
UML-Based Specification of
State-Oriented Real-Time Properties

Dissertation

A thesis submitted to the
Faculty of Computer Science, Mathematics and Electrical Engineering

of the Universiẗat Paderborn in partial fulfillment
of the requirements for the degree of Dr. rer. nat.

by

Stephan Flake

Paderborn, December 2003

Supervisors:

1. Prof. Dr. rer. nat. Franz J. Rammig, Universität Paderborn
2. Prof. Dr. rer. nat. Gregor Engels, Universität Paderborn
3. Prof. Dr. rer. nat. Martin Gogolla, Universität Bremen

Date of public examination: December 19, 2003

Dedicated to my family

Abstract

In recent years, the Unified Modeling Language (UML) has received significant attention by
software designers to model object-oriented software systems. Complementary to UML dia-
grams, modelers can make use of the textual Object Constraint Language (OCL) to specify
additional constraints for their models. OCL is particularly used to formulate constraints over a
given UML model in form of class invariants and operation pre- and postconditions. However,
the semantics of OCL is still incomplete, even in the latest OCL 2.0 proposal that has recently
been adopted by the Object Management Group. While it is allowed to make use of states from
State Diagrams in OCL expressions to reason about their activations, there is currently no cor-
responding semantics defined in the adopted OCL 2.0 specification. As a first goal, this thesis
closes that gap and provides a formal notion of state configurations over UML State Diagrams
that is integrated into the formal semantics of the adopted OCL 2.0 specification.

The second major goal of this thesis is to extend OCL to support specification and analy-
sis of temporal state-oriented constraints for UML models of time-critical software-controlled
systems. In order to demonstrate the applicability of this extension, the thesis focuses on early
stages of the software development process and applies time-bounded state-oriented OCL con-
straints to specify requirements in the domain of modeling time-constrained manufacturing sys-
tems. For the structural modeling of manufacturing systems a restricted version of UML Class
Diagrams is employed, and for the behavioral modeling a timed UML State Diagram variant
with a corresponding time-related semantics is presented.

In addition, this thesis also provides a semantics for both the regarded kind of UML models
and the time-bounded state-oriented OCL extension by mappings to formal target languages,
i.e., time-annotated state-transition systems and temporal logics. This allows to perform auto-
mated formal analysis with existing verification tools. The motivation behind the mapping is
the idea to abstract from the rather cryptical input languages of verification tools, in particular
the temporal logics used in the formal verification technique called model checking.

Contents

1 Introduction 5
1.1 Research Goals and Contributions . 9
1.2 Example: Manufacturing Case Study . 10
1.3 Outline . 13

2 Unified Modeling Language 15
2.1 UML Language Definition . 15
2.2 Survey of UML Diagrams . 18
2.3 Details of Selected Parts of UML . 21

2.3.1 UML Class Diagrams . 21
2.3.2 UML State Diagrams . 24
2.3.3 Object Constraint Language . 29
2.3.4 UML Extension Mechanisms . 47

2.4 UML and Time . 48
2.4.1 Time and Timing Constraints in Standard UML 49
2.4.2 Modeling Real-Time System Architectures with UML 50
2.4.3 Time-Annotated State Diagrams . 51

2.5 Contributions of the Chapter . 54

3 Formal Verification 55
3.1 Automata-Based Modeling Approaches . 56
3.2 Formal Specification . 58

3.2.1 Temporal Logics . 58
3.2.2 Property Specification Patterns . 62

3.3 Symbolic Model Checking . 66
3.4 Real-Time Model Checking . 69
3.5 Selection of a Real-Time Model Checking Tool 70
3.6 RAVEN . 72

3.6.1 Interval Structures . 72
3.6.2 Clocked Computation Tree Logic . 77
3.6.3 RAVEN Input Language (RIL) . 79
3.6.4 Graphical User Interface . 82

3.7 Contributions of the Chapter . 83

i

ii CONTENTS

4 Extended Object Model 85
4.1 Syntax . 86

4.1.1 Types . 87
4.1.2 Classes and their Characteristics . 88
4.1.3 Abstract Syntax of State Diagrams . 91
4.1.4 Associations . 96
4.1.5 Generalization . 98

4.2 Semantics . 100
4.2.1 Objects . 101
4.2.2 A Note about State Diagram Inheritance 101
4.2.3 State Configurations . 102
4.2.4 Links . 104
4.2.5 System State . 105
4.2.6 Semantics of Operation oclInState(statename:OclState) 107
4.2.7 Traces . 108

4.3 Discussion . 112
4.4 Contributions of the Chapter . 113

5 A Timed UML State Diagram Variant 115
5.1 Syntactical Restrictions . 118
5.2 Syntax . 119
5.3 Semantics . 124
5.4 Translation to I/O-Interval Structures . 126

5.4.1 Generating I/O-Interval Structures . 129
5.4.2 Transition Mapping . 136

5.5 Contributions of the Chapter . 144

6 MFERT 145
6.1 MFERT Graphs . 147
6.2 Formal MFERT Model . 147
6.3 Dynamic Semantics of MFERT . 150

6.3.1 Production Process Nodes . 150
6.3.2 Production Element Nodes . 152
6.3.3 Message Passing . 152
6.3.4 Conflict Resolution in PENs . 153
6.3.5 Simulation Implementation . 153

6.4 A UML Profile for MFERT . 154
6.4.1 MFERT Graphical Notation in Class Diagrams 155
6.4.2 Validation Constraints . 156
6.4.3 Mapping to the Formal MFERT Model 157

6.5 Contributions of the Chapter . 158

CONTENTS iii

7 Real-Time Properties with OCL 161
7.1 UML Profile for Real-Time Constraints with OCL 162

7.1.1 OCL Metamodel Extensions . 163
7.1.2 Concrete Syntax Changes . 165
7.1.3 Standard Library Operations . 169
7.1.4 Semantics of Temporal Expressions 171

7.2 Expressing Specification Patterns . 172
7.3 Mapping to the Temporal Logics CCTL . 175
7.4 Temporal OCL Queries . 177
7.5 Related Work . 178
7.6 Implementation . 180
7.7 Contributions of the Chapter . 180

8 Manufacturing Case Study 183
8.1 The MFERT Model . 184
8.2 Real-Time OCL Constraints and CCTL Formulae 191

9 Conclusion 195
9.1 Future Work . 197

Literature 199

A Timed Finite State Machines for PPNs 211
A.1 Help Functions . 211
A.2 Operational Semantics . 212
A.3 Consumption and Production Actions . 213
A.4 Restrictions . 213
A.5 Mapping to I/O-Interval Structures . 213

B OCL Metalevel Operations for Classifiers 215

C Structural Constraints for MFERT Models 217
C.1 ProductionDataType . 217
C.2 ElementList . 218
C.3 MFERTNode . 219
C.4 ProductionProcessNode . 220
C.5 ProductionElementNode . 220
C.6 ElementFlow . 221

D Property Specification Patterns with OCL 223

iv CONTENTS

Chapter 1

Introduction

I’m writing a book.
I have the page numbers down...

I just have to fill in the rest.
– Steven Wright

Developing software systems is a difficult and error-prone task. Nowadays, software is still in
almost all cases developed in a rather pragmatic way. In the software design process, different
software development phases are usually identified. Basically, they can be separated into phases
like informal requirement gathering, analysis, specification, design, implementation, and test-
ing. These phases are not strictly sequential but rather overlapping, iterative, or carried out in
parallel for different parts of the system under development.

While some approaches focus on the implementation of a system already in early phases
of development (e.g., eXtreme programming [Bec00]), others try to separate system modeling
from the actual task of implementation. Latter approaches mostly use aplatform-independent
modelfor the complete design of an application. One of the most popular approaches in this
context is theModel-Driven Architecture(MDA) by the Object Management Group [OMG]
that bases upon industrial modeling standards like the Unified Modeling Language (UML),
Meta Object Facility (MOF), and XML Metadata Interchange (XMI). From these standards,
UML provides means to build object-oriented models of a system under consideration in form
of a rich set of standardized graphical diagrams.

UML. UML unifies a number of different modeling languages and is still undergoing a de-
velopment under the control of the OMG consortium. At the time of writing this thesis, the
latest official version released by the OMG is UML 1.5, published in March 2003 [OMG03d].
More recently, the OMG adopted a number of proposals to build a new version of UML, i.e.,
UML 2.0. These proposals are still undergoing a finalization process. In the context of this
thesis, the adopted proposal for a new version of the Object Constraint Language [OMG03b] is
of particular interest, while the proposals for a UML 2.0 Infrastructure [OMG03e] and a UML
2.0 Superstructure [OMG03f] have less impact on this work.

5

6 CHAPTER 1. INTRODUCTION

UML defines a number of diagrams to model different aspects of the structure and behavior
of software systems. For example, Class Diagrams are used to describe the static structure of
a system, while UML State Diagrams model the (reactive) behavior of objects. In addition to
the set of diagrams, the textual Object Constraint Language (OCL) is an integral part of the
UML to specify restrictions on values of parts of UML models. Basically, OCL constraints are
invariants attached to classes or pre- and postconditions of operations. Significant parts of OCL
have already been formally defined in [Ric01] in form of a set-theoreticobject model. That
work heavily influenced the formal semantics of the adopted OCL 2.0 specification [OMG03b].
However, the formal semantics of OCL is still incomplete, as it currently lacks an integration
of UML State Diagrams, although it is already possible to formulate constraints that refer to
the states specified in UML State Diagrams. One aspect of this thesis is to extend the formal
semantics of OCL by a formal integration of UML State Diagrams and to provide the formal
semantics for state-related OCL operations.

UML has already been applied in different application domains, e.g., to modeltime-critical
software-controlled systems such as embedded real-time systems [Dou00]. For time-critical
systems, correct time-constrained behavior is an essential requirement to meet, e.g., timing
bounds for message delays and progress of system execution. In this context, it is desirable to
be able to identify improper behavior w.r.t. thesetiming requirementsalready in early phases
of development. Otherwise, overall goals like meeting project deadlines and adherence to es-
timated costs may fail due to the need of time-consuming and expensive re-designs at a later
stage of development.

The current version 1.5 of UML as well as the corresponding, recently adopted UML 2.0
proposals provide some basic means to specify timing requirements. In particular, timing anno-
tations can be applied in Sequence Diagrams to specify timing bounds for durations of message
transfers and replies to messages sent. However, UML does not have an inherent timing model,
as it is designed to be a general modeling language with a focus on software systems, such that
these means are not well integrated into the core concepts of UML.

Properties concerning the temporal behavior, such as safety or liveness constraints [Lam77],
cannot be expressed with standard UML means. Different approaches have already introduced
corresponding extensions, in particular, extensions of UML Sequence Diagrams to enhance
time-bounded specifications of communication flow among objects have been published in
[DK01, FHD+99, KMR02]. In contrast, this thesis introduces a consistent temporal extension
of the textual constraint language OCL and focuses on specification of time-bounded state-
oriented constraints to reason about the time-critical progress of system execution.

OCL constraints do not make sense without a given model to refer to. In order to have a
corresponding timed UML model to refer to, this thesis introduces a timed UML State Diagram
variant for behavioral modeling. This State Diagram variant supports a set of UML model
elements that have so far not been considered in related work on timed UML State Diagrams
(cf. [EW00, DM01, KMR02]). In particular, the presented timed UML State Diagram variant
preserves UML model elements like interlevel transitions, synchronous and asynchronous event
communication, elapsed time events, and activities that have a notable duration.

MFERT. To validate the applicability of the temporal state-oriented OCL extension, the do-
main of modeling manufacturing systems is chosen. Manufacturing systems are time-critical

7

w.r.t. production flow, i.e., production progress is time-bounded and corresponding deadlines
have to be met.

This thesis builds upon an existing graphical notation for modeling manufacturing systems,
i.e., MFERT.1 MFERT is a general description scheme for modeling in the domain of manu-
facturing systems [DW93, Sch96, DW97]. It has been successfully applied in different projects
with various industrial partners and is acknowledged by the German science award of logistics.
Similar to Petri Nets, the structure of an MFERT model is a bipartite graph of nodes that repre-
sent either production processes or storages for production elements. Directed edges between
nodes denote the flow of production elements.

Different variants of MFERT have already been investigated. Based on Schneider’s func-
tional general description scheme [Sch96], Holtkamp defined and implemented a corresponding
framework of C++ functions [Hol99] and Quintanilla de Simsek presented a formal verification
approach for MFERT models [Qui01]. However, Quintanilla de Simsek defined the graphical
notation to model system behavior from scratch and did not consider explicit time, whereas this
thesis builds upon UML concepts and employs a notion of time for MFERT models as well as
corresponding requirements. In particular, this theses defines the structural elements of MFERT
as stereotypes in a UML Profile and employs the timed UML State Diagram variant mentioned
above for behavioral modeling. Through this approach, OCL constraints can be directly applied
to MFERT models.

Concerning the evolution of time – especially w.r.t. the dynamic semantics of the timed vari-
ant of UML State Diagrams – a discrete underlying timing model is considered to be sufficient
for the chosen modeling approach, as a broad range of manufacturing system behavior can be
described based on message exchange by discrete events. For manufacturing processes (such
as milling or drilling), we assume a finite time durationx or finite duration interval[x, y]. The
basic discrete timing unit has to be chosen to be precise enough to represent the actual physical
time.

Formal Verification by Model Checking. Nowadays, simulation and testing is still fre-
quently applied to validate the correct behavior of time-dependent software systems. But due to
the increasing complexity of software systems, it is getting more and more difficult to identify
and examine all possible execution paths during the design process, e.g., by simulation, as the
state space grows exponentially with the number of inputs and internal states. On the other
hand, in recent years different formal verification methods, e.g., equivalence checking, model
checking, and SAT solving, have been successfully applied toformally verifythe correctness of
hardware and software designs.

In particular, model checking has been successfully applied to formally verify digital circuits
and communication protocols. Model checking is due to the work by Clarke and Emerson
[CE81] and takes a set of finite state machines (the model) and a set of temporal logics formulae
(the properties to fulfill) as its input. Then – and this is the most remarkable advantage of model
checking – the task of verifying a model over the specified properties is fully automated, i.e.,
a model checking tool lists for each property whether it is true or false for the given model.
Moreover, a model checking tool typically generates a counter example in cases when the model

1MFERT is an acronym for ”Modell der FERTigung” (German for: Model of Manufacturing).

8 CHAPTER 1. INTRODUCTION

does not satisfy a property. A counter example demonstrates an execution of the model that
leads to a situation which falsifies the property. This is very helpful for detailed error analysis.
One of the most popular model checking tools is SMV2, but that model checker does not support
explicit modeling of time. Nevertheless, there are also model checkers that allow models and
property specifications with explicit time, e.g., UPPAAL3 and RAVEN (Real-Time Analyzing
and Verification ENvironment) [Ruf01]. RAVEN also has algorithms to perform timing and
data analysis, i.e., not only requirements with yes/no answers can be checked, but also minimal
and maximal execution times or data values can be determined.

While formal verification by model checking is a helpful method to formally and automati-
cally verify a model over specified properties, widespread acceptance is still not achieved. One
reason is that model checking has to explore the complete state-space of the model, and the re-
sulting structure to investigate requires a lot of run-time computer memory (due to the so-called
state explosion problem). As a consequence, model checking tools have to build and use an ef-
ficient symbolic internal representation to cope with the huge overall state space, e.g., SMV and
RAVEN make use of a symbolic model representation by means of so-called Binary Decision
Diagrams (BDDs) [Bry86, BCM+90]. Enhanced approaches to speed up state space exploration
and different reduction techniques are often applied to leave out and abstract from parts of the
model which are not needed to prove certain properties. However, automated support for these
reduction techniques is limited.

Moreover, it is often difficult for system designers, software engineers, and programmers
to formulate required properties in an unambiguous formal way, as they are usually not trained
in temporal logics. Thus, it is hard for them to read, understand, or even formulate temporal
formulae. Several approaches have already been regarded to overcome these problems. E.g., in
order to abstract from temporal logics for property specification, timing diagrams or structured
natural language are applied [DKM+94, JMM+99]. Other approaches consider catalogues of
patterns, as practice has shown that the entire expressive power of temporal logics is not needed
[DAC98a]. Unfortunately, acceptance of these approaches lacks due to a missing modeling
standard to base upon. An important aspect of the temporal OCL extension introduced in this
thesis is that it has the expressive power to formulate all of those properties that are listed in the
catalogue of specification patterns by Dwyer, Avrunin and Corbett [DAC98a].

Scope. This thesis introduces an approach to specify state-oriented real-time system prop-
erties based on concepts of the UML, especially its textual expression language OCL. With
an extension that is consistent with common OCL concepts, we abstract from temporal logics
formulae that are usually applied for property specifications.

For a concise, well-defined modeling language, we consider the domain of time-critical
manufacturing systems and define a restricted UML-based version of the graphical MFERT
notation. On the one hand, the structural elements of MFERT are embedded into the general
concepts of UML by means of a UML Profile and a timed variant of UML State Diagrams is em-
ployed. On the other hand, as UML provides a vast variety of additional modeling elements, the
set of regarded UML model elements is restricted by additional validation constraints. MFERT

2http://www-2.cs.cmu.edu/ modelcheck/smv.html
3http://www.uppaal.com

1.1. RESEARCH GOALS AND CONTRIBUTIONS 9

models that comply to these constraints are translated to the formal language ofI/O-Interval
Structuresthat constitutes the input language of the RAVEN model checker.

In order to develop a temporal state-oriented extension based upon standard OCL, the formal
semantics definition of OCL has first to be equipped with a notion of state configurations over
State Diagrams. The set-theoretic object model of Richters [Ric01] is extended correspondingly
and a formal semantics for static and temporal state-related OCL operations is defined by means
of interpretation functions over this extended object model. Additionally, state-oriented real-
time OCL constraints are mapped to a time-annotated temporal logics calledCCTL (Clocked
Computation Tree Logic) that constitutes the property specification language of the RAVEN
model checker.

Thus, a formal semantics of state-oriented real-time OCL constraints over MFERT models
is established by the formal relation of temporal CCTL formulae and I/O-Interval Structures.
However, note that this thesis focuses on modeling and specification of time-related system
properties, such that it is not in the scope of this thesis to perform optimizations for verification
purposes, e.g., to overcome the state explosion problem. This topic is addressed in Zabel’s
diploma thesis [Zab03].

A case study in the domain of manufacturing systems with automated guided vehicles is
used as a running example throughout this thesis. The scenario description is given in Section
1.2.

