost. Without that assumption, the task of for-
mally analyzing the model becomes even more complex, as
at any point of time, a synchronous call event may be lost
and thus the Statechart may block.

From our point of view, synchronous operation call
events sent to remote objects cannot be seen as actions with
negligible time as described in the UML standard, as time
evolves when waiting for an response on that operation call.
Thus, we do not allow such operation call events as exit-
or entry-actions of states. Nevertheless, we allow them as
transition actions. But this raises the question, what states
are activated during execution of that transition operation,
as the source state(s) are left and the target state(s) are not
yet entered when waiting for the operation to finish. This is
a typical example for going back from formalization Step
4 to Step 3 in order to clarify new semantic issues.

Furthermore, we have to extend UML by timing an-
notations on operations, but note that operations invoked as
exit- or entry-actions for the object itself must not have a
specified execution time larger than one time unit.



4.3 MFERT

The third main activity of the formalization focuses on a
UML Profile for modeling manufacturing systems and a
corresponding formal semantics with a notion of time. In
this context, we make use of the graphical MFERT notation
that is dedicated to model manufacturing systems [13].

In MFERT, nodes represent either production pro-
cesses or storages for production elements. Production
Process Nodes (PPNs) represent logical locations where
material is transformed and are drawn as annotated shaded
rectangles. Production Element Nodes (PENs) are used to
model logical storages of material and resources and are
drawn as annotated shaded triangles. PENs and PPNs are
composed to a bipartite graph connected by directed edges
which define the flow of production elements. MFERT
graphs establish both a static and dynamic view of a manu-
facturing system. On the one hand, the nodes are statically
representing the participating production processes and el-
ement storages. On the other hand, directed edges represent
the dynamic flow of production elements (i.e., material and
resources) within the manufacturing system.

A corresponding UML Profile for MFERT and the
actual semantic mapping MMFERT to I/O-Interval Struc-
tures can be found in [5]. Basically, we integrate the timed
Statechart variant (cf. Subsection 4.2) into extended ob-
ject models (cf. Subsection 4.1), such that main structural
system parts (i.e., MFERT nodes) are coupled with corre-
sponding behavioral descriptions (i.e., Statecharts).

ItemsBuffered

SupplyingItems

AGVs

ItemsBeforeMill

Transporting

Figure 3. Sample MFERT Graph

Example. A sample MFERT graph is shown in Figure
3, where transportation of items by means of automated
guided vehicles (AGVs) between processing steps is illus-
trated. This is a small outtake of a model that is composed
of different manufacturing stations and transport vehicles
that transport items between stations.

The sample UML Statechart in Figure 4 shows parts
of the behavior specification of PPN Transporting – details
of the negotiation part for accepting transportation orders
are left out here for brevity reasons. The transport part
basically consists of a chain of activities to perform – an
instance of PPN Transportation is thus controlling the ac-
tivities of an AGV object. The activities are initiated by
operation calls on AGVs, such as move(), load(), and
unload(). Recall that we allow to associate (estimated)
execution times to these operations in class diagrams or
MFERT graphs, respectively. E.g., operations load() and
unload() might take between 5 and 10 time units.

Transporting

Negotiator

ComputingBid

Transport

Idle

do/ load(currentItem)
exit/ dest := nextStation(currentItem[1])

MovingToLoad

LoadingMovingToUnload

Unloading

MovingToVacate

do/ unload(currentItem)
exit/ order := false

do/ move(dest)
exit/ pos := dest

do/ move(dest)
exit/ pos := dest

when (order = true)

vacate(p) [p = self.pos]
]/dest := getParkPos()

do/ move(dest)
exit/ pos := dest

WaitingForAcknowledgement

WaitingForOrder

Performing

Figure 4. Parts of the Transporting Statechart

4.4 Property Specification with OCL

In addition to the actual model, we want to specify non-
functional properties a model should fulfill. UML already
provides (non-diagrammatic) means to specify constraints
over a given model by OCL. But currently, OCL lacks
means to specify constraints over the dynamic behavior of
a UML model, i.e., consecutiveness of states and state tran-
sitions as well as time-bounded constraints. However, it is
essential to specify such constraints to guarantee correct
system behavior, e.g., for modeling real-time systems.

Temporal extensions of OCL usually introduce tem-
poral logic operators (e.g., eventually, always, or never)
that enable modelers to specify required occurrences of ac-
tions and events, e.g., [2]. Unfortunately, the resulting syn-
tax of these extensions often do not combine well with cur-
rent OCL concepts, as e.g., temporal expressions are very
similar to rather cryptic temporal logic formulae.

In contrast to these approaches, we extend OCL with
only minor modifications on the language metalevel. Our
extension is defined by a UML Profile based on the meta-
model proposed for OCL 2.0 in [8]. The formal seman-
tics of our extension is given by a direct correspondence to
time-annotated temporal logic formulae in CCTL [6].

In OCL, it is already possible to specify constraints
concerning the current state of an object, using the prede-
fined operation oclInState(), but a precise semantics of
this operation is missing so far. We therefore first formal-
ized Statechart state configurations and could then define a
corresponding semantics for that operation [7]. Note that
this is an essential prerequisite for completing the formal
semantics of the OCL 2.0 proposal and for defining a map-
ping MRT -OCL from temporal state-related OCL expres-
sions to CCTL.