1.1 Research Goals and Contributions

The overall goal of this thesis is to develop a formalization of parts of UML together with a
constraint language to enable modelers to specify required system properties in a more practical
way compared to pure temporal logics formulae. A focus is put on time-critical manufacturing
systems and their time-bounded behavioral properties. In particular, this thesis addresses the
following issues:

• An underlying general formal model for a part of the UML, namely Class Diagrams and
State Diagrams, is defined. We denote this model asextended object model.

• Based upon the extended object model, the formal semantics of the OCL operation
oclInState() that is part of the OCL Standard Library of operations is defined.

• A timed UML State Diagram variant is presented and a formal semantics is given to that
notation by a translation to timed finite state machines, i.e., I/O-Interval Structures.

• A UML Profile for the structural elements of MFERT is introduced. Additional validation
constraints restrict the rich set of UML model elements that are considered for translation
into the formal language of I/O-Interval Structures. In particular, the timed UML State
Diagram variant is employed for behavioral modeling of production processes.

• A temporal extension of OCL is presented that is consistent with existing OCL concepts
and enables modelers to specify state-oriented time-bounded properties. The semantics

10 CHAPTER 1. INTRODUCTION

of the temporal OCL extension is defined overtraces, i.e., sequences of system states
over (instantiations of) the extended object model.

Temporal OCL expressions can also be directly mapped to time-annotated temporal log-
ics formulae in CCTL. This establishes a formal relationship between temporal OCL
constraints and the considered UML-based MFERT models, as CCTL formulae have a
formal semantics over I/O-Interval Structures.

• In conformance with the latest attempts to interpret OCL as a more general expression
and query language, an OCL extension towards specification oftiming and data analysis
queriesis introduced.

• A case study in the domain of manufacturing systems validates the applicability of the
approach.

The chapters are based upon publications of recent years. The overall approach has been
first presented in [FMPR01]. More recently, an enhanced version of the general design process
has been presented in [Fla03a]. In [FGM+01], the application within a framework focusing on
user-centered design was outlined. An informal description of the considered part of MFERT
and an outline of a mapping to the target language of I/O-Interval Structures was published in
[FMPR00].

A formal semantics for state-oriented OCL operations was published in [FM03c]. In this
context, a redefinition of the OCL 2.0 Standard Library w.r.t. the representation of OCL types
on the level of UML user models was proposed in [Fla04].

Based on our experiences from property specifications in structured language by means of
patterns [FMR00], a more general approach in the style of a programming language – leading to
the temporal OCL extension – was presented in [FM02d, FM02c]. In addition, [FM03a] shows
that the temporal OCL extension covers all specification patterns that are considered as relevant
w.r.t. the pattern library by Dwyer, Avrunin and Corbett [DAC98a].

In [FM02b], two UML Profiles were presented to demonstrate how the considered exten-
sions can be consistently applied to the UML metamodel. An extended version of this article
has recently been published in a special issue of the Journal of Software and Systems Modeling
(SoSyM) [FM03b].

1.2 Example: Manufacturing Case Study

A manufacturing system case study introduced by the IMS Initiative as a test case [WHS94] is
applied as a running example throughout the remainder of this thesis. It is composed of a set
of different manufacturing stations and a transport system as it is illustrated by the virtual 3D
model in Figure 1.1.4

The different manufacturing stations transform items, e.g., by milling, drilling, or washing.
An input buffer at each station can keep up to 3 items before they are actually transformed.
Similarly, output buffers keep up to 3 items to be picked up by AGVs for further transport.

4Details about this 3D Animation can be found in [BFMW00, FM01].

1.2. EXAMPLE: MANUFACTURING CASE STUDY 11

Figure 1.1: 3D Model of the Manufacturing Scenario

The transport system consists of a set of automated guided vehicles (AGVs), i.e., autonomous
vehicles that carry items between stations. Each AGV can take only one item at a time. For
input and output of items in the system we assume an input station and an output station. The
items to process in the considered manufacturing systems are of two different kinds:

• Items of typeenginehave to be carried from the input station to the station responsible
for milling, then to drilling, to washing, and finally to the output station.

• Items of typeshafthave to be carried from the input station to the station responsible for
drilling, then to washing, and finally to the output station.

Negotiation for transporting items is carried out by a station output buffer offering an item
to transport and AGVs proposing to actually perform the transport.

• An AGV ai is idle until it receives a request for delivery from a stationsk. Then, it

1. sends a bid in form of the distance from its current position tosk,

2. moves tosk on notification of acceptance fromsk,

3. takes the item from the output buffer ofsk and moves to the next destination station,

4. moves to a parking position and returns to Step 1.

For position management, we assume that the vehicles are equipped with sensors to mea-
sure the distance from obstacles and define some essential intermediate positions the ve-
hicles have to pass on their ways between the stations (see Figure 1.2). As the legend in
that figure shows, the positions are named by identifiers, e.g.,mi stands for the position
at theinput bufferof stationmill.

12 CHAPTER 1. INTRODUCTION

DRILL

OUT

M
IL

L

W
A

S
H

IN

adpd

dodi

pm

mi

mo

am c1

c4c2

c3

in ao ou

pw

wi

wo

aw

Position Names

in
ou
ao
pm
mi
mo
am
pd
di
do
ad
pw
wi
wo
aw
c1
c2
c3
c4

input storage
output storage
after output storage
pre mill
mill input buffer
mill output buffer
after mill
pre-position drill
drill input buffer
drill output buffer
after drill
pre-position wash
wash input buffer
wash output buffer
after wash
center position 1
c 2
c 3
c 4

enter position
enter position
enter position

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

Figure 1.2: Managed Intermediate Positions for AGVs

• Once having located a completed workpiece at its output buffer, a stations

1. sends a request for delivery to the next destination station (more specifically, its
input buffer)inBufferdest,

2. is waiting for a notification frominBufferdest for a specific time period,

3. returns to Step 1 ifinBufferdest does not reply or answers with a reject to the
request,

4. broadcasts a request for delivery to all AGVs,

5. is collecting bids with distancesdi from idle AGVsai for a specific time period,

6. returns to Step 4 if no AGV replies,

7. selects one AGVai from all received distancesdi, notifies AGVai for its acceptance
and notifies the other AGVs for their rejection.

In addition to this scenario description of the manufacturing system, different requirements
concerning the time-bounded execution have to be met. Time-bounds are essential to be able to
determine the performance and throughput of the system under consideration. For example, it
could be required that each transport by means of an AGV has to be completed within 300 time
units. Additionally, in order to guarantee production progress, it might be required that each
AGV is idle for at most 400 time units. Note that similar time-bounded requirements apply for
the stations as well. UML modelers will be able to express such kind of requirements with the
temporal OCL extension that is developed in this thesis.

1.3. OUTLINE 13

1.3 Outline

In Figure 1.3, an overview of the main thesis chapters is given. An edge between two chapters
indicates a dependency, i.e., the chapter at the origin of an edge provides concepts for the chapter
to which the edge leads to. In chapters that have more than one incoming edge, concepts from
different sources are (formally) integrated.

Formal Verification of Real-Time Properties over MFERT Models

Formal Verification by
Real-Time Model Checking

Unified Modeling Language (UML)

Formalization of
Extended

Object Models

Formal Model of a
Timed Variant of

UML State Diagramts

State-Based
Real-Time OCL Properties

MFERT

Chapter 2 Chapter 3

Chapter 4

Chapter 7

Chapter 5

Chapter 6

Foundation

Application

Formalization

Figure 1.3: Chapter Overview

In Chapter 2, an overview of UML is given, putting an emphasis on those parts of UML that are
of particular relevance for this thesis, i.e., UML Class Diagrams, State Diagrams, and OCL.
Chapter 3 provides an introduction to formal verification, especially for the method of model
checking under timing aspects (so-called real-time model checking).
Chapter 4 presents an extension of object models, which are a formalization of Class Diagrams
introduced by Richters in [Ric01]. In that chapter, UML State Diagrams are formally integrated
into object models, and a general notion for sequences of system states is defined.
Chapter 5 introduces a variant of UML State Diagrams. As the UML standard does not make
concrete assumptions about times for the execution of actions, activities, and transitions, we
define a specific semantics for a significant sublanguage of UML State Diagrams.
In Chapter 6, the formal models developed in the previous two chapters are used to define a
formal model for MFERT. In particular, the structure of MFERT graphs is defined by a UML
Profile, and behavioral descriptions are based upon the timed State Diagram variant of Chapter
4.
In Chapter 7, we extend the Object Constraint Language, such that it is possible to specify state-
oriented temporal properties over UML State Diagrams. A formal semantics of this extension
is given by a mapping to temporal logics formulae. Moreover, timing and data analysis queries
are introduced.
Chapter 8 shows how the OCL extension can be applied to MFERT models by a case study with
a manufacturing system scenario.
Chapter 9 concludes this thesis and gives an outlook on future research issues.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Unified Modeling Language

”What do you think will be the biggest problem in computing in the 90’s?”
”There are only 17,000 three-letter acronyms.”

– Paul Boutin, 1989

The Unified Modeling Language (UML) is a graphical language for specifying object systems,
in particular, object-oriented software systems. UML is a standard modeling language endorsed
by the Object Management Group [OMG] in 1997. The current version at time of writing this
thesis is UML 1.5, which was adopted in March 2003 [OMG03d]. In this chapter, we focus
on thelanguage definitionof parts of UML, while the actual application of UML diagrams to
build models is only treated by example based on the manufacturing case-study presented in the
previous section. For more detailed information about modeling with UML, interested readers
are referred to one of the numerous available textbooks, e.g., [BRJ99, JRB99, FS99, HK03].
Note that UML is intended to be amodeling languageand leaves it to the responsibility of
the modeler what diagram suits best to represent a specific part of the software system under
development.

In this chapter, we first give some information on the approach taken by the OMG to define
the UML language. In Section 2.2, a brief survey of the different UML 1.5 diagrams is given.
For those parts of UML that are of particular relevance for this thesis, a more detailed descrip-
tion is provided in Section 2.3. As one goal of this thesis is to specify real-time properties
using UML concepts, we also consider how real-time systems can be modeled with UML in
Section 2.4. That section also provides an overview of approaches that extend UML for more
suitable modeling of real-time systems. They are separated into those that deal with modeling
architectures of real-time systems and those that consider time-related behavior modeling.

2.1 UML Language Definition

The OMG positions UML within a 4-layer architecture (see Table 2.1), in which elements of
one layer are defined by means of the constructs introduced in the superior layer. On the high-
est layer M3, the Meta Object Facility (MOF) specification defines a common framework for
representing metadata [OMG02]. It is used to model the three kinds of building blocks formeta
modelson layer M2, which are

15

16 CHAPTER 2. UNIFIED MODELING LANGUAGE

Table 2.1: UML Architecture

Modeling Layer Application

M3 Meta Meta Model Meta Object Facility (MOF) [OMG02]

M2 Meta Model UML Specification [OMG03d] as well as other stan-
dards, e.g., the Common Warehouse Metadata Speci-
fication [OMG01]

M1 Models User-defined UML models

M0 Objects Instances of (parts of) user-defined UML models

• objects (described by MOF Classes),

• links that connect objects (described by MOF Associations), and

• data values.

The UML is one application of the MOF. To describe its semantics, the specification is
divided into several packages, e.g., for core concepts (packageUML::Foundation::Core) or
state machines (packageUML::BehavioralElements::StateMachines). Each package is
described by four sections:

1. Abstract Syntax. The abstract syntax of a package is defined by means of MOF com-
pliant Class Diagrams. They present the metaclasses that define the UML language con-
structs and their relationships with multiplicity and ordering requirements. Figure 2.1
gives a sample MOF Class Diagram that shows the backbone part of packageUML::-

Foundation::Core, taken out of [OMG03d, Section 2.5.2]. That diagram is extended
by some metaclasses that are particularly relevant in the remainder.

In the diagram, rectangle boxes represent general language concepts, e.g., the box named
Class is a concept for descriptors on level M1 that represent a set of objects with sim-
ilar structure, behavior, and relationships. Within these rectangle boxes, additional at-
tributes may be inscribed to specify inherent characteristics of a concept, e.g., instances
of Class can be passive or active (with an own thread of control). The basic metaclass
is ModelElement, representing a named entity in a model. It is the base for all modeling
metaclasses in the UML.

Note that UML uses the termproperty to generally refer to values attached to a model
element, e.g., attributes, associations, and tagged values, whilefeaturesare properties
encapsulated in classifiers, i.e., operations, methods and attributes. However, in this thesis
we will use the termproperty in the sense ofa non-functional specification of required
dynamic behavior.

In the remainder, we refer to the boxes of Figure 2.1 asUML metaclasses. For conve-
nience, we may speak of, e.g., ‘aClass’ instead of ’an instance of metaclassClass’.

2.1. UML LANGUAGE DEFINITION 17

Boxes with names in italic font are abstract concepts that cannot be instantiated on level
M1, e.g.,Classifier. These abstract concepts are usually part of (transitive) inheritance
relationships. Inheritance relationships are indicated by connecting lines with a triangle
on the inheriting concept side. Thus,Classifier inherits all characteristics (i.e., at-
tributes and relationships) fromGeneralizableElement, andClass in turn inherits
from Classifier.

Diamonds indicate aggregation relationships, i.e., whole-part relationships. E.g., aFea-

ture is part of aClassifier. More precisely, asFeature andClassifier are ab-
stract concepts, eachAttribute, Operation, orMethod is part of aClass, Interface,
or DataType. As such features must not exist without the classifier they belong to, the
aggregation relationship is in this case marked with afilled diamond; this is also referred
to as a composition relationship.

We will see in the next paragraph that such relationships have to be restricted by additional
rules. E.g., it does not make sense to allow attributes inDataTypes, as elements of data
types are immutable values like integer values or strings.

ModelElement

Feature

Classifier

name : Name

GeneralizableElement

Attribute

isRoot: Boolean
isLeaf : Boolean
isAbstract : Boolean

StructuralFeature

initialValue : Expression

Namespace Parameter

Operation

BehavioralFeature

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

isQuery : Boolean

Method

body : ProcedureExpression

ElementOwnership

visibility : VisibilityKind
isSpecification : Boolean

multiplicity: Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind

ownerScope : ScopeKind
visibility : VisibilityKind

defaultValue : Expression
kind: ParameterDirectionKind

Class

isActive : Boolean

Interface

Relationship

DataType

+parameter+typedParameter

+type

{ordered}

+specification

+typedFeature

+type

{ordered}

+feature

+owner

+ownedElement

+namespace

*

*

0..1

0..1

1

*

0..1

1 *

*

*

1

Figure 2.1: Modified Version of the UML Core Package [OMG03d, Section 2.5, Figure 2-5]

18 CHAPTER 2. UNIFIED MODELING LANGUAGE

2. Well-Formedness Rules.Well-formedness rules are necessary to restrict the static struc-
ture of the concepts defined by MOF compliant Class Diagrams. These rules form the
static semanticsof UML, i.e., they define how an instance of a construct may be con-
nected to other instances to be meaningful.

These restrictions are usually expressed by precise invariants formulated in OCL in the
context of UML metaclasses (for more details about OCL, see Section 2.3.3) and by
further informal explanations.

To give an example, we consider metaclassDataType. While a Class may have at-
tributes, operations, and methods, aDataType may only have operations that do not
change any data (i.e., query operations). As an OCL invariant, this is expressed by

context DataType inv:
self.allFeatures()->forAll(f:Feature |
f.oclIsKindOf(Operation) and f.oclAsType(Operation).isQuery())

This OCL expression specifies that for each (user-defined)DataType on level M1, all
(transitively inherited) features must be of a kind of query operation, i.e., operations with-
out side effects. In such well-formedness rules in the context of UML metaclasses, some
additional operations appear that are not defined directly by the metamodel or by the stan-
dard OCL library. E.g., operationallFeatures() subsumes all features of a data type
and the inherited features of its supertypes. In Appendix B, we list some important addi-
tional operations defined for metaclassClassifier that are relevant for the remainder.

3. Semantics.The actual meaning of the language constructs is defined using natural lan-
guage. In the official UML 1.5 specification, this section is aboutdynamic semanticsof
UML concepts. In terms of UML,dynamic semantics define the meaning of a well-formed
construct[OMG03d, Section 2.3.1].

Only for concrete metaclasses a semantic description is provided, as only these meta-
classes have an actual meaning in the language.

4. Standard Elements. Additional predefined elements of metaclasses are listed with an
informal textual description – in particular, so-calledstereotypes(see Section 2.3.4). Ba-
sically, a stereotype represents a sub-category of a metamodel element with the same
attributes and relationships, but for a distinct usage. Sample predefined stereotypes
for Class are �metaclass�, �powertype� (i.e., a user-defined classifier whose in-
stances are classifiers which are children of a given parent on level M1),�datatype�, or
�interface�.

2.2 Survey of UML Diagrams

UML defines twelve different types of diagrams [OMG03d, Section 3] that can be divided into
three categories. Four diagram types are for modeling the static system structure; five are for
modeling different aspects of dynamic behavior; and three others are for system organization
and management. Table 2.2 lists the corresponding diagram names for each category.

2.2. SURVEY OF UML DIAGRAMS 19

Table 2.2: Different UML Diagrams

Type UML Diagram

Class Diagram, Object Diagram,
Structural Diagrams

Component Diagram, Deployment Diagram

Use Case Diagram, Sequence Diagram,

Behavioral Diagrams Activity Diagram, Collaboration Diagram,

State Diagram

Model Management Package Diagram, Subsystem Diagram,

Diagrams Model Diagram

The following gives a brief overview of the twelve different diagram types available in
UML. A more detailed classification based on views supported by each of the diagram types
can be found in [RJB98].

• Use Case Diagrams.The functionality of a system w.r.t. the users is modeled as a set of
use cases. A use case represents an interaction of a user (or: actor) and the system under
consideration. Basically, all what is modeled by Use Case Diagram is to list actors and
the use cases they participate in.

• Class Diagrams. Classes are a core concept of object-oriented software development.
Classes, their features (attributes, operations and methods), and their relationships are
modeled with Class Diagrams. Class Diagrams are further discussed in Section 2.3.1.

• Object Diagrams. An Object diagram shows a possible situation a system may be in at
a particular point of execution. Object Diagrams appear to be similar to Class Diagrams,
as objects are connected by links in the same manner as classes are connected by associ-
ations. In Object Diagrams, object attributes may have specific values. It is important to
note that the actual diagram is a model on level M1, while it represents a situation that
occurs on level M0.

• Sequence Diagrams.Possible messages sent between objects in a system can be modeled
with Sequence Diagrams. Objects are placed horizontally, each of which is provided with
a verticallife line. Horizontal directed arcs between these life lines represent messages
sent from one object to another. Each arc is annotated with a label to indicate the kind of
message. The vertical order of arcs denotes the order of messages in time.

• Collaboration Diagrams. While Sequence Diagrams are ordered according to elapsing
time, Collaboration Diagrams emphasis on structural aspects. Basically, a Collaboration
Diagram is an extension of an Object Diagram, but in addition to links between objects,
Collaboration Diagrams show messages the objects send each other. Like in Sequence

20 CHAPTER 2. UNIFIED MODELING LANGUAGE

Diagrams, messages among objects are represented by directed arcs that point to the
receiving object. The order of messages is determined by explicitly numbering each
directed arc. Note that Collaboration Diagrams can be translated into Sequence Diagrams
and vice versa.

• State Diagrams. Reactive behavior of an object is modeled by State Diagrams. They
are an extension of the classical concept of Harel Statecharts [Har87], but with different
semantics. A detailed description of UML State Diagrams is given in Section 2.3.2.

• Activity Diagrams. Activity Diagrams focus on flows driven by internal processing vs.
external events. A column format (referred to asswimlanes) may be used to explicitly
show activities according to their belonging objects. Object names are put on top of
each column, and vertical bars separate the columns. Activity Diagrams are a variant of
State Diagrams, in which a state represents an ongoing activity (e.g., an operation) and a
transition automatically fires when the source state completes its activity.

• Component Diagrams.A Component Diagram describes the organization of the phys-
ical building blocks (or: software units, components) in a system. They are shown as
rectangle boxes with tabs in the Diagram. Dependencies among components are shown
by dashed arrows between the rectangle boxes.

• Deployment Diagrams. In Deployment Diagrams, nodes represent physical resources
that execute component instances. A Deployment Diagram shows which component in-
stances are placed on which processing nodes.

• Package Diagrams. A Package Diagram shows how classes and other packages are
grouped into packages.

• Subsystem Diagrams.A Subsystem Diagram shows how logically related sets of com-
ponents form subsystems. While a Package Diagram is used to organize model elements
into groups, a subsystem represents a behavioral unit of the model. A subsystem may
have interfaces and operations and is divided into specification and realization elements.

• Model Diagrams. A Model Diagram includes all of the other diagrams to show how
the complete system is structured and functions. Note that different Model Diagrams
can be defined for the same physical system. Each Model Diagram represents a view
of the physical system, depending on its purpose and level of abstraction. E.g., in a
system development process, we may have an analysis model, a design model, and an
implementation model for the same physical system.

In this thesis, we focus on Class Diagrams for modeling the static system structure and on
State Diagrams for modeling dynamic behavior of objects. Additionally, restrictions on UML
models are expressed in OCL. These parts of UML are more detailly described in the following
section.

2.3. DETAILS OF SELECTED PARTS OF UML 21

2.3 Details of Selected Parts of UML

2.3.1 UML Class Diagrams

UML Class Diagrams are used to describe the static structure of a system. As an example,
Figure 2.2 shows main parts of the classes used in the manufacturing case study.

Item

storedItems : Integer

load(i:Item)
unload(i:Item)

BufferStation

*
id : Integer
status : ItemStatus
kind: ItemKind

OutputBuffer
MachineInputStorage

kind: MachineKind

1

currentItems

*

load(i:Item)
unload(i:Item)
work()

unload(i:Item)load(i:Item)

<<enumeration>>
AcceptState

WaitingForOrders
Accepting
Rejecting

<<enumeration>>
LoaderState

Idle
WaitingForDelivery
Loading

bufferstransporters

name : String
pos : Position

FactoryUnit

AGV

«invariant»
AGV.allInstances()->size <= 5

*

currentUnit

processedItems : Integer

acceptStatus : AcceptState
loaderStatus : LoaderState
announced : Boolean

InputBuffer

load(i:Item)
unload(i:Item)
move(s:Station)
getDistance(f:FactoryUnit): Integer
getParkPos() : Position
getInputPos(s:Station) : Position
vacate(p:Position)
computeBid(s:Station): Integer

«invariant»
self.currentItems->size() <= 1

order: Boolean
dest: Station
bid: Integer
/ currentItem : Item

notify()

<<enumeration>>
Position

in
ou
ao
pm
mi
mo
am
pd
di
do

is-at-unit

{ordered}

is-inputBuffer-of

1

initiateNegociation()
(i:Item)«signal» rejectRequest

«signal» bidding(i:Item,n:Integer)
«signal» acceptProposal(i:Item)
«signal» rejectProposal(i:Item)

«signal» requestTransport(i:Item)
«signal» acceptBid(i:Item)
«signal» rejectBid(i:Item)

« »
NegotiationParticipant-Transport

interface

« »
NegotiationManager

interface

Basic class for
active classes of
the Manufacturing
System

<<enumeration>>
ItemStatus

Raw
inProcess
Final
Failure

nextDest() : Station

is-outputBuffer-of

stations

*

transporters

*

<<enumeration>>
MachineKind

Mill
Drill
Wash

Engine
Shaft

OutputStorage

<<enumeration>>
ItemKind

ad
pw
wi
wo
aw
c1
c2
c3
c4

1

«signal» cfpNewItem(i:Item)

« »
NegotiationParticipant-Destination

interface

announceOrder(i:Item)
acceptOrder()
rejectOrder()

1

1

Figure 2.2: Case Study Class Diagram (M1 Level)

2.3.1.1 Classes

Classes are given by rectangular boxes separated into horizontal sections. In the uppermost
compulsory section, a class name and optionally a stereotype and class properties are given;

22 CHAPTER 2. UNIFIED MODELING LANGUAGE

the other sections are optional and are used to specify attributes and operations. As abstract
classes are frequently used, for abbreviation purposes italic font is applied instead of explicitly
writing classname {abstract=true} (e.g.,FactoryUnit in Figure 2.2). Several additional
annotations for attributes can be applied that concern – among others – scope (whole class
or instances), visibility (public, package, protected, private), multiplicities, and initial values.
Similarly, operations can be annotated with scope and visibility, and additionally with typed
parameters (with kinds in, out, and inout) , a return type, and other properties, e.g.,{query} for
operations without side effects.

2.3.1.2 Associations

Edges between rectangles represent static relationships among class instances and are called
associations. Most frequently,binaryassociations, i.e., associations connecting two classes, are
applied in practice, but there are certain kinds of associations that need to be investigated in
more detail, i.e., aggregation and composition.

In order to improve expressiveness, associations can be annotated by different means:

• An association can be named, e.g., associationis-at-unit betweenItem andFacto-
ryUnit in Figure 2.2. A filled arrowhead shows the reading direction in this context.

• Association ends can optionally be named withrolenames. Such an annotation represents
the role a class plays in the association, e.g.,currentUnit in associationis-at-unit.
If no role name is given, the class name with a lower case first letter is used to navigate
along an association in the Class Diagram.

• Multiplicity restrictions attached to an association end are used to specify the number
of objects a given object on the opposite association end(s) can be associated with, e.g.,
in associationis-at-unit, eachItem object is associated with exactly one factory unit
object – nevertheless, that factory unit may change during run-time, as the association
end is not marked with{frozen}. A star ‘*’ indicates an arbitrary number of objects, i.e.,
0..* or simply* means that an object may be associated with any number of objects on
the opposite association end.

• Associated objects can be ordered as it is specified for items at factory units which are
ordered by the time of arrival in the corresponding factory unit.

• Arrowheads at association ends are used to explicitly specify the direction in which it
is possible to navigate from one object via an association to associated object(s). Nev-
ertheless, in practice undirected edges (i.e., no arrowheads at the association ends) are
interpreted as navigable in all directions, though this is not the standard!

Aggregation and Composition. Aggregation is often classified aspart-whole-relationship
and is represented by a hollow diamond at the association end which plays the role of thewhole.
Note that aggregation does not add any semantics to the association, because the participating
objects are still independent of each other, i.e., the existence of an object is not restricted by
establishing an aggregation relationship. This is different incompositions, a stricter variant of

2.3. DETAILS OF SELECTED PARTS OF UML 23

whole-part-relationshipthat is denoted by a filled diamond at one association end. In compo-
sitions,partsmay belong to at most onewhole, e.g., in associationis-buffer-of, a buffer in
the case study belongs to (or: is part of) exactly one station, and is only existing in the system
as long as the corresponding station is in the system.

Though the concept of aggregation and composition seems to be quite clear, a couple of
semantic issues arise, as one can distinguish betweendependencyandexclusivenessin part-of-
relationships. A dependent component object in this context refers to its existence in accordance
to its belonging whole. An exclusive component object refers to whether the part belongs to
one whole or more than one whole. It turns out thatdependent, not exclusivecomponent objects
cannot directly be modeled with UML concepts [HK03].

2.3.1.3 Generalization

Generalization is a relationship between a more specialized subclass and a more general parent
class (or: base class). Subclasses inherit characteristics like attributes, operations, and associ-
ations from parent classes. Generalizations are indicated by edges with a hollow triangle at-
tached to the parent class, e.g.,AGV is a subclass ofFactoryUnit in Figure 2.2. Semantically,
the notation with one superclass and several subclasses (as forFactoryUnit) is equivalent to
a corresponding number of simple binary generalizations, as, e.g., for superclassBuffer and
its subclassesInputBuffer and OutputBuffer. In UML, the concept of generalization is
not clearly separated from the classical concepts known for generalization. Classically, three
different conceptual kinds of generalization are distinguished [HK03, pages 48-51]:

1. Specification Inheritance. This concept basically complies to the substitutability prin-
ciple. One main aspect is contra variance: re-defined operations in subclasses may only
have a weakened pre-condition (or: larger definition set) and restricted post-condition (or:
restricted value set).

2. Specialization Inheritance. This is also calledis-a-relationship and can be best distin-
guished from specification inheritance by an example: Consider the two typesReal and
Integer. Each integeris-a real value, so we have a specialization inheritance. Neverthe-
less, re-definition of commonReal-operations usually require different inputs in subclass
Integer, e.g., the add-operation. Thus, the concept of contra variance mentioned above
for specification inheritance is violated, as the operation pre-condition is strengthened.

3. Implementation Inheritance. This kind of inheritance is mainly applied to re-use ex-
isting code and is usually established in late phases of development. A semantic relation
does not need to exist. Nowadays, it is refrained from implementation inheritance in
favor of aggregation. In UML, explicit annotation of generalization by{is-a} denotes
implementation inheritance.

Generalization in UML is heavily identified with the concept of substitutability, i.e., an instance
of a class may be used whenever an instance of a superclass is expected. Substitutability, how-
ever, is a particular characteristic of only one of the classical generalization semantics.

24 CHAPTER 2. UNIFIED MODELING LANGUAGE

2.3.1.4 Other Concepts

User-defined (finite) data types can be modeled byenumerations. The elements of enumera-
tions are calledliterals, e.g.,Mill,Drill, Wash for enumerationMachineKind in Figure 2.2.
For explicitly naming literals, double colon notation is used, e.g.,MachineKind::Mill. This
notation is in accordance with (hierarchical) states in UML State Diagrams (see Section 2.3.2).

Commentsandconstraints, in particular OCL invariants (see Section 2.3.3), are associated
by a dotted line with the corresponding class (see Figure 2.2).

In UML, an interfaceis is denoted by a rectangular box labelled with�interface� in front
of its name compartment. With interfaces, a particular set of operations is modeled. Classes
can realize interfaces, i.e., they provide the operations defined for an interface, when staying in
a realization relationship, indicated by a dotted line and a triangle at the interface end. E.g., in
Figure 2.2, output buffers realize the interfaceNegotiationManager for performing negotia-
tions among execution of transports, i.e., an output buffer object can In contrast, a UMLtype
in the sense of an abstract data type defines a value set for objects together with appropriate
operations, but in this case it is not intented to actually implement objects of the type.

Often, classes are needed that are mainly responsible to keep data (i.e., container classes) of
a certain type. In static modeling languages (like UML), this means that for each container class
that has a different data type to manage, a different class needs to be modeled. To overcome
this problem, parameters can be attached to classes. Notationally, this is indicated by a dashed
rectangle positioned over the upper right corner of theparameterized class. Inside the dashed
rectangle, the parameters are listed. For an example of a parameterized class, consider the OCL
standard library types description in Figure 2.11 on page 47.

There are several more concepts available in UML Class Diagrams, which are not of rele-
vance for the rest of this thesis and therefore not covered in detail, e.g., qualified associations,
dependencies, and roles. The reader is referred to the official specification [OMG03d] or the
several textbooks on UML, e.g. [BRJ99, FS99, HK03].

2.3.2 UML State Diagrams

For modeling (reactive) behavior of objects and operations in the context of UML, State Dia-
grams are applied. The UML State Diagram notation bases upon Harel’s Statecharts [Har87].
Generally, State Diagrams are graphs in which nodes represent (composite) states and directed
arcs represent transitions between states. Transitions are usually triggered on (external) stimuli,
i.e., perceived and dispatched events. In this section, we give an informal introduction on the
main concepts of UML 1.5 State Diagrams, so that it is possible to understand the formalizations
in Chapters 4 and 5.

Besides suchbehavioral state machines, the UML 2.0 Superstructure Proposal introduces
protocol state machinesthat are employed to model usage protocols [OMG03f, Section 15].
The corresponding graphical notation is especially tailored to define the lifecycle of objects
and the required order of operation invocations. In this context,interfacesandports are new
language concepts introduced in UML 2.0. However, we focus on behavioral state machines in
this thesis and therefore mainly refer to the UML 1.5 specification.

The official UML 1.5 specification informally defines State Diagram states and transitions

2.3. DETAILS OF SELECTED PARTS OF UML 25

as follows [OMG03d, Section 2.12.2.10].

A state [. . .] models a situation during which some (usually implicit) invariant
condition holds. The invariant may represent a static situation such as an object
waiting for some external event to occur. However, it can also model dynamic con-
ditions such as the process of performing some activity; that is, the model element
under consideration enters the state when the activity commences and leaves it as
soon as the activity is completed.

Conceptually, an object remains in a state for an interval of time and then changes to another
state without consuming time. It is commonly assumed that transitions take no time, conforming
to Harel Statecharts [Har87]. But generally, UML State Diagram semantics allow modeling
of non-instantaneous transitions as well as instantaneous, flow-through states (see [OMG03d,
Section 3.75.1]). However, there is currently no standard notation provided to explicitly specify
transition times.

Actions, Events, and Activities. At this point, it must first be clarified what UML considers
as anactionand as anactivity. In UML, an action is a specification of an executable statement.
Basically, an action can refer to sending a synchronous or asynchronous message (call action or
send action) to an object, creating or destructing an object, modifying a link or an attribute value,
or returning from a previously called operation. Execution of a call or send action generates an
eventthat is perceived by the addressed receiving object. Generally, the kinds of known events
are

• signal events (generated by asynchronous send actions),

• call events (generated by synchronous call actions),

• change events of formwhen (booleanExpr), used to continuously observe the boolean
condition to become true,

• time events, specified byafter (timeSpec) and used to denote a time at which the
transition has to be fired after entering the current state,

• (implicit) completion events raised after finishing an actions and activity within a state.

In contrast to actions that are conceptually seen to be atomic without consuming time, an
activity is interpreted as ongoing and time-consuming, though there are only rudimentary speci-
fication means to explicitly model the time or timing interval, in which an activity is completed.
Activities are specified either by computational expressions within a particular section of a state
specification (’do/-activity’) or by explicitly providing another State Diagram to describe the
corresponding behavior (e.g., as a nested state or as a stand-alone State Diagram associated
with the operation representing the activity).

26 CHAPTER 2. UNIFIED MODELING LANGUAGE

States and Transitions. States are represented as boxes with a name and an optional com-
partment for specification of actions and activities. An entry/-action is executed when the state
is entered (or: activated), then – during activation of the state – an activity may be performed
until the state is exited (or: deactivated). Just before exiting, an exit/-action may be performed.
There are several more advanced concepts for states, e.g., internal transitions, deferred events,
as well as so-calledpseudostates, in particular, initial states (denoted as black circles), shallow
and deep history states (denoted by an H or H* in a circle), final states (denoted by a ‘bull’s
eye’), static and dynamic choice states, and synchronization states. For more details on these,
the reader is referred to the previously recommended UML textbooks.

Transitions have a source and a destination state and can be annotated by an event specifi-
cationevt, a guard condition[grd], and actions to execute/act. Perceived events matching
the event specificationevt enable the transition to be taken, provided that the transition source
state is activated and that the transition guard[grd] evaluates to true. If there is no transition
event specified, the transition is fired after the activity of the source state has finished.

Composite States. State Diagrams can be hierarchically refined using OR-states and AND-
states. An OR-state is a composite state, in which at each time exactly one of its substates is
activated, when the OR-state is activated. In this context, the previously mentioned history states
can be applied. Entering an OR-state via a transition to a (shallow) history state re-activates the
substate that was the latest active one before the OR-state was previously left. By deep history
states, re-activation takes place on all subsequent hierarchy levels.

With AND-states, concurrent activated substates are modeled: theseorthogonal regionsare
graphically separated by dashed horizontal lines. This notion of refined states leads to a prece-
dence rule for transition selection that is different from former Statechart semantics; in UML,
transitions on lower levels take precedence over transitions of upper levels. More precisely,
for each pair of transitions with the same specified triggering event and valid guards, the rule
requests that if the transitions are ancestrally related (i.e., they do not only affect orthogonal
regions), the transition with the source state on the lower level is selected to be taken. Never-
theless, transitions that are not ancestrally related can be taken in parallel.

It is allowed to draw transitions among several state levels by crossing state boundaries
(i.e., interlevel transitions). For complex transitions that enter or leave AND-states, so-called
fork and join transitions can be applied, especially when other than the default initial states
should be activated in the entered orthogonal regions. However, in practice this notation is
more common in activity diagrams.

Dynamic Semantics. Execution of UML State Diagrams is controlled by (a) anevent dis-
patcherthat subsequently selects events from an implicitevent queueand (b) anevent proces-
sor that performsrun-to-completion steps(RTC-steps). In an RTC-step, first the set of fireable
transitions is determined based on the previously dispatched event and additional transition
conditions, i.e., the set of transitions that can potentially be taken. UML does not make as-
sumptions about the general functionality of the event dispatching mechanism, e.g., a first-in
first-out queue or based upon priority schemes for events. Nevertheless, some basic processing
rules are given, e.g., internally generated completion events take priority over external events.
It can happen that the set of fireable transitions for a dispatched event is empty; in this case

2.3. DETAILS OF SELECTED PARTS OF UML 27

the event is ‘consumed’ without any effect on the State Diagram. If the event is specified as
deferrable in the currently activated state(s), the event is re-entered into the event queue, or
otherwise just dropped. It can also happen that fireable transitions compete with each other, as
it is not allowed to fire them in parallel. In such cases, UML provides some rules (e.g., inner
transitions have higher priority) to help to determine the maximum consistent set of transitions
from the set of fireable transitions. Though, this does not prevent from situations in which non-
deterministic choices still have to be made. Having a set of consistent (or: enabled) transitions,
these transitions are then fired, subsequently executing the exit actions of the state(s) to leave,
the actions specified for the chosen transition(s), and the entry-actions and activities specified
for the entered state(s).