For example, the following invariant requires that for
each instance of Transporting, at each point of time, the
states Idle and Performing must be subsequently entered
within the next 100 time units:

context Transporting

inv: self@post(1,100)->forAll(p:OclPath |

p->includes(Sequence{Idle,Performing}))

This notation is compliant with existing OCL syntax. Op-
eration @post() is newly introduced and can be used for
all user-defined types. It extracts the set of possible future
execution paths, optionally restricted by a timing interval.

5 Conclusion

Experiences with our formalization approach regard (a) the
UML abstract syntax and its informal semantics with clar-
ification of open issues, (b) tailoring towards a particular
domain by selecting and introducing model elements (in
our case time-dependent models) and defining a mapping
to formal languages, and (c) the actual application of our
formalized UML parts for verification purposes.

Firstly, many syntactical UML elements can be di-
rectly simulated, i.e., they do not need to be formalized sep-
arately. Semantic variation points – once identified – can be
fixed for a given domain. Additional domain-specific con-
cepts can either be introduced by stereotypes in UML Pro-
files or as heavyweight extensions on the metalevel. How-
ever, from a formalization point of view in both cases a
formal semantics must still be provided separately.

Secondly, concerning the formalization for domain-
specific modeling, we considered modeling of manufactur-
ing systems. We defined a restricted UML syntax by means
of a UML Profile. Note that some major restrictions were
necessary to be able to define a mapping to the semantic
domain of I/O-Interval Structures, e.g., dynamic object cre-
ation and deletion and infinite value domains could not be
considered. On the other hand, we needed to introduce new
modeling concepts to capture timing aspects.

Finally, we applied our state-oriented temporal OCL
extension for specification of real-time properties [6]. The
provided mappings allow to transform MFERT models
and OCL properties into corresponding input for the real-
time model checker RAVEN [11] that automatically veri-
fies whether given properties are satisfied for a particular
model.

Nevertheless, additional techniques such as decom-
position or abstraction are necessary to efficiently perform
model checking on models of reasonable size. We cur-
rently investigate how MFERT models can be decomposed
into submodels to be able to perform model checking on
models of smaller size (compositional model checking). A
tool that automatically translates models in MFERT nota-
tion into I/O-Interval Structures is currently being imple-
mented.

Acknowledgements

The work described in this article receives funding by the
DFG project GRASP within the DFG Priority Programme
1064 “Integration von Techniken der Softwarespezifikation
für ingenieurwissenschaftliche Anwendungen”.

References

[1] M. v. d. Beeck. A Structured Operational Semantics
for UML-Statecharts. Software and Systems Modeling
(SoSyM), Springer, 1(2):130–141, December 2002.

[2] M. Cengarle and A. Knapp. Towards OCL/RT. In Formal
Methods – Getting IT Right, volume 2391 of LNCS, pages
389–408. Springer, July 2002.

[3] A. David, M. Möller, and W. Yi. Formal Verification of
UML Statecharts with Real-Time Extensions. In FASE
2002, Grenoble, France, volume 2306 of LNCS, pages 218–
232. Springer, 2002.

[4] A. Evans, R. France, K. Lano, and B. Rumpe. Developing
the UML as a Formal Modelling Notation. In UML’98 –
Beyond the Notation. Mulhouse, France, June 1998, pages
297–307, 1998.

[5] S. Flake and W. Müller. A UML Profile for MFERT. Tech-
nical Report 04/2002, C-LAB, Paderborn, Germany, March
2002.

[6] S. Flake and W. Müller. A UML Profile for Real-Time Con-
straints with the OCL. In UML 2002. Model Engineering,
Languages, Concepts, and Tools. Dresden, Germany, vol-
ume 2460 of LNCS, pages 179–195. Springer, 2002.

[7] S. Flake and W. Müller. Semantics of State-Oriented Ex-
pressions in the Object Constraint Language. In SEKE
2003, San Francisco, CA, USA, pages 142–149. Knowledge
Systems Institute, July 2003.

[8] A. Ivner, J. Högström, S. Johnston, D. Knox, and P. Riv-
ett. Response to the UML2.0 OCL RfP, Version 1.6. OMG
Document ad/03-01-07, January 2003.

[9] Object Management Group. Unified Modeling Lan-
guage 1.5 Specification. OMG Document formal/03-03-01,
March 2003.

[10] M. Richters. A Precise Approach to Validating UML Mod-
els and OCL Constraints. PhD thesis, Universität Bremen,
Bremen, Germany, 2001.

[11] J. Ruf. RAVEN: Real-Time Analyzing and Verification
Environment. Journal on Universal Computer Science
(J.UCS), Springer, 7(1):89–104, February 2001.

[12] J. Ruf and T. Kropf. Modeling and Checking Networks of
Communicating Real-Time Systems. In Correct Hardware
Design and Verification Methods (CHARME 99), pages
265–279. Springer, September 1999.

[13] U. Schneider. Ein formales Modell und eine Klassifikation
für die Fertigungssteuerung. PhD thesis, Heinz Nixdorf In-
stitut, HNI-Verlagsschriftenreihe, Band 16, Paderborn, Ger-
many, 1996. (in German).

[14] M. Schrefl and M. Stumptner. Behavior Consistent Special-
ization of Object Life Cycles. ACM Transactions of Soft-
ware Engineering and Methodology (ACM TOSEM), ACM
Press, 11(1):92–148, January 2002.

[15] B. Selic and J. Rumbaugh. Using UML for Modeling Com-
plex Real-Time Systems. White Paper, 1998.
http://www.rational.com/media/whitepapers/umlrt.pdf.