The official UML specification currently provides only an informal dynamic semantics of
UML State Diagrams by natural language in [OMG03d, Section 2.12.4], leaving open a couple
of semantic variation points, e.g., for event dispatching or storing deferred events. Different
approaches have captured the dynamic semantics of UML State Diagrams in a formal way, e.g.,
by an abstract interpreter [LP99] or ASMs [BCR00].

Active State Configuration. When a State Diagram is modeled with composite states, more
than one state can be activated at a certain point of time, and it can get confusing to speak
aboutthe current stateof a State Diagram. For dealing with such situations, the notion of an
active state configurationis used in UML [OMG03d, Section 2.12.4.3]. Unfortunately, that
informal definition is not concise, as final states are not considered to be part of the active state
configuration, although a UML State Diagram may reside in a final state for a notable period
of time, as illustrated in Figure 2.3. In that figure, possible active state configurations are listed
using the keywordFinalState for the final states.

S

M N

X Y Z

List of States:

R

S

S::A

S::B

S::A::M

S::A::N

S::A::FinalState

S::B::X

S::B::Y

S::B::Z

S::B::FinalState

T

List of Active State Configurations:

{R}

{S, S::A, S::B, S::A::M, S::B::X}

{S, S::A, S::B, S::A::M, S::B::Y}

{S, S::A, S::B, S::A::M, S::B::Z}

{S, S::A, S::B, S::A::M, S::B::FinalState}

{S, S::A, S::B, S::A::N, S::B::X}

{S, S::A, S::B, S::A::N, S::B::Y}

{S, S::A, S::B, S::A::N, S::B::Z}

{S, S::A, S::B, S::A::N, S::B::FinalState}

{S, S::A, S::B, S::A::FinalState, S::B::X}

{S, S::A, S::B, S::A::FinalState, S::B::Y}

{S, S::A, S::B, S::A::FinalState, S::B::Z}

{T}

A

B

R T

Figure 2.3: Active State Configurations

The State Diagram can be in the situation that OR-stateS::A has reached its final state, but
S::B is still in stateZ. ThusS::A resides in stateS::A::FinalState until S::B also reaches

28 CHAPTER 2. UNIFIED MODELING LANGUAGE

its final state. At that point of time, a completion event is implicitly generated and in the next
RTC-step, the transition to stateT is fired. As this (conceptually) happens without consuming
time, there is no active state configuration in which both substate reside in their final states.

AGV

Negotiator

ComputingBid

Transport

Idle

do/ load(currentItem)
exit/ dest := currentItem.nextDest()

MovingToLoad

Loading

MovingToUnload

Unloading

MovingToVacate

do/ unload(currentItem)
exit/ order := false

do/ move(dest)
exit/ pos := dest.pos

do/ move(dest)
exit/ pos := dest

when (order = true)

/ dest := getParkPos()
agv.vacate(p) [p = self.pos]

do/ move(dest)
exit/ pos := dest.pos

WaitingForAcknowledgement

s1.^requestTransport(i) [order = false]
/dest := getInputPos(s1)

WaitingForOrder

s2.^requestTransport(i) / send s2.rejectRequest(i)

entry/ currentItem := i
do/ bid := computeBid(dest)

/send s1.bidding(currentItem, bid)

s2.^acceptBid(i) [s2 = s1 and i = currentItem] /order := true

s1.^requestTransport(i) [order = true] / send s1.rejectRequest(i)

s2.^rejectBid(i) [s2 = s1 and i = currentItem]

Figure 2.4: State Diagram: Automated Guided Vehicle

Example 1: AGV State Diagram. To give a more concrete example, Figure 2.4 shows
the internal behavior of an AGV by two orthogonal regions. The upper one is for negoti-
ating orders w.r.t. transporting items. By default, the AGV waits for incoming requests to
perform a transport in stateWaitingForOrder. After a request from a station to execute a
transportrequestTransport(i), the AGV computes the estimated costs to get to the re-
questing stations1 in stateComputeBid and sends a message with a bid (i.e., the distance
to move) tos1. After bidding, the AGV is waiting for an acknowledgement or rejection of

2.3. DETAILS OF SELECTED PARTS OF UML 29

the bid in stateWaitingForAcknowledgement. We assume that an AGV can only take part
in one negotiation at a time, thus all other requests have to be rejected while being in state
WaitingForAcknowledgement. Similarly, if the AGV is in stateWaitingForOrder, but a
transport is still currently performed, i.e.,order = true, an AGV will reject any request for
transporting items.

The lower orthogonal region calledTransport is for actually executing a transport by ac-
tivities like moving to the station for loading, loading an item, moving to the destination station,
and unloading the item. In addition, when the AGV is standing at a position that needs to be
used by a different AGV, it can be required to vacate that position. Note here that the transition
from stateIdle to stateMovingToLoad is triggered by a change eventwhen (order=true).
Conceptually, it is permanently checked for this event to become true while stateIdle is ac-
tivated, and the transition is taken as soon as the conditionorder = true becomes true. The
statesMovingToLoad, Loading, MovingToUnload, andUnloading are left as soon as the as-
sociated activities and actions are finished, as their outgoing transitions are not annotated by a
triggering event.

2.3.3 Object Constraint Language

The Object Constraint Language (OCL) is a language to express restrictions in object-oriented
models. Originally calledbusiness modeling language, OCL was developed at IBM as part
of an object-oriented modeling method calledSyntropy[CD94]. In UML version 1.3, OCL
became part of the official UML specification. OCL expressions are either directly applied
by textual annotations within different UML diagram types or by separately listing them with
an additional explicit specification of their context. One remarkable application of OCL is its
use to formulate well-formedness rules for UML diagrams on the UML metamodel level (M2).
Precise OCL expressions have thus replaced informal and ambiguous semantical descriptions
that were given in English language in earlier versions of UML.

The concept of constraints in the field of object-oriented languages is not new. In [Mey97],
constraints are calledassertions, which are used to formulate pre- and postconditions for oper-
ations as well as invariants. These concepts became an integral part of the Eiffel programming
language already in the 1980s. Formulation of pre- and postconditions for operations is also
referred to as the principle ofdesign by contract, i.e., an agreement on correct execution of a
service between a client and a supplier. Both parties have obligations and rights: Concerning
the execution of the service (i.e., the operation) the client (i.e., the operation caller) is obliged to
meet the precondition, while the supplier (i.e., the operation callee) has the right to assume that
the precondition holds. The client can then expect that the supplier delivers the corresponding
result promised in the postcondition, and it is the obligation of the supplier to give that promised
result. James Rumbaugh, one of the co-founders of UML, classified constraints as a‘functional
relationship between entities of an object model’[RBP+91] in the sense that a constraint re-
stricts the potential values of model entities. Influenced by this work, Jos Warmer, the main
developer of OCL, similarly defines a constraint as follows [WK03, Section 1.5.1].

A constraint is a restriction on one or more values of (part of) an object-oriented
model or system.

30 CHAPTER 2. UNIFIED MODELING LANGUAGE

Naturally, it does not make sense to formulate constraints without a model to refer to. In the
context of OCL constraints, we will call the corresponding UML model thereferred UML user
model. Each Classifier1 defined within the referred UML user model represents a distinct OCL
type and is implicitly included in the OCL Standard Library as a subtype ofOclAny.

In the context of UML models, a constraint written in OCL can be one of the following.

• An invariantdefined for a class, type, interface, stereotype, or state,

• apre-or postconditionattached to an operation,

• a guard conditionattached to a transition (in State and Activity Diagrams) or a message
(in Sequence and Collaboration Diagrams),

• awell-formedness rulein the UML metamodel, given as an invariant over a metaclass.

Besides the official OCL language description as part of the official UML specification
[OMG03d, Chapter 6], available literature on OCL is limited to two textbooks with several ex-
amples [WK99, WK03], a book on recent research efforts w.r.t. OCL semantics and applications
[CW02], and a number of conference articles2.

OCL has a simple non-symbolic syntax defined by a context-free grammar. It claims to
be precise and unambiguous, but still easy understandable by designers in the area of object-
oriented technology, as OCL expressions are syntactically held in the style of a programming-
language notation [WK03]. OCL has a number of core concepts, e.g., it is declarative without
side-effects and has a set of predefined types dedicated to deal with object collections. Though
OCL is by now an official part of UML, it is currently only loosely coupled to the rest of UML,
as OCL is still missing a metamodel definition. Currently, there is just a context-free grammar
and an informal specification of the language concepts and its standard operations provided in
UML 1.5 [OMG03d, Chapter 6]. To overcome this deficiency, aUML 2.0 OCL Request for
Proposalshas been issued by the OMG [OMG00a]. An extensive answer to that call developed
by a team of leading OCL experts is can be found in [IHJ+03]. More recently, it has been
adopted by the OMG in October 2003 [OMG03b]. At the time of writing this thesis, the latter
document is still being finalized.

In the next two sections, we study the concepts and semantics of OCL based upon the
adopted version of the OCL 2.0 specification [OMG03b]. In Section 2.3.3.3, we will then
discuss open issues of the OCL specification.

2.3.3.1 Concepts

In terms of OCL, we generally speak of constraints fortypesinstead of using the UML terms
classifier, classes, interfaces, and data types.

1More precisely, one has to speak of ‘each instance of metatypeClassifier’, but we here adopt the terms
used in the UML specifications.

2A list can be found online at http://www.db.informatik.uni-bremen.de/umlbib

2.3. DETAILS OF SELECTED PARTS OF UML 31

Invariants. Invariants are restrictions on values of objects that have to hold ‘all the time’.
Invariants are defined in the context of classes, types, interfaces, and stereotypes. UML 1.5
also definesstate invariants, i.e., a special form of invariant for active classes. An invariant
must hold for every object of the specified contextual type. Within Class Diagrams, invariants
are notated in a comment box stereotyped by�invariant�. An invariant is associated with a
context. E.g., in the context of typeAGV in Figure 2.2, the following expression specifies the
invariant that restricts the number of items carried to be less or equal to 1:

self.currentItems->size() <= 1

whereself is an object of typeAGV. The keywordself refers to the object from where we start
to evaluate an OCL expression.

OCL invariants can also be specified in a separate document. In this case, the type of the
contextual instance is explicitly specified in a context clause as illustrated in the following
example.

context AGV inv: self.currentItems->size() <= 1

The context clause starts with the keywordcontext and is followed by the type. The labelinv
indicates that the constraint is an invariant. If the particular context is clear, theself keyword
can be omitted. As an alternative forself, an arbitrary name can be declared and used instead:

context vehicle:AGV inv: vehicle.currentItems->size() <= 1

Optionally, a name can be given to the constraint after the keywordinv, e.g.,

context vehicle:AGV inv maxNumberOfTransportedItems:
vehicle.currentItems->size() <= 1

In the UML metamodel, that name is an attribute of the metaclassConstraint.
We now briefly explain how to interpret an OCL expression. The dot ‘.’ is used to access

object features, i.e., attributes, opposite association ends (identified by their role names), and
operations and signals defined for the class of an object. In the examples above, the dot-notation
is used to navigate within the Class Diagram and yield those objects associated to the AGV
objectvehicle on the left via the association namecurrentItems on the right. In this case,
we get the set of all instances of classItem that are currently associated to a particularvehicle

object. An arrow-> indicates that the expression to its left represents a collection of objects.
OCL distinguishes between three kinds of collections: sets, multisets (or bags), and sequences.
The operation to the right of the arrow is applied to this collection. In our example, operation
size() returns the number of elements of the previously determined set of items.

To uniquely interpret the dot-notation used in OCL, some additional syntactical restrictions
apply to Class Diagrams. As the OCL dot-notation is used for both navigation by role names
(e.g., self.currentItems) and accessing attributes (e.g.,self.order), all navigable role
names and attribute names of a classifier must be pairwise distinct. Similarly, operation and
signal names (in combination with their parameters) of a classifier must be pairwise distinct.
Though these restrictions do not explicitly appear in the abstract syntax definition of Class
Diagrams, they are generally advisable to prevent misinterpretations. We therefore assume in
the remainder that Class Diagrams comply to these additional restrictions. In Section 4.1.5, we
will present corresponding formal definitions and restrictions.

32 CHAPTER 2. UNIFIED MODELING LANGUAGE

Pre- and Postconditions. As already mentioned, specification of pre- and postconditions can
be seen as a contract between an operation caller and the operation callee. Semantically, a
precondition has to be true at the beginning of execution of an operation, and a postcondition
has to be true right after the operation has ended. Similarly to invariants, pre- and postconditions
can be directly applied within Class Diagrams in comment boxes attached by a dotted line to an
operation. Figure 2.5 shows how pre- and postconditions can be attached to operations in Class
Diagrams. In this case, a precondition is attached to operationnextDest() of classItem. In
the considered operation, the next factory unit for an item has to be determined. The operation
determines the next destination when a transport by an AGV is required, i.e., when an item
currently is at the input storage or at one of the output buffers. The corresponding precondition
is shown in the figure.

«precondition»

{ not self.currentUnit.oclIsUndefined()}

Item

id : Integer
status : ItemStatus
kind: ItemKind

nextDest() : FactoryUnit

Figure 2.5: Pre- and Postcondition Notation

To show another form of representation, we now formulate the postcondition separately and
therefore have to explicitly specify the contextual operation as follows.

context Item::nextDest() : Station
post: let f = self.currentUnit in
if self.kind = ItemKind::Engine then
if f.oclIsTypeOf(InputStorage) then
result = Machine.allInstances()->

any(m:Machine | m.kind = MachineKind::Mill).inputBuffer
else
-- in this case it holds: i.currentUnit.oclIsTypeOf(OutputBuffer)
if f.oclAsType(OutputBuffer).machine.kind = MachineKind::Mill then
result = Machine.allInstances()->

any(m:Machine | m..kind = MachineKind::Drill).inputBuffer
else if f.oclAsType(OutputBuffer).machine.kind = MachineKind::Drill then
result = Machine.allInstances()->

any(m:Machine | m.kind = MachineKind::Wash).inputBuffer
else
-- in this case the machine kind must be Wash
result = OutputStorage.allInstances()->any(true)
endif

endif
endif

else -- in this case the item kind is ItemKind::Shaft;
[...] -- as this case is very similar, it is omitted in this example

endif

A postcondition is particularly used to specify the result of an operation. In the example
postcondition, only the case for item kindEngine is shown, while the other case for item kind
Shaft is omitted here, as it is very similar and does not show any new aspects. Recall that in

2.3. DETAILS OF SELECTED PARTS OF UML 33

our case study, items of kindEngine have to be subsequently transported to machines Mill,
Drill, and Wash, and then finally to the output storage.

Thelet-statement defines a local variablef referencing to the factory unit the item currently
belongs to. The type off is eitherInputStorage or OutputBuffer, as we can expect that the
precondition is met.

Assume now thatf is an instance ofOutputBuffer, i.e., f.oclIsTypeOf(OutputBuf-
fer) evaluates to true. In order to be type consistent, we have to perform a type cast
f.oclAsType(OutputBuffer) to be able to refer to the features ofOutputBuffer objects.
Then we can navigate to the machine object thatf belongs to, using the default association
namemachine, i.e., the class name ofMachine written with a first lower case letter. From
there, we can access attributekind that has one of the enumeration valuesMill, Drill, or
Wash. Based on that kind of machine, the next destination can be determined. The correspond-
ing destination input buffer is assigned to the predefined variableresult, indicating that this is
the value to be returned.

In a concrete system, there will be several machine objects, i.e., instances of classMachine.
ExpressionMachine.allInstances() then results in the set of currently existingMachine
objects. We can manipulate that set by different operations, one of which isany(expr). That
operation selects one arbitrary element that complies to the parameter expressionexpr. Thus,
if there were 2 machine objects of kindDrill, one of these is arbitrarily chosen. An implemen-
tation may consider additional information which machine is actually to be selected (e.g., the
current load of the machines, their reliability, their age), but this is not in the scope of the OCL
constraint at this stage of modeling. Finally, in order to extract the actual input buffer object,
we navigate fromMachine to association endinputBuffer.

OCL Types. OCL is a typed language, i.e., each OCL expression has a type that is either
explicitly declared or can be statically derived. Generally, an OCL expression can be built out
of subsequent basic expressions, separated from each other by dots and arrows. Evaluation of
a left hand expression part determines the domain of possible result values which is called a
type in terms of OCL. In turn, that type constitutes how the expression can be extended on
the right hand side, i.e., it must be one of the features (attributes, operations, association ends)
defined for the type determined by the left hand side expression. In order to reason about typed
expressions, we have to have atype systemas a basis that takes user-defined types (classes,
interfaces, etc.) as well as fundamental and generic types into account. The latter ones form
a core of predefined OCL types on the M1 level and are provided as a standard library in the
official UML specification (see Figure 2.6).

For a tight integration of OCL into the common UML language definition, a corresponding
metamodel for OCL types and expressions is needed that is still missing in the official UML
1.5 specification. There are publications that deal with defining a metamodel for OCL [RG99,
BH00], resulting in an extensive metamodel for OCL types and expressions as part of OCL 2.0
[OMG03b]. Figure 2.7 shows a slightly modified version of the OCL types metamodel of the
adopted OCL 2.0 specification.

The basic OCL metaclass isClassifier, taken from the UML core metamodel. Note that
all subclasses ofClassifier, in particularClass, Interface, andDataType, are implicitly
included. The new metaclasses introduced for OCL are shown in grey boxes.VoidType is

34 CHAPTER 2. UNIFIED MODELING LANGUAGE

Set

OclMessage

Bag

Sequence

OclAny

Real

OclVoid

Integer

BooleanOclState String

OclType

T

T

T

Collection

T

T

Figure 2.6: Predefined Standard OCL Types (Level M1) [OMG03b, Section 11.2, Figure 28]

the metaclass for the predefined OCL standard typeOclVoid on level M1. TupleType is the
metaclass for (parameterized) user-defined tuple types. Mathematical tuples together with the
usual operations for manipulation (e.g., projection and product) are a new concept in OCL
2.0. For more details on tuples, we refer to the discussion in Section 2.3.3.3. Metaclass
OclModelElementType represents those types that are needed to reference names of user-
defined model elements, in particular, class names of Class Diagrams and states of State Di-
agrams. Instances ofOclModelElementType are predefined enumerations on level M1, such
asOclType andOclState. The definition of metaclassCollectionType and its subclasses
for sets, ordered sets, bags (or: multisets), and sequences is of particular interest and deserves
a separate section. The same holds forOclMessageType that is the metatype of the new OCL
2.0 concept of OCL messages.

Table 2.3 gives a summary of predefined OCL types and their corresponding metaclasses to
explicitly show the interconnection of Figures 2.6 and 2.7.

Collections in OCL. Collections have a specified element type. All collection elements are
of that type. Note that not all possible collection types are actually instantiated, as that would
result in an infinite number of types when nested collections are taken in account. Though all
these types conceptually exist, particular collection types are only instantiated when actually
needed in an OCL expression.

Nested collections are not considered in the current UML 1.5 standard, i.e., when a
nested collection would appear as the result type of an OCL expression, it is always im-
plicitly flattened. E.g., assume that we have threeMachine objectsobj1, obj2, andobj3,
i.e. expressionMachine.allInstances(), is of OCL typeSet(Machine) and results in
Set{obj1,obj2,obj3}. Extending that OCL expression by navigating along associations to
classesInputBuffer andItem, the OCL expression

Machine.allInstances().inputBuffer.currentItems

2.3. DETAILS OF SELECTED PARTS OF UML 35

StructuralFeature
(from Core)

SetType SequenceType

CollectionType

+elementType

1

+collectionTypes

0..4

Classifier
(from Core)

DataType
(from Core)

Primitive
(from Core)

VoidType

+type

0..n 1

BagTypeOclModelElementType

Enumeration
(from Core)

OclMessageType

OrderedSetType

TupleType

Signal
(from Common Behavior)

Operation
(from Core)

+referredSignal

0..1

+referredOperation

0..1

Figure 2.7: OCL Metaclasses (Level M2) [OMG03b, Section 8.2, Figure 5]

results in a set of set of items currently associated with the machine input buffers, i.e., the
expected result type of that expression isSet(Set(Item)). But in the current OCL version as
defined in UML 1.5, this nested set is implicitly flattened to typeBag(Item), i.e., a flat multiset
of items (note that in this particular example, the bag is of course a set, as items cannot be at
two input buffers at the same time).

In contrast, OCL 2.0 now allows nested collections and introduces a new operation called
flatten() to explicitly flatten nested collections if necessary. With the latter approach, we
have to write

Machine.allInstances().inputBuffer.currentItems->flatten()

to get a simple set of items, i.e.,Set(Item) as a result type. As nested collections are a
reasonable concept that is also suitable for our intended OCL extension, we assume for the rest
of this thesis that OCL collections are not automatically flattened.

OCL Messages. Finally, the concept of OCL messages has been newly introduced to OCL 2.0
to specify behavioral constraints over messages sent by objects. The notion of OCL messages
is based on work presented by Kleppe and Warmer in [KW00, KW02]. Basically, an OCL
message refers to a signal sent or a (synchronous or asynchronous) operation called. While
signals sent are asynchronous by nature and the calling object simply continues its execution,
synchronous operation calls make the invoking operation wait for a return value. In contrast,
an asynchronous operation call is like sending a signal, such that a potential return value is
simply discarded. For more details about messaging actions, see the action semantics of UML
1.5 [OMG03d, Section 2.24]. Note here that the UML action semantics also definebroadcast
signal actions, while a corresponding kind of OCL message is not yet defined.

The concept of OCL messages enables modelers to specify postconditions that require that
specific signals must have been sent, operations must have been called, or operations must have
been completely executed and returned.

36 CHAPTER 2. UNIFIED MODELING LANGUAGE

Table 2.3: OCL Standard Library Types and their Metaclasses

Metaclass M1 Level Type Description
Classifier OclAny OclAny is the supertype of all types of the UML model

and the predefined types of the standard library.

OclType For eachClassifier in a UML model there is a corre-
sponding instance in (power)typeOclType.

VoidType OclVoid OclVoid is a type that conforms to all other types. The
only instance of OclVoid is OclUndefined.

OclModelElementType OclState For eachState in a UML model there is a corresponding
enumeration literal in typeOclState.

Primitive Real, Integer Common data types for numbers, boolean

Boolean, String values, and strings.

CollectionType Collection(T) Parameterized abstract type as a supertype for sets, bags,
and sequences. The template parameterT is substituted
by a concrete type, e.g.,Integer or Item.

SetType Set(T) Parameterized type to manage sets of objects of a typeT.

BagType Bag(T) Parameterized type to manage bags of objects of typeT,
i.e, objects may appear more than once in a bag.

SequenceType Sequence(T) Parameterized type to manage sequences of objects of
type T, i.e, objects may appear more than once and are
indexed by numbers.

TupleType Tuple(T) Parameterized type to define and reason about mathemat-
ical tuples. Actually, the template parameterT denotes
thesequence of typesthat represent the tuple components.

OclMessageType OclMessage(T) Parameterized type to capture messages sent from a
source object to a target object. Template parameterT
denotes a signal or operation.

OCL messages are obtained by the message operator^^ that is attached to atarget ob-
ject. For example, the OCL expressionvehicle^^move(aStation) results in the sequence of
messagesmove(aStation) that have been sent to the object determined byvehicle during
execution of the considered operation – recall that the considered expression must have been
specified in an operation postcondition. Each element of the resulting sequence is an instance of
typeOclMessage(T). For example, the type of OCL expressionvehicle^^move(aStation)
is Sequence(OclMessage(move(s:Station)).

One can make use of so-calledunspecified valuesto indicate that an actual parameter does
not need to have a specific value. Unspecified values are denoted by question marks, e.g.,
vehicle^^move(?:Station). Parameter types can be omitted in OCL message expressions,
but note that they might be necessary in order to refer to the correct operation when the operation
is specified more than once with different parameter types.

For example, assume that operationannounceOrder(i:Item) of anInput Buffer should

2.3. DETAILS OF SELECTED PARTS OF UML 37

send a request for transport to all known AGVs. The following postcondition uses a navigation
to the station (here: machine) to which the input buffer belongs in order to obtain all AGVs.

context InputBuffer::announceOrder(i:Item)
post: machine.transporters@pre->forAll(vehicle:AGV |

vehicle^^requestTransport(i:Item)->size() = 1)

By machine.transporters@pre, all AGVs known at the start of operation execu-
tion are obtained, i.e., the expression represents aset of AGV objectsthat were known
when the operation started. The postcondition then requires that exactly one message
requestTransport(i:Item) must have been sent to each AGV.

To check whether a message has been sent, thehasSent operator̂ can be used, e.g., the
expressionvehicle^move(aStation) results in true iff a messagemove(aStation) has been
sent (at least once) tovehicle during execution of the considered operation. However, this
operator cannot be used to restrict the number of times this message has been sent. More
examples can be found in [OMG03b, Section 7.7.3].

A formalization of OCL messages is not covered in the formal semantics of the adopted
OCL 2.0 specification, but a corresponding extension is proposed in [FM04].

Predefined Operations. For each of the standard library types, a number of operations is de-
fined to access and compare objects and values. Some were already introduced in the examples
discussed above, and we here only briefly summarize the predefined operations forOclAny in
Table 2.4 and further discuss collection type operations. Operations for primitive types such
as for typesReal or Integer are defined in a straight forward way and do not need further
explanations.

For all kinds of collections, operations likesize(), count(), includes(), andisEmpty()
are available. For more specific collection kinds, additional operations are defined. E.g., on sets
of objects, operations likeunion() or intersection() as well as type castsasBag() and
asSequence() are available.

For example, we require that each AGV object is associated with (at least) one input storage
and one output storage (note the two equivalent notations to express this property) and that it
knows all buffers in the system (as each AGV needs to access the positions of buffers).

-- each AGV object knows an input and an output storage and the
-- buffers of all stations
context AGV inv:
self.stations->select(s:Station | s.oclIsTypeOf(InputStorage))->notEmpty()
and
self.stations->select(s:Station | s.oclIsTypeOf(OutputStorage))->size() > 0
and
self.buffers->size() = Machine.allInstances().inputBuffers->size()

+ Machine.allInstances().outputBuffers->size()

The iterate operationneeds a special explanation. Starting from a collection of elements,
each element is subject to evaluation of an expression that results in accumulation by means
of an (implicit) result variable. For instance, if we wanted to sum up the overall number of
transformations on items, we can write

38 CHAPTER 2. UNIFIED MODELING LANGUAGE

Table 2.4: Operations of OclAny

Operation Return Type Description

obj = (obj2:OclAny) Boolean Checks for equality of two objects. Operation = can also
be used with inline notation, i.e.,obj = obj2.

obj <> (obj2:OclAny) Boolean Dual to operation =, inline notation is also allowed, i.e.,
obj <> obj2.

obj.oclAsType(t:OclType) t Performs a type cast for objectobj.

obj.oclIsTypeOf(t:OclType) Boolean Checks whetherobj is an instance of typet.

obj.oclIsKindOf(t:OclType) Boolean Checks whetherobj is of typet or one of its supertypes.

obj.oclIsNew() Boolean Used in postconditions to check whether an object has
been newly created when executing the corresponding
operation.

obj.oclInState(s:OclState) Boolean Checks whetherobj currently is in states, which is a
state of one of the State Diagrams attached toobj’s class.

obj.oclIsUndefined() Boolean Evaluates to true ifobj is not defined. Used in postcon-
ditions to check whether an object has been destroyed.

Machine.allInstances()->
iterate(processedItems:Integer; res:Integer=0 | res + processedItems)

There are several predefined useful operations that are directly derivable from operation
iterate(), e.g.,forAll(), exists(), select(), reject(), any(), andsum(). The pre-
vious example can thus also be formulated by

Machine.allInstances()->collect(processedItems)->sum()

As there is a shorthand notation forcollect() defined in OCL, we might even write

Machine.allInstances().processedItems->sum()

To give another example of a frequently applied kind of constraint, we require that item
objects must have different identifiers to uniquely distinguish them. The corresponding invariant
makes use of operationforAll() and two iterator variablesitem1 anditem2.

context Item inv:
Item.allInstances()->

forAll(item1 : Item | Item->allInstances()->
forAll(item2 : Item |

item1 <> item2 implies item1.id <> item2.id))

Alternatively, a shorthand notation is allowed that replaces the two nested iteration operations
forAll():

2.3. DETAILS OF SELECTED PARTS OF UML 39

context Item inv:
Item.allInstances()->

forAll(item1, item2 : Item |
item1 <> item2 implies item1.id <> item2.id)

In the latest OCL version, operationisUnique() was introduced to express this property in
a more compact form by:

context Item inv:
Item.allInstances()->isUnique(i:Item | i.id)

Undefined Expressions. It can happen that an OCL expression evaluates to an undefined
value. The following examples are all invalid OCL expressions.

-- (a)
42 + ’drill’

-- (b)
3.14 and true

-- (c)
AGV.allInstances()->collect(a:AGV | a.oclAsType(Station))

The first example applies a parameter of the wrong type (i.e., a string) to an Integer value
operation. The second example tries to apply a logical operation to a Real value, which is
not defined. And the third expression is undefined, as subexpressiona.oclAsType(Station)

evaluates to undefined, as that kind of type cast is not possible in our model. In all cases, the
result is referred toOclUndefined, i.e., the only instance of typeOclVoid.

Expressions Metamodel. We have seen various examples with more or less complex OCL
expressions. These are formed based upon a concrete syntax given by an attributed context-
free grammar. In order to give a more general definition of OCL expressions on the level of
an abstract syntax, an additionalOCL expressions metamodelis built that shows the general
structure an OCL expression may have. An overview of the expression types in that part of the
OCL metamodel is given in Figure 2.8. Associations and well-formedness rules among these
metaclasses and common UML metaclasses (e.g., Classifier, Operation, Attribute) then define
the general structure of OCL expressions.

We do not go into more details of the expressions metamodel here and refer to the adopted
OCL 2.0 specification for further readings [OMG03b, Section 8.3]. We are rather concentrating
on the concrete OCL syntax in the following.

Concrete Syntax: Attributed Grammar. The metamodel-based approach of the OCL 2.0
specification achieves a separation between concrete and abstract OCL syntax. Basically, one
can now define an own notation (e.g., a ’visual OCL’) and map this notation to the abstract
OCL syntax. However, the adopted OCL 2.0 specification suggests a concrete syntax that is
compliant with the current OCL standard [OMG03b, Chapter 9]. This concrete syntax is defined
by an attributed grammar that provides a mapping onto the abstract syntax. The motivation for

40 CHAPTER 2. UNIFIED MODELING LANGUAGE

ModelElement
(from Core)

OclExpression

PropertyCallExpLiteralExp IfExp VariableExp

ModelPropertyCallExp LoopExp

IterateExpIteratorExp

VariableDeclaration

NavigationCallExp OperationCallExp AttributeCallExp

CollectionLiteralPart

CollectionItem CollectionRange

UnspecifiedValueExp
CollectionKind
«enumeration»

LetExp

CollectionLiteralExp EnumLiteralExpPrimitiveLiteralExp

NumericLiteralExpBooleanLiteralExp StringLiteralExp

RealLiteralExp IntegerLiteralExp

Figure 2.8: Types of the OCL Expressions Metamodel [OMG03b, Section 8.3.10, Figure 12]

taking anattributedgrammar is ’the easiness of the construction and the clarity of this mapping’
[OMG03b, Section 9.1].

The attributed grammer comes with production rules in EBNF that are annotated with syn-
thesised and inherited attributes as well as disambiguating rules. The attributes are necessary
to provide rules for the purpose of well-formedness, in particular type checking.Inherited at-
tributesare defined for elements on the right hand side of production rules. Their values are
derived from attributes defined for the left hand side of the corresponding production rule. For
instance, each production rule has an inherited attributeenv (short for ‘environment’) that rep-
resents the rule’s namespace.Synthesised attributesare used to keep results from evaluating
the right hand sides of production rules. For instance, each production rule has a synthesised
attributeast (short for ‘abstract syntax tree’) that constitutes the formal mapping from concrete
to abstract syntax.Disambiguating rulesallow to uniquely determine a production rule if there
are syntactically ambiguous production rules to choose from.

As an example, we consider some of those production rules in the attributed grammar
that are defined for different kinds of operation calls in OCL. A production rule name is ap-
pended byCS to distinguish between concrete syntax element and its corresponding metaclass
OperationCallExp.

-- Production rules for OperationCallExpCS:
[A] OperationCallExpCS ::= OclExpressionCS[1]

simpleNameCS OclExpressionCS[2]
...
[C] OperationCallExpCS ::= OclExpressionCS ’.’

simpleNameCS ’(’ argumentsCS? ’)’
...
[H] OperationCallExpCS ::= simpleNameCS OclExpressionCS

2.3. DETAILS OF SELECTED PARTS OF UML 41

Option [A] is used for infix operations (e.g.,4 + 2), option [H] is for unary prefix ex-
pressions (e.g., unary operationnot applied to boolean expressions), while option [C] is the
rule for a common operation call. All other options are omitted in this example. By provid-
ing additional disambiguating rules, it is guaranteed to be able to uniquely determine one of
the possible optional production rules. In option [C], the context classifier is given by the re-
sult gained from applying production ruleOclExpressionCS, i.e., afterOclExpressionCS
on the right-hand side is deduced, we know its type (on level M1) and may refer to it by
OclExpression.ast.type. Furthermore, a ‘simple’ name of typeString is gained from
applying production rulesimpleNameCS, and a list of arguments in form of a sequence of clas-
sifier instances is gained from production ruleargumentsCS. In order to be able to correctly
deduce the non-trivial non-terminals on the right-hand side, we provide them the current list
of names that are visible from the current expression position. This information is kept in the
inherited attribute calledenv of a special type calledEnvironment with corresponding manip-
ulation operations. In our example it is just necessary to forward the environment information:

[C] OclExpressionCS.env = OperationCallExpCS.env
[C] argumentsCS.env = OperationCallExpCS.env

A mapping from the concrete to the abstract syntax is defined by re-typing synthesized
attributeast in each production rule to the corresponding expression metaclass. In the case of
OperationCallExpCS, we therefore define

OperationCallExpCS.ast : OperationCallExp

In order to store the information gained from applying a rule (e.g., option [C]), the abstract
syntax tree variable has to be updated. This is done by applying values from evaluating the
subexpressions of the right-hand side to features of the abstract syntax tree variableast. In the
case of operation calls, model elements of level M1 have to be searched and stored, i.e., a source
classifier instance, an instance of an operation, and a sequence of argument classifier instances.
For the source and the arguments, we simply pass the abstract syntax trees ofOclExpressionCS

andargumentsCS to the featuressource andarguments of OperationCallExpCS.ast, as
shown below.

[C] OperationCallExpCS.ast.source = OclExpressionCS.ast
OperationCallExpCS.ast.arguments = argumentsCS.ast
OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation(simpleNameCS.ast,

if argumentsCS->notEmpty() then
arguments.ast->collect(type)

else Sequence{}
endif)

For the operation name (that is of typeString due to applying rulesimpleNameCS), we have
to determine a corresponding operation instance (on level M1). We here make use of operation

lookupOperation(name:String, paramTypes:Sequence(Classifier)) : Operation

42 CHAPTER 2. UNIFIED MODELING LANGUAGE

This operation is one of the metalevel operations that are additionally defined for metaclass
Classifier in the context of OCL. On a given instancec of metaclassClassifier, operation
lookupOperation(name,paramTypes) returns an operation object (of level M1), if there is an
operation defined forc with matching name and parameter types. If there is no such operation,
OclUndefined is returned.

It is remarkable that there is a direct correspondence between the proposed concrete syntax
by means of an attributed grammar and the abstract syntax defined for OCL types and expres-
sions. The mapping is implicitly given by the attributes of the grammar. Note that OCL users
will not be confronted with the abstract syntax of OCL expressions - they will rather formulate
OCL constraints based upon a concrete language, preferably in the standard textual form as
proposed in the official UML specification. But now, one can think of well-defined alternative
styles, e.g., graphical representations of constraints as it was proposed in [BKPPT00]. Such
approaches can now be established by simply providing a mapping to the abstract syntax of
OCL.

2.3.3.2 OCL Semantics

At this point, readers should be able to interpret OCL constraints in an intuitive manner. Nev-
ertheless, a semantics has to be defined in order to be able to precisely answer the question:

Given the overall system state of a UML model (i.e., asnapshot), what is the actual
result from evaluating an OCL expression over that snapshot?

In recent years, different formal semantics have been published that define (parts of) earlier
versions of OCL, e.g., [RG98, CK01, BW02]. Interestingly, OCL 2.0 providestwo approaches
for the semantics of OCL. First a semantics definition is given by a set-theoretic mathematical
approach, based on [Ric01]. This will be discussed in more detail in the next chapter. The
other approach defines the semantics on the level of the UML metamodel, based on the report
‘Unification of Static and Dynamic Semantics for UML’ [KW01]. The structure is shown in
Figure 2.9. OCL metatypes as introduced before (cf. Figure 2.7) are found in subpackage
Types of packageOcl-AbstractSyntax.

Figure 2.9 shows how the packages relate to each other, and to the packages from the abstract
syntax. It shows the following packages:

• TheDomain package describes the values and evaluations. Note that this package resides
on layer M1 of the 4-layer architecture, while the abstract syntax resides on layer M2.
The package is divided into two subpackages:

– TheValues package describes the semantic domain, i.e., the set of possible values.
It represents the values that OCL expressions may yield as result.

– TheEvaluations package describes the evaluations of OCL expressions. It con-
tains the rules that determine the result value for a given expression.

• TheAS-Domain-Mapping package describes the associations of the values and evalua-
tions with elements from the abstract syntax, i.e., this package links the domain (on layer

2.3. DETAILS OF SELECTED PARTS OF UML 43

Values
(from Ocl-Domain)

Evaluations
(from Ocl-Domain)

Ocl-Domain

Types
(from Ocl-AbstractSyntax)

Expressions
(from Ocl-AbstractSyntax)

Ocl-AbstractSyntax

Type-Value
(from Ocl-AS-Domain-Mapping)

Expression-Evaluation
(from Ocl-AS-Domain-Mapping)

Ocl-AS-Domain-Mapping

Figure 2.9: OCL Semantics: Metamodel Packages [OMG03b, Section 10.1, Figure 14]

M1) with the abstract syntax (on layer M2). Note that theAS-Domain-Mapping package
itself cannot be positioned in one of the layers. It is also divided into two subpackages:

– The Type-Value package contains the associations between the instances in the
semantics domain and the types in the abstract syntax.

– TheExpression-Evaluation package contains the associations between the eval-
uation classes and the expressions in the abstract syntax.

To summarize the approach, the semantics of an OCL expression is given by associating
each value defined in the semantic domain with a type defined in the abstract syntax, and by
associating each evaluation with an expression from the abstract syntax. In turn, the value
yielded by an OCL expression based on a given snapshot of the UML model is the result value
of its evaluation.

2.3.3.3 Discussion

In recent years, complaints about the concrete OCL syntax could be observed, e.g., [Pad00,
Section 5]. For UML 2.0, the metamodel approach of OCL 2.0 might enable tool developers
to overcome this problem in the future. Tools could employ their own constraint language in
UML 2.0; they only have to provide a mapping to the OCL metamodel. Thus, a tool does
not have to stick to the concrete OCL syntax provided in the adopted OCL 2.0 specification.
For example, there is already work available on a visual OCL variant [BKPPT00, BKPPT01,
KTW02]. Related work with so-calledconstraint diagramsandconstraint treesis published in
[GHK99, KH02].

Mandel and Cengarle have shown that OCL does not yet have the expressive power of a
relational algebra [MC99]. A relational algebra is a collection of operations that take relations
(or: sets of tuples) as operands and result in a relation. Relational algebra uses operations
from mathematical set theory and specific operations developed for manipulation of data in

44 CHAPTER 2. UNIFIED MODELING LANGUAGE

the area of relational databases [EN00]. Fundamental operations areselect, project, difference,
union, and(cartesian) product, and several additional useful operations can be derived, e.g.,
intersection, division, andjoin. In standard OCL, operationsselect, difference, andunion are
already available, but as OCL currently does not have a notion of tuples, operationsprojectand
productare not supported. With the introduction of aTuple type and corresponding operations
on tuples [AB01] and the adoption in OCL 2.0 [OMG03b], OCL is gettingalmostthe expressive
power of a relational algebra and can be used as a query language similar to SQL. In this context,
Balsters explains in [Bal03] that the relationaljoin operation is still not suffiently supported in
OCL 2.0.

Besides the issues addressed in the OMG OCL 2.0 RfP [OMG00a], there are a number of
further unresolved issues in the OCL language definition, maybe the two most important and
frequently discussed among these are

• the role of undefined values, in particular in combination with logical operations [Ric01,
Section 4.2.5], and

• the interpretation of recursion in OCL constraints. Consider the operation postcondition

context AClass:fac(n:Integer) : Boolean
pre: n >= 0
post: result = if (n=0) then 1

else n * fac(n -1)
endif

In UML 1.5 as well as in the OCL 2.0 specification it is allowed that the right-hand-side
of such a definition may refer to the operation actually being defined (i.e., the definition
may be recursive)as long as the recursion is not infinite. But this statement still does not
solve what expressions like

context AClass:op() : Boolean
post: result = self.op()

are resulting in. Brucker and Wolff show two possible interpretations [BW02]. Either
such expressions are illegal, or the result is the undefined valueOclUndefined. Unfortu-
nately, the first solution requires a notion of well-formedness that is undecidable, i.e., not
machine-checkable. The second is consistent with theleast fixpointsemantics [Win93]
and was proposed in the Amsterdam Manifesto on OCL [CKM+99, CKM+02].

From the OCL language concepts, the type system is by now in a considerable stable situ-
ation. Though, the role of typeOclType is discussed controversially in different publications.
In the sequel, we therefore consider once more the type system of the OCL 2.0 specification
and review the definition and usage of typeOclType within the OCL language definition and
different approaches in literature.

2.3. DETAILS OF SELECTED PARTS OF UML 45

The Role of OclType. In OCL expressions, it is sometimes necessary to access user-defined
classes, e.g., to perform type casts, to check for a certain subtype, etc. There are different
possibilities to provide access to such instances of metaclassClassifier:

1. The current standard as defined in UML 1.5 usesOclType and refers to is as ametatype,
as it reads in (cf. [OMG03d, Section 6.8.1.1]):

All types defined in a UML model, or pre-defined within OCL, have a type.
This type is an instance of the OCL type called OclType. Access to this type
allows the modeler limited access to the meta-level of the model. This can be
useful for advanced modelers.

There are even pre-defined operations provided forOclType to further access metalevel
features, e.g., operations to get the list of attribute names, association end names, and
direct as well as indirect supertype names (surprisingly, operations to extract subtypes are
missing).

Modelers are thus able to access the metalevel (level M2). Note that this breaks up the
4-layer architecture underlying the UML modeling approach.

2. In contrast, Baar and Ḧahnle suggest to modelOclType as a pure metatype [BH00] with-
out access for the modeler (see Figure 2.10). Operations as mentioned above do not need
to be defined onOclType in their approach, as the UML core metamodel already pro-
vides such means, either directly or indirectly (by navigation along associations in the
UML core metamodel). I.e., that approach also allows direct metamodel access. It is
worth noting in this context that nested collections are not possible in that metamodel.

3. Richters proposes in his OCL type metamodel a metatypeOclTypeType with OclType as
its only instance on level M1 [Ric01, Section 6.4]. Moreover, all classifiers of the referred
UML user model are maintained by an additionalObjectType, i.e., a bijective function
between instances ofObjectType and user-defined classes is established. Semantically,
the domain of an object type is the set of object identifiers defined for the class and its
children.

4. In the adopted OCL 2.0 specification,OclType is now residing on level M1 as a sub-
type ofOclAny. It is regarded as an enumeration of the classifier names of the referred
UML user model. Its corresponding metaclass isOclModelElementType, a subclass
of Classifier (more precisely,OclModelElementType is a subtype ofEnumeration).
The operations previously defined onOclType are no longer available, as instances of
OclType are only used as parameters in some operations of typeOclAny, namely in op-
erations

1. oclIsKindOf(t:OclType) : Boolean
2. oclIsTypeOf(t:OclType) : Boolean
3. oclAsType (t:OclType) : instance of OclType -- Arguable! See below.

46 CHAPTER 2. UNIFIED MODELING LANGUAGE

superType

subType

conform

*

*

name : String

<<abstract>>

OclType

CollectionType

<<abstract>>

Collectable

Class
(from Core)

DataType
(from Core)

<<enumeration>>

OclBasicKind

OclAny

Real

Integer

String

Boolean

OclExpression

OclState

Classifier
(from Core)

OclBasicType

1 descriptor

* *

1

elementType 1

CollectionConstructor

Bag

Set

Sequence

Collection

<<enumeration>>

CollectionKind

descriptor1

superConstructor

subConstructor

0..1

*

Figure 2.10: OCL Type Metamodel Proposal by Baar and Hähnle [BH00]

Note thatoclAsType() actually does not return an instance ofOclType, as this refers to
an enumeration literal, e.g.,OclType::InputBuffer whenOclType is an enumeration
type. That operation rather returns an object re-typed to the used-defined typewith the
namerepresented by parametert. It is better to specify in this case:

obj.oclAsType(t:OclType) : OclAny

context OclAny::oclAsType(t : OclType) : OclAny
post: if self.oclIsKindOf(t) then

result = self and result.oclIsTypeOf(t)
else

result = OclUndefined and result.oclIsTypeOf(OclVoid)
endif

Parametert denotes by definition an instance of metaclassClassifier, asOclType is
a powertype over classifiers. Only ift is a subtype of the current context determined by
self, re-typing can take place. In all other cases,OclUndefined is returned.

With the latter approach in mind, it is better to modelOclType as a powertype forOclAny,
as illustrated in Figure 2.11. The powertype concept is a dependency relationship among a
generalization and gives access to specialized types as instances. It is thus a more natural way
to represent the elements ofOclType that does not need to redefine classifiers in an additional
enumeration.

2.3. DETAILS OF SELECTED PARTS OF UML 47

«datatype»
Set

«datatype»
Collection

«datatype»
Bag

«datatype»
Sequence

OclAny

«datatype»
Real

«datatype»
OclVoid

«datatype»
Integer

«datatype»
Boolean

«enumeration»
OclState

«datatype»
String

T

T

T

T

«powertype»
OclType

«powertype»

{complete, overlapping}

...

This branch indicates that
all user-defined classifiers
on level M1 are subtypes
of OclAny

«datatype»
OclMessage

T

Figure 2.11: OCL Standard Library Types Proposal

OCL and State Diagrams. In UML 1.5 there is a specific new kind of invariant defined that
has not yet received much attention; so-calledstate invariantscan be formulated and attached to
a specific states in a State Diagram associated to classc [OMG03d, Section 2.5.2.13]. Basically,
this is equivalent to a common OCL invariant of the form

context c inv:
self.oclInState(s) implies <stateInvariantExpression>

Surprisingly, there is still no semantics definition for state invariants and state-related oper-
ationoclInState(s:OclState), and even in the adopted OCL 2.0 specification this issue is
missing. To overcome this, we are going to integrate a general State Diagram description to the
current semantic model of OCL in Chapter 4.

2.3.4 UML Extension Mechanisms

Although UML is a general purpose modeling language, it has mechanisms that can be applied
to tailor UML to specific domains, i. e., to perform a specialization by introducing restrictions
on the general UML metamodel (layer M2 in Table 2.1). In terms of UML, the facilities for
metamodel specializations are referred to asUML extensibility mechanisms. The standard UML
extensibility mechanisms are stereotypes, (user-defined) tagged values, and constraints. These
modeling elements are capable of adapting the UML semantics without changing the actual
UML metamodel. They are often calledlightweight extensibility mechanisms, in contrast to a
direct manipulation of the UML metamodel, which can be seen as heavyweight extensibility
mechanisms (e.g., adding new meta classes and associations).

Stereotypesare classifications of existing model elements. They are an alternative way to
introduce specialized model elements without adding subclasses in the actual metamodel. It is

48 CHAPTER 2. UNIFIED MODELING LANGUAGE

possible to specify hierarchies among stereotypes, and besides the textual annotation in double
square brackets that identifies a stereotype (e.g.,�metaclass�), it is also allowed to introduce
a completely new notation (i. e., a graphical symbol) for a stereotype. In practise, stereotypes
are mainly applied to model elements in order to embed their corresponding diagram type into
the different stages of a software development process. E.g., in [OMG03d, Section 4.3.5] the
stereotypes�entity�, �control�, and�boundary� are introduced to specialize the notion
of classes. The stereotype semantics are informally described and a graphical notation is in-
troduced for each stereotype. The stereotypes are used to model UML classes as passive enti-
ties without initiative to interact, control classes that manage interactions between objects, and
’peripheral’ boundary classes that build an interface to actors outside of the regarded system.
Tagged valuesare characteristics of UML metamodel elements or stereotypes that restrict the
model elements by key/value pairs. Additionally, constraints can be defined to specify con-
sistency rules of and between model elements, often also denoted as well-formedness rules.
Constraints can be expressed in natural language or by use of the Object Constraint Language
(OCL, see Section 2.3.3). Although there currently is no official specification that provides a
standard for applying the presented extension mechanisms to specialize standard metamodels
like the UML, a white paper on the UML profile concept has been released by the OMG Section
[OMG99]. In that article, first the general requirements for adequate extension mechanisms are
identified, before the notion of a profile is defined as follows:

A Profile is a specification that specializes one or several standard metamodels,
called the reference metamodels. [. . .] A Profile is a consistent definition con-
text for elements such as, but not limited to, well-formedness rules, tagged values,
stereotypes, constraints, semantics expressed in natural language, extensions to the
standard metamodel and transformation rules.

Popular examples of proposed UML profiles are UML-RT [SR98], the UML Profile for
CORBA [OMG00b], and the two UML Profiles for Business Modeling and for Software De-
velopment Processes published in the UML 1.5 specification [OMG03d, Chapter 4].

2.4 UML and Time

The UML standard already provides a variety of means to construct object-oriented models.
However, several aspects of real-time systems development require additional constructs that
are not directly covered in standard UML. UML can be naturally extended to better define and
design real-time systems using the extension mechanisms described before in Section 2.3.4. Re-
sulting models are then tailored more accurate towards the specific domain, and implementation
can be performed in a more straightforward way.

In the following, we describe

1. language elements the UML itself provides to specify timing issues (Section 2.4.1),

2. approaches that extend UML to better modelarchitectural aspectsof real-time systems
(Section 2.4.2), and

2.4. UML AND TIME 49

3. approaches that extend State Diagrams to capturebehavioral aspectsof real-time systems
(Section 2.4.3).

2.4.1 Time and Timing Constraints in Standard UML

For modeling aspects of real-time, UML provides language elements for timing marks, time
expressions, and timing constraints to be used in Sequence and Collaboration Diagrams. Figure
2.12 shows a Sequence Diagram with a phone call scenario [OMG03d, Section 3.60.3]. In that
figure, the annotations in curly brackets are timing constraints composed by time expressions.
On level M2,TimeExpression is seen as a statement to define the absolute or relative time of
occurrence of an event. There is no particular format defined for time expressions and timing
constraints in UML, and annotations as shown in Figure 2.12 must therefore be seen as sugges-
tions for UML users. Labels a,b,c, and d in Figure 2.12 are timing marks that can be referred
to in time expressions. An alternative notation is shown at the lower right bottom of Figure
2.12. A corresponding time expression could bef.receiveTime - e.sendTime < 1 sec,
but note that the notation is ambiguous when the arrows are horizontal, because sending and
receiving time cannot be distinguished.

exchange

b: dialTone

receivercaller

a: liftReceiver

c: dialDigit

d: route

phone rings

e: answer phone

f: stop ringingstopTone

{b.receiveTime
- a.sendTime < 1 sec}

{d.receiveTime
- d.sendTime < 5 sec}

The call is routed
through the network

At this point the
parties can talk

{c.receiveTime
- b.sendTime < 10 sec}

< 1 sec.

ringing tone

Figure 2.12: UML Sequence Diagram Example [OMG03d, Section 3.60.4, Figure 3-55]

As messageis standing for a specification concept in UML, actual messages sent between
objects are calledstimuli in UML. FunctionssendTime() (i.e., the time at which a message is
sent by an object) andreceiveTime() (the time at which a message is received by an object)
are applied to stimuli names to yield a time. Unfortunately, there is no semantics description in
the UML specification about those times. UML even suggests that users invent further timing
functions when needed for particular domains or implementations, e.g.,executionTime(). A
semantics, however, is not in the scope of UML, and an appropriate mapping to a well-defined
time expression has still to be provided.

The UML Language User Guideshows a way to apply time expressions to operations
[BRJ99, page 324] with standard UML: A note with tagged valuesemantics is attached to
an operation. In that note, a time expression then specifies the operation’s time complexity.

50 CHAPTER 2. UNIFIED MODELING LANGUAGE

This typically represents the minimal/maximal time of expected completion of an operation ex-
ecution. Such specifications can be used in different ways. E.g., the resulting running system
can be compared with the asserted times specified in the model. Alternatively, by adding up
(asserted or actual) operation times, compound times of entire transactions can be calculated.

In theUML 2.0 Superstructure Proposal[OMG03f], Sequence Diagrams are now equipped
with improved modeling elements for time bounds. Arcs that represent messages that are sent
between objects can now be annotated by expressions that refer to

• duration observations (e.g., ‘Code d = duration’),

• duration constraints (e.g., ‘{d..3*d}’),

• time observations (e.g., ‘t=now’), and

• time constraints (e.g., ‘{t..t+3}’).

Moreover,Timing Diagramsare one of the new kinds of diagrams in UML 2.0 [OMG03f,
Section 14.4]. Timing diagrams model changes of object states over time along a linear time
axis. Basically, modelers can specify conditions that imply object state changes as part of object
lifelines. The behavior of objects as well as interactions among objects can thus be restricted.
Though some examples are provided and a guideline for the basic graphical notation is given
in the UML 2.0 superstructure proposal, the semantics description of timing diagram is still
incomplete, e.g., the semantics of tick mark values and timing rulers is unclear.

2.4.2 Modeling Real-Time System Architectures with UML

To overcome the limited means for modeling time and related aspects in UML, several compet-
ing and complementary proposals to extend UML have been developed. These are specifically
tailored to the domain of real-time systems, i.e., focusing on aspects like system architecture,
communication mechanisms, and real-time constraints. In this context, the approach known as
RT-UML by B.P. Douglass completely sticks to standard UML [Dou00]. Douglass restricts on
using stereotypes to explain the purpose of model elements that commonly occur in the real-
time domain. E.g., a variety of message stereotypes is presented to represent synchronization
and message arrival. The CASE tool Rhapsody is an implementation of RT-UML3.

Another widely recognized work of real-time systems modeling with UML is the UML-RT
profile based on the ROOM methodology [SR98, Sel99, RS01] and implemented by Rational
RoseRT4. The key concepts of ROOM arecapsules, ports, connectors, protocols, and a spe-
cific variant of State Diagrams. Capsules represent components of real-time systems and have
explicit external interfaces specified by ports. Connectors between ports represent (logical)
communication between capsules. Protocols are defined independently of capsules and repre-
sent reusable interfaces for communication by specifying roles for participants with allowed
incoming and outgoing messages. Ports implement these participants, i.e., two ports may com-
municate when their corresponding protocol roles are compatible.

3http://www.ilogix.com
4http://www.rational.com/products/rose

2.4. UML AND TIME 51

There are a number of other tools available that deal with development of real-time systems,
e.g., the Telelogic TAU5 suite uses SDL combined with UML and ARTiSAN offers a tool called
Real-Time Studio6. An extensive list of UML tools together with their provided functionality is
available online7.

The fact that a number of different (tool-based) modeling techniques have emerged for de-
veloping real-time systems led to a variety of different notations and terminologies. The OMG
therefore issued a Request for Proposals on aUML Profile for Schedulability, Performance, and
Time (SPT)that shall provide a common framework by means of UML that one the one hand
covers this diversity but one the other hand still offers flexibility for further specializations. An
extensive submission on that Request for Proposals has been submitted by leading CASE tool
vendors in the domain of real-time systems development (i.e., ARTiSAN, I-Logix, Rational,
Telelogic, TimeSys, and Tri-Pacific). That submission is at time of writing still being reviewed
by the OMG [OMG03c].

All UML tools and the UML profile for SPT have only limited support for temporal (con-
straint) specification. Temporal operators are basically timers with a fixed duration, e.g.,
after(t). Currently, such properties can only be formulated in (stereotyped) notes without
a standard semantics. It is thus not possible to verify whether a UML model satisfies temporal
constraints. Different working groups therefore attempt to provide UML with a formal seman-
tics, e.g., the pUML initiative (precise UML)8 or the 2U consortium (unambiguous UML)9.

2.4.3 Time-Annotated State Diagrams

While there are several publications available on introducing timing aspects in different
behavior-related UML diagrams (e.g, [EW01] for Activity Diagrams), this Section focuses on
approaches regarding timed variants of UML State Diagrams. As there are also a significant
number of works on Harel Statecharts in this context published, we also briefly mention these,
as they have heavily influenced more recent works on UML State Diagrams.

In 1987, Statecharts were introduced by Harel [Har87] to overcome the limitations of clas-
sical flat, unstructured state-transition diagrams. Statecharts basically introduce hierarchical
states and additionally support parallel substates and broadcast communication. The opera-
tional semantics of Statecharts was first defined by Harel et al. in [HPSS87], providing a notion
of steps and microsteps. That semantics bases on the so-calledsynchrony hypothesisthat as-
sumes that the system instantaneously reacts on inputs coming from the environment. The
environment is seen as a discrete process sending inputs at successive points of time. It is as-
sumed that the system’s reactions on inputs at timet are completed before the inputs at time
t+ 1 occur.

However, this semantics showed some drawbacks, in particular, causal paradoxes could
occur due to negated events in transitions. This problem was overcome by Pnueli and Shalev in
[PS91] by a notion of globally consistent steps that guarantees the causality principle. Basically,

5http://www.telelogic.com
6http://www.artisansw.com
7http://www.jeckle.de/umltools.htm
8http://www.puml.org
9http://2uworks.org

52 CHAPTER 2. UNIFIED MODELING LANGUAGE

they forbid that the cause attached to a transition may appear as a negated consequence in
the same step. Several variants of Statecharts have also been published by other authors with
different semantics definitions. But it is out of scope of this thesis to give a detailed overview
of these works, and we refer to [Bee94, Lev97] for further readings.

In 1996, Harel and Naamad pointed out in their article on ‘The STATEMATE Semantics of
Statecharts’ [HN96]:

Being an unofficial language, statecharts clearly have no official semantics, and
researchers are free to propose semantics as they see fit. However, the only im-
plemented and working semantics for statecharts has for many years been the one
described here. [. . .]

The main difference [. . .] was whether changes that occur in a given step (such as
generated events or updates to the values of data items) should take effect in the
current step or in the next one.

Harel originally proposed to allow such effects within the same step [HPSS87], while in the
STATEMATE semantics, generated events and value updates take effect in the next step (which,
however, may happen still at the same point of time).

STATEMATE supports discrete simulation time with a global clock. In the asynchronous
execution mode, the clock is only incremented at (super-)step boundaries to the next relevant
clock tick, determined by counters handling time-outs and scheduled actions.

Statecharts became also prominent in the area ofobject-oriented system modeling, espe-
cially with the emergence of the first UML specifications after fall 1995. As the semantics of
UML State Diagrams is only informally specified in the official OMG specifications, many re-
searchers have published works on formalizations of (subsets of) UML State Diagrams in recent
years, e.g., [BCR00, JEJ02, Kus01, Kwo00, LMM99b, LP99, RACH00, SKM01, Bee01].

Object-oriented UML State Diagrams exhibit a behavior different from structural State-
charts like Harel or STATEMATE Statecharts, the most important of which are

• point-to-point communication between objects instead of broadcast via channels,

• an implicit event queue storing incoming events instead of an event set,

• reaction on one event at a time by dispatching instead of reacting to all current input
events,

• input events may exist for an arbitrary time instead of one time unit only,

• non-instantaneous communication instead of instantaneous communication,

• activities that take time in addition to instantaneous actions,

• distinction between types and instances instead of pure instance level modeling,

• encapsulation instead of separation of data and control.

2.4. UML AND TIME 53

Explicit Timing Mechanisms in State Diagrams. Formalizations that explicitly introduce
timing mechanismsto Statecharts, let it be Harel’s, STATEMATE, or UML State Diagrams.
The following list provides an overview of existing work in this area without claiming that this
list is complete.

• Kesten and Pnueli [KP92] introduceTimed Statechartsin which transitions are annotated
by timing intervals, denoting the lower and upper bounds of a transition. A global clock
is used for synchronous progress of time.

• Leung and Chan [LC96] introduce time-annotated transitions to Harel Statecharts, using
Duration Calculus[CHR91] to define the underlying semantics. This implies some se-
mantic changes w.r.t. the synchrony hypothesis as well as duration and consistency of
actions and events.

• Maggiolo-Schettini and Peron [MSP96] use time durations associated to transitions. In
this context, Levi’s PhD thesis [Lev97] defines a compositional timed Statechart seman-
tics by a translation to a process language calledT SP with discrete time.

• Petersohn and Urbina [PU97] present a timed semantics of STATEMATE Statecharts by
clocked transition systems with internal clocks and discrete time.

• Damm et al. [DJHP98] define a variant of STATEMATE Statecharts dedicated to per-
form compositional model checking. The semantics differs from the article by Harel
and Naamad [HN96] in the sense that it provides a compositional semantics based upon
synchronous transition systems.

The article focuses on the asynchronous semantics (or super-step semantics) of the
STATEMATE simulation tool, in which it is distinguished between internally and ex-
ternally generated events. External events are only consulted at the first step and are
communicated to the environment not until completion of a super-step, while internal
events will be sensed already in the next step.

• Eshuis and Wieringa [EW00] propose a formal real-time semantics for UML State Di-
agrams at requirements level, adapting the STATEMATE semantics of [HN96]. Local
variables, real-time, point-to-point communication, synchronous communication, and dy-
namic creation and deletion of objects are addressed.

• David, Möller, and Yi [DM01, DMY02] give a translation of restricted UML State Dia-
grams to flat UPPAAL timed automata. Among the preserved State Diagram concepts are
state hierarchy, parallel composition, synchronization of remote parts, and history entries.
Additionally, they equip State Diagrams with local clocks.

• Del Bianco, Lavazza, and Mauri [DLM02] define – based on previous own work [LQV01]
– a timed UML State Diagram semantics by a translation to a first order temporal logic
called TRIO. Though, several restrictions on UML State Diagrams are applied. Newly
introduced specification means include concurrent events attached to transitions, guards

54 CHAPTER 2. UNIFIED MODELING LANGUAGE

with references to events to formulatenegated events, and extension of the timeout mech-
anismAfter(t), such that an intervalAfter(a,b) may be specified, in which a state
may be left. It is also possible to get the latestoccurrence timeof a transition.

• Knapp, Merz, and Rauh [KMR02] describe model checking of UML State Diagrams in
a prototype implementation called HUGO/RT, in which each time-annotated State Dia-
gram is translated to a flattened UPPAAL timed automata and an additional automata is
generated for each event queue. The current status does not cover parameters attached to
events, deferred events, history states, and more than one instance of a class.

• Burmester defines in his thesis a UML State Diagram variant calledRealtime Statechart
that extends state descriptions in various ways [Bur02]. One focus of that work is to
generate real-time code (Realtime Java code).

All standard features except elapsed time events and change events are kept in this ap-
proach. Additionally, Realtime Statecharts may be equipped with a number of local
clocks. Each state may have atiming invariant that specifies the latest time it should
be left again, similar to invariants of timed automata.Clock resetsare attached to entry-
and exit-operations to reset local clocks. Worst-case execution-times (wcet) are attached
to operations that specify how long execution of an operation will take. A do-activity
may have a specified period, as do-activities are interpreted as being operations that are
periodically executed until a triggering event is dispatched. Transitions may additionally
carry time guards, clock resets, a deadline, a wcet, a priority, and synchronization signals.

Due to the number of introduced concepts, several methods are investigated to check
temporal consistencies among a Realtime Statechart. A formal semantics of Realtime
Statecharts is given by a mapping toextended hierarchical timed automata, that in turn
are based on hierarchical timed automata as presented in [DM01].

2.5 Contributions of the Chapter

The contributions of this chapter can be summarized as follows.

• A review of selected parts of the UML is given, i.e., UML Class Diagrams, State Dia-
grams, the Object Constraint Language, and UML extension mechanisms.

• A proposal for a better representation of built-in typeOclType within the OCL Standard
Library is presented. Though access to the metamodel cannot be abolished, the proposed
approach offers a way to access the metalevel M2 in a controlled way. As a consequence,
a number of issues that are currently ill-defined in the OCL 2.0 specification could be
resolved [Fla04], e.g., specifications for operations likeoclAsType() can now be formu-
lated by means of OCL postconditions.

• A review of timing issues within the different UML specifications and corresponding
profiles is given, with an emphasis on timing annotations on behavioral elements such as
messages sent and state transitions.

Chapter 3

Formal Verification

Beware of bugs in the above code;
I have only proved it correct,

not tried it.
– Donald E. Knuth1, 1977

For certain computer systems – whether they are hardware, software, or a combination of both –
it is desirable to guarantee their correct execution. The question is no longer only ‘Do we build
the right system (w.r.t. the client’s requirements)?’, but rather ‘Do we build the system right
(w.r.t. the expected system behavior)?’. This is especially important forsafety-critical systems,
i.e., those systems whose failure could result in loss of life, significant property damage, or
damage to the environment. Typical examples of safety-critical systems are medical devices,
aircraft flight control systems, and nuclear systems. But correct execution is also important for
the large number ofcommercially critical systems, i.e., those systems whose failure would lead
to enormous financial loss, e.g., in the domain of chip mass production.

Different approaches are used to analyze the correctness of a system. Frequently applied
techniques aretestingandsimulation. These techniques can become very time consuming –
especially in late phases of development – and do not consider all possible executions. Testing
is performed withtest casesthat are identified in early phases of development and represent
either typical or critical inputs. However, successful testing does only mean that the investigated
test cases run correctly. Simulation only regards a limited number of executions and can thus
only confirm that the investigated executions do not lead to erroneous situations.

Instead, formal verification techniques can investigate the complete state space of a sys-
tem or, more precisely, a model of the system. Formal verification techniques comprise three
different parts [HR00]:

• a framework for modeling systems, i.e., most typically a description language,

• aspecification languagefor formulating the properties that should be fulfilled,

• a verification method, i.e., a formalism that defines when the description of a system
satisfies the property specification.

1http://www-cs-faculty.stanford.edu/ knuth/faq.html

55

56 CHAPTER 3. FORMAL VERIFICATION

The main formal verification approaches in this context are theorem proving, equivalence
checking, constraint solving, and model checking. They can be classified based on different
criteria, like proof- or model-based verification, full- or property-based verification, the degree
of automation, the domain of application, and the stage of usage within the development process
[HR00].

It is almost impossible to list all individual existing formal specification and verification
methods and corresponding tools. We will therefore focus on descriptions of those formal
specification and verification techniques that are necessary to follow the remainder of this thesis.

We start with a brief introduction toautomata-based modeling approacheswhich build an
important foundation for the description techniques used in formal methods. Section 3.2 then
focuses onformal specificationtechniques that are used to specify properties a system should
fulfill. Section 3.3 outlines the formal verification technique called model checking. Model
checking in combination with a notion of time is of particular interest for this thesis. There-
fore, Section 3.4 gives an introduction toreal-time model checkingwhich particularly addresses
formal verification of time-dependent properties w.r.t. a given model.

3.1 Automata-Based Modeling Approaches

In formal methods, it is necessary to describe an abstract version of the system by means of
a model in a certain notation, i.e., amodeling language. These languages base upon differ-
ent approaches.Algebraic modeling languagesare used to model the behavior of concurrent
communicating processes, e.g., CCS (Calculus of Communicating Systems) [Mil80] and CSP
[Hoa78]. Object-oriented modeling languages, such as the graphical UML notation, structure
the system under consideration into different views, e.g., static and dynamic parts. The third
prominent approach in this context concernsautomata-based languages.

The notion of afinite automatain language theory is also known asfinite state machine
(FSM), Kripke Structure, or transition systemin other areas. Basically, FSMs have a finite set
of states, a set of transitions between states, and labeling functions to define the output reaction
on given inputs.

Let I andO be the input and the output alphabets of the FSM. Generally, a (deterministic)
finite state machine is a tupleM = 〈I, O, S, S0, next, out〉 that has a finite setS of states, a set
S0 of initial states2, a transition functionnext : S × I → S, and an output functionout that is
either defined byout : S → O or out : S × I → O.

In literature, it is commonly distinguished between Moore-type (or: state-based) and Mealy-
type (or: input-based) automata. The difference lies in the definition of the output functionout.
For Moore-type, we haveout : S → O, i.e., an output symbolω is assigned to each state
s ∈ S. The symbolω is outputted when the FSM is in states. For Mealy-type, we have
out : S× I → O, i.e., the outputω is depending on the current states ∈ S and an input symbol
ι ∈ I. The symbolω is outputted when the FSM is in states and the input symbolι occurs.

Several variants and extensions of this basic notion of an FSM exist. For instance, it might be
allowed to applysets of input and output symbolsfor functionout or introduce non-determinism
by allowing atransition relationnext ⊆ S × I × S.

2It is often required thatcard(S0) = 1.

3.1. AUTOMATA-BASED MODELING APPROACHES 57

One important variant is the notion of aKripke Structure. Kripke Structures are graphs that
comprise of nodes representing the set of reachable states of a system and of edges representing
the state transitions of the system. In the general Kripke Structure, it is often abstracted from
the inputs. The transition relation is required to betotal w.r.t. the first component, i.e., for each
s ∈ S there is at least one outgoing transition. As Kripke Structures are applied in the context of
formal verification by model checking, we here define the general notion of a Kripke Structure
in more detail byK = 〈Pr, S, S0, T, l〉, wherePr is a set of atomic propositions (comparable to
the outputs of FSMs),S is the set of states,S0 is the set of initial states,T ⊆ S×S is the (total)
transition relation, andl : S → P(Pr) is a state labeling function that shows which atomic
propositions are valid in a given states.

As modeling more complex systems with only one automata soon becomes quite cumber-
some, modularity is often supported in automata-based modeling approaches. System compo-
nents are modeled as separate automata that are equipped with some mechanisms to cooperate.
This can be done, for example, by synchronous signals communicated between automata.

Semantics. The execution semantics of an FSM is defined byexecution paths. An execu-
tion path is a (finite or infinite) sequence of states〈x0, . . . , xi, . . .〉, where∀i ∈ N0 ∃ι ∈ I :
next(xi, ι) = xi+1. (In the case thatnext is a relation, we require〈xi, ι, xi+1〉 ∈ next.)

Starting in an initial states ∈ S0, the possible execution paths can be represented as an
(infinite) tree of states. A states′ ∈ S is calledreachableiff it appears on one of the possible
execution paths (or in the tree of states, respectively).

FSMs in other domains. Different other classes of automata and FSMs have emerged for
particular application domains, e.g.,

• ω-automata that accept inputs of infinite length,

• communicating concurrent FSMs,

• hierarchical concurrent FSMs, in particular Harel Statecharts that are a graphical ap-
proach to represent complex control systems in a more compact form [Har87],

• dataflow graphs that are more suitable to describe computational intensive systems,

• timed automata that have an inherent notion of time,

• hybrid automata that comprise discrete and continuous time,

• and different kinds of combinations of the above, e.g., timed and hybrid Statecharts or
FSMs with datapaths [Gaj97].

As an example for an extended automata model, Section 3.6.1.1 gives a complete formal
definition of the syntax and semantics ofI/O-Interval Structuresthat are equipped with syn-
chronous signals to exchange information and a notion of discrete time.

58 CHAPTER 3. FORMAL VERIFICATION

3.2 Formal Specification

The notion offormal specificationis used with various meanings in literature. The IEEE stan-
dard defines formal specification to be a specification written in a formal language, which in turn
is based upon a rigorous mathematical model or just on a standardized programming or specifi-
cation language [IEE87]. Van Lamsweerde provides in his roadmap of formal specification the
following general definition [Lam00].

[...] a formal specification is the expression, in some formal language and at some
level of abstraction, of a collection of properties some system should satisfy.

Though this definition is kept very general, it also captures theintentionof a specification and –
in turn – a specification language; namely, a specification explicitly expresses the requirements
(or: properties) a system under consideration should fulfill, and this has to be given in a formal,
thus mathematical and unambiguous way. Depending on its intended application, a formal
specification can beexecutableon a machine. But frequently, formal specifications are just
mentally executableand used as a precise, unambiguous basis for discussion among members
of a developer team. Formal specifications have been classified in literature with respect to
different criteria, e.g., whether they contain graphical elements in their syntactical domain,
whether they are executable, or whether they are tool supported.

Different kinds of logics build the foundation of formal specification languages, ranging
from propositional and predicate logics over modal logics and temporal logics to process al-
gebras. An overview of specification languages based on this classification is presented in
[Mül96].

The most popular predicate logic-based languages are VDM [ISO96], Z [ISO02], B, and
Larch. Prominent approaches for process algebraic specification are CCS (Calculus of Com-
municating Systems) [Mil80] and CSP (Communicating Sequential Processes) [Hoa78]. But
we here focus on specification languages that are based ontemporal logics, as these are of
relevance for the remainder of this thesis.

3.2.1 Temporal Logics

Temporal logics are frequently applied to specify properties of state-transition systems or –
more specifically – Kripke structures (see Section 3.1). They are used to describe required or
illegal execution sequences.

In contrast to propositional and predicate logic, the validity of a temporal logic formula
cannot be statically determined based on a single snapshot of a Kripke structure, i.e., an overall
description of the current status of the model. Rather, a temporal logic formula concerns several
(even infinitely many) snapshots. Temporal logics are therefore defined overconfiguration
sequencesor runs that represent possible executions of a model. In the following, we write
π = 〈x0, x1, . . .〉 for a path in a given Kripke structureK = 〈Pr, S, S0, T, L〉. We denoteπi for
the suffix ofπ starting a positioni of the path, i.e.,πi = 〈xi, xi+1, . . .〉.

There is a variety of temporal logics described in literature that have been used in different
domains. We can classify these by their view of evolving time.Linear time-based logics have a

3.2. FORMAL SPECIFICATION 59

notion of execution sequences as a whole, whilebranching time-based logics work with alterna-
tive execution possibilities at each given point of time. This is especially useful when reasoning
about non-deterministic models. We can also distinguish between temporal logics that work for
discreteor for continuoustime. While continuous time is frequently applied to reason about
analogue systems, discrete time is often chosen to specify properties of concurrent synchronous
models. A third characteristic that can be employed to classify temporal logics are whether they
are future- or past-oriented.

We here describe two frequently applied discrete, future-oriented temporal logics called
Linear Temporal Logic(LTL) and Computation Tree Logic(CTL), but note that there are other
temporal logics available, e.g., the temporal logic of actions (TLA) by Lamport [Lam94] and
the more general CTL* [CE81, CES86] that has LTL and CTL as sublanguages.

3.2.1.1 Linear Temporal Logic (LTL)

Formulas expressed in Linear Temporal Logic [Pnu80] are defined on individual computation
pathsπ. The syntax of LTL formulas is defined by the following grammar in Backus Naur form.

Definition 3.1 LetPr be a set of atomic propositions, and letp ∈ Pr. The syntax of a linear
temporal logic formulaφ is recursively defined by

φ ::= p | true | false | ¬φ | φ ∧ φ | φ ∨ φ | X φ | F φ | G φ | φ U φ .

The literalsX, F, G, andU aretemporal operatorsthat describe properties of a pathπ.

• X is thenextoperator and requires that the following formula is true for the second – or
more generally – next state of the path,

• F (often also denoted by<>) is the theeventuallyor sometime in the futureoperator and
requires that the following formula is true in some subsequent state of the path,

• G (often also denoted by[]) is theglobally operator and requires that the following for-
mula is true for all subsequent states of the path,

• U is theuntil operator and combines two formulasφ1 andφ2. The LTL formulaφ1 U φ2

requires that – if there is a state on the path whereφ2 is true, on all preceding statesφ1

has to be true.

Sometimes additional useful operators are defined, e.g., thereleaseoperatorR that is dual to
the until operator [CGP99]. The formulaφ1 R φ2 requires thatφ2 holds along the path up to an
including the first state whereφ1 holds, but note thatφ1 does not have to hold at all. Logically,
φ1 R φ2 is equivalent to¬(¬φ1 U ¬φ2).

An LTL formula is evaluated on an execution path or a set of execution paths. The regarded
paths satisfy a formulaφ if each of the regarded paths satisfiesφ. Note that in [CGP99], LTL
formulas are always considered for the set ofall execution paths. We define a satisfaction
relation for LTL formulas as follows.

60 CHAPTER 3. FORMAL VERIFICATION

Definition 3.2 Letφ, φ1, φ2 be LTL formulas. We writeK, π |= φ to denote that the execution
pathπ of the Kripke structureK satisfies the LTL formulaφ. The satisfaction relation|= for
the semantics of LTL formulas over a pathπ in a Kripke structureK is inductively defined as
follows.

1. K, π |= true

2. K, π |= p iff p ∈ l(x0),where p ∈ Pr and x0 is the first state of π

3. K, π |= ¬φ iff not K, π |= φ

4. K, π |= φ1 ∧ φ2 iff K, π |= φ1 and K, π |= φ2

5. K, π |= φ1 ∨ φ2 iff K, π |= φ1 or K, π |= φ2

6. K, π |= X φ iff K, π1 |= φ

7. K, π |= F φ iff there exists an i ≥ 0, such that K, πi |= φ

8. K, π |= G φ iff for all i ≥ 0 : K, πi |= φ

9. K, π |= φ1 U φ2 iff there is an i ≥ 0, such that K, πi |= φ2

and for all j ∈ {0, . . . , i− 1} holds K, πj |= φ1

It is easy to determine that operators∨, ¬, X, andU are sufficient to express any LTL formula,
as it holds

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2),

F φ ≡ true U φ,

G φ ≡ ¬(true U ¬φ).

3.2.1.2 Computation Tree Logic (CTL)

Computation Tree Logic is due to Clarke and Emerson [EC80, CE81]. It uses the notion of
future branching executions, i.e., the execution of a model is regarded as a tree-like structure,
starting with the current status of the model as the root.

CTL and LTL are closely related, as they basically work with the same temporal operators.
However, in CTL there are additionalpath quantifiersattached to each temporal operator. Path
quantifiers are denoted byE andA. The existential path quantifierE is used to require that the
following subformula must hold for at least one of the possible future paths. The other path
quantifierA is used to require that the following subformula must hold for all possible future
execution paths. The syntax of CTL is recursively defined by the following grammar in Backus
Naur form.

Definition 3.3 LetPr be a set of atomic propositions, and letp ∈ Pr. The syntax of a compu-
tation tree logic formulaφ is recursively defined by

φ ::= p | true | false | ¬φ | φ ∧ φ | φ ∨ φ
| EX φ | EF φ | EG φ | E(φ U φ)

| AX φ | AF φ | AG φ | A(φ U φ) .

3.2. FORMAL SPECIFICATION 61

Again, several other useful operators are defined for CTL, e.g., logical implication (φ1 → φ2),
a weak untiloperatorW that does not require the second subformula to ever become true, or a
beforeoperatorB that is dual to the until operator.

In contrast to LTL, the semantics definition in terms of a satisfaction relation is based
on a single statex ∈ S of the model and not on a runπ. We therefore need a slightly
different notation for execution pathsπ and denote now a path starting in statex ∈ S by
π := 〈x0, x1, . . . , xi, . . .〉. Implicitly, this requires that there is a transition between each subse-
quent pair of states inπ, i.e.,∀i ∈ N0 : 〈xi, xi+1〉 ∈ T .

Definition 3.4 Let φ, φ1, φ2 be CTL formulas. We writeK, x0 |= φ to denote that the CTL
formulaφ is valid for statex0 ∈ S of the Kripke structureK. The satisfaction relation|= for
the semantics of CTL formulas over a statex0 in of the Kripke structureK is inductively defined
as follows.

1. K, x0 |= true

2. K, x0 |= p iff p ∈ l(x0),where p ∈ Pr
3. K, x0 |= ¬φ iff not K, x0 |= φ

4. K, x0 |= φ1 ∧ φ2 iff K,x0 |= φ1 and K, x0 |= φ2

5. K, x0 |= φ1 ∨ φ2 iff K,x0 |= φ1 or K, x0 |= φ2

6. K, x0 |= EX φ iff there exists a path 〈x0, x1, . . .〉, such that

K, x1 |= φ

7. K, x0 |= EF φ iff there exists a path 〈x0, x1, . . . , xi, . . .〉, such that

there is an i ∈ N with K, xi |= φ

8. K, x0 |= EG φ iff there exists a path 〈x0, x1, . . .〉, such that

for all i ∈ N0 : K, xi |= φ

9. K, x0 |= E(φ1 U φ2) iff there exists a path 〈x0, x1, . . . , xi, . . .〉, such that

there is an i ∈ N0 with K, xi |= φ2 and

for all j ∈ N0 with 0 ≤ j < i : K, xj |= φ1

6. K, x0 |= AX φ iff for all paths 〈x0, x1, . . .〉 holds that

K, x1 |= φ

7. K, x0 |= AF φ iff for all paths 〈x0, x1, . . . , xi, . . .〉 holds that

there is an i ∈ N with K, xi |= φ

8. K, x0 |= AG φ iff for all paths 〈x0, x1, . . .〉 holds that

for all i ∈ N0 : K, xi |= φ

9. K, x0 |= A(φ1 U φ2) iff for all paths 〈x0, x1, . . . , xi, . . .〉 holds that

there is an i ∈ N0 with K, xi |= φ2 and

for all j ∈ N0 with 0 ≤ j < i : K, xj |= φ1

62 CHAPTER 3. FORMAL VERIFICATION

Again, it is easy to determine that all CTL formulas can be expressed by only using the logical
operators∨ and¬, the temporal operatorsX andU, and the path quantifiersE andA. For
more details about syntax and semantics of the temporal logics CTL and LTL and illustrative
examples, we refer to [MP92, MP95, CGP99, HR00] where also several references to other
literature concerning temporal logics are given.

CTL*

AG EF f

CTLLTL

GF Ff f1" 2

AG(AF)f f1" 2

G(F)

or resp.

f f1" 2

E(GF)f

Figure 3.1: Expressive Power of LTL, CTL, and CTL*

Surprisingly, a comparison of CTL and LTL with respect to their expressiveness is difficult.
It turns out that neither language is contained in the other. More specifically, the situation is as
depicted in Figure 3.1. There are formulas in each of the two languages that are not expressible
in the other, and CTL*, which has LTL and CTL as sublanguages, is more expressive than just
the union of LTL and CTL. Corresponding sample formulas taken from [HR00] are provided in
Figure 3.1.

3.2.2 Property Specification Patterns

It is interesting to see that only a limited sublanguage of complete temporal logics is relevant
in practice. Certainpatternsof specification can be identified. The first classification is due to
Lamport [Lam77] and distinguishes between safety and liveness properties. Safety properties
are also called invariants and are used to ensure that some erroneous situation will never be
reached. Typically they start with the temporal operatorAG, i.e., on all execution paths some
property must globally be true. Liveness properties specify that some desired situation will
eventually occur.

A more elaborated, hierarchical classification with the notion of safety and progress was
suggested by Manna and Pnueli in [MP90, MP92]. They distinguish between six categories of
properties, as it is illustrated in Figure 3.2.

Safety propertiesconform to the invariants identified by Lamport. Additionally, formulas
of form F φ in LTL (or AF φ in CTL) build the class ofguarantee properties. The disjunctive
combination of formulas of these two base classes builds the class ofobligation properties. Two
more classes calledresponse(or recurrence) andpersistenceare identified. Finally, the disjunc-
tive combination of response and persistence properties builds the class ofreactive properties.

Figure 3.2 is slightly modified compared to the original, as it only shows thebasic implica-
tionsbetween property classes. Here, an arrow connecting a property class with another class

3.2. FORMAL SPECIFICATION 63

Reactivity

pGF FG qÚ

Response
GF p

Persistence
FG q

Safety
G p

G q(resp.)

Guarantee
F q

Obligation

G Fp qÚ

Figure 3.2: Property Classification based on Manna and Pnueli [MP92]

indicates an implication, e.g., a valid safety propertyG p implies that the response property
GF p holds. Of course, additional implications can be derived, e.g., a valid obligation property
G p ∨ F q implies that the response propertyGF p holds.

However, this classification is based upon thesyntax(or structure) of the formulas. It might
be more useful to have asemanticalclassification that better reflects the way of thinking when
a requirement is to be specified. Such a classification might be more intuitive for non-experts
to find the right formula. We will discuss such an approach in the next paragraphs.

In the recent two decades, a lot of experience in the domain of formal specification with
temporal logics has been made. This is also due to the progress made in the area of formal
verification by model checking (see Section 3.3). It turned out that the full power of tempo-
ral logics, which allow for arbitrarily nested formulae, is not needed in practice to formulate
required properties. In this context, Dwyer et al. have developed a pattern system based upon
more than 500 property specifications from different projects in the area of finite-state verifica-
tion [DAC98b, DAC98a, DAC99]. That pattern system provides a structured set of commonly
occurring property specifications and examples of how to translate these into different formal
specification languages, such as LTL, CTL, or Graphical Interval Logic (GIL) [DKM+94].

The overall aim of the pattern approach is to support developers in a way that abstracts from
the formal syntax of temporal logics.

3.2.2.1 Scopes

Dwyer et al. have identified differentscopesapplicable to a pattern. A scope is the part of the
system execution path over which a pattern has to hold. Five basic kinds of scopes have been
identified, as illustrated in Figure 3.3:

• Globally (i.e., the entire execution path),

• BeforeR (i.e., execution up to a stateR),

• After Q (i.e., execution after a stateQ),

64 CHAPTER 3. FORMAL VERIFICATION

• BetweenQ andR (i.e., all parts of the execution path from stateQ to another stateR), and

• After Q until R (i.e., all parts of the execution path from stateQ to another stateR, including
those parts whereR never occurs).

Global

Before R

After Q

Between Q and R

After Q until R

R R

Q Q

Q Q R Q R Q

Q Q R Q

Figure 3.3: Specification Scopes of [DAC98a]

For state-delimited scopes with distinct delimitersQ andR, the interval in which the property
is evaluated is closed at the left and open at the right end. Thus, the scope consists of all states
beginning with the starting state and up to – but not including – the ending state. It is possible,
however, to define scopes that are open-left and closed-right as well.

Note that most scopes may appear repetitively or with an unlimited future, as illustrated in
Figure 3.3. These scopes are therefore embedded ininvariants. Scope ‘Before R’ is not an
invariant, as we only investigate executionsup to the first occurrenceof R in this case. Patterns
with that scope are only applied to paths starting at the initial state.

3.2.2.2 Patterns

The patterns themselves are hierarchically ordered as shown in Figure 3.4. In an online repos-
itory, for each pattern, each scope, and each formalism a corresponding formal description is
provided [DAC98a]. To illustrate the approach, we take the absence pattern as an example. Ta-
ble 3.1 shows corresponding CTL formulae for each scope in the context of the absence pattern.

The absence pattern describes a part of an execution path that is free of a certain stateP. It
is often also referred to as ‘Never’. We take a closer look at the pattern ‘P is false before

R’ in Table 3.1. A first intuitive attempt to specify a CTL formula for that case would beA(!P

W R). This formula makes use of theweak untiloperatorW and means that along all possible
execution pathsP is not entered from the initial state until the first state in whichR is true, if
any. In particular, ifR is never entered along an execution path, thenP must also not be entered
along that path.

Dwyer et al. always consider the case that scope delimitersQ andR might not appear on
execution paths. Now consider the case that on every execution pathP becomes eventually
true, butR will afterwards never be entered. In this case, the property ‘P is false before R’

3.2. FORMAL SPECIFICATION 65

Property Specification Patterns

Occurrence Order

Absence UniversalityExistence

Bounded Existence

Precedence Response

Chain Precedence Chain Response

Figure 3.4: Property Specification Patterns

Table 3.1: CTL Formulae for Absence Pattern [DAC98a]

P is false. . .

. . .globally AG(!P)

. . .beforeR A((!P | AG(!R)) W R)

. . .afterQ AG(Q -> AG(!P))

. . .betweenQ andR AG((Q & !R) -> A((!P |AG(!R)) W R))

. . .afterQ until R AG((Q & !R) -> A(!P W R))

should also be true. However, our first formulaA(!P W R) developed above does not cover this
case and results in false in this case. One solution to resolve this issue is to add the sub-formula
(P & AG(!R)) as an alternative to sub-formula!P, resulting in

A((!P | (P & AG(!R))) W R) .

As it holds¬a ∨ (a ∧ b) ≡ ¬a ∨ b, we can simplify the latter formula to its final version as it
appears in Table 3.1:

A((!P | AG(!R)) W R) .

As demonstrated, it always takes additional effort to include the case that scope delimitersQ and
R might not appear at all on execution paths. Such assumptions unnecessarily complicate the
resulting formulae. Instead, we propose a slightly different approach with inherent assumptions
requiring that scope delimiters will eventually appear on all paths. Only if an assumption of
such kind holds, a pattern can then be applied. Otherwise, a statement about validity cannot be
given. By this approach, it is guaranteed that all possible executions really comply to the in-
tended scope. Users of the pattern system need therefore pay less attention to whether delimiter
statesQ andR occur or not.

Moreover, mappings to respective temporal logic formulae, e.g., CTL, are significantly sim-
plified and easier to adapt for further usage. As an example, Table 3.2 on the next page shows
the absence pattern with additional assumptions and a simplified mapping to CTL formulae.

66 CHAPTER 3. FORMAL VERIFICATION

Assumptions can also be easily mapped to CTL and have to be checked separately. When
an assumption is false over a given model, the actual property that is investigated cannot be
validated.

Table 3.2: CTL Formulae for Absence Pattern with Additional Assumptions

Assumption Pattern CTL Formula

P is globally false AG(!P)

R becomes true on all paths
[CTL: AF(R)]

P is false beforeR A(!P U R)

Q becomes true on all paths
[CTL: AF(Q)]

P is false afterQ AG(Q -> AG(!P))

Q andR always again become true
on all paths
[CTL: AG AF(Q) & AG AF(R)]

P is false betweenQ andR AG((Q & !R) -> A(!P U R))

Q always again becomes true
on all paths
[CTL: AG AF(Q)]

P is false afterQ until R AG((Q & !R) -> A(!P W R))

While the patterns provided in the pattern system by Dwyer et al. already cover a broad range
of requirements, it might still be necessary to adjust them for particular and more complex prop-
erties. There are a number of ways how this can be performed, e.g., by parameterization, logical
combination, and changes in pattern scopes [DAC98a]. But note that users of the pattern system
are usually not able to modify the temporal logic formulae without a concise understanding of
the underlying semantics of the formal logics.

3.3 Symbolic Model Checking

In the terms of the classification for verification techniques, model checking is an automatic,
model-based, property-verification formal method. Model Checking is intended to prove the
correctness of safety-critical, concurrent, reactive systems. Areactive systemis an event driven
or control driven system that continuously has to react to external and/or internal stimuli. An
additional specification by means of (temporal) properties represents the desired behavior of the
system. From a logical viewpoint, the system is given as a Kripke Structure, and the properties
are given by temporal logic formulae.

The general model checking approach is defined as follows.

Given a system that is modeled as a Kripke StructureK = 〈Pr, S, S0, R, L〉 with
a setPr of atomic predicates, a setS of states, a total state transition relation
T ⊆ S × S, and a state labeling functionL : S → P(Pr). Let f be a temporal
logic formula that specifies a desired behavioral property ofK.

3.3. SYMBOLIC MODEL CHECKING 67

Table 3.3: Example Symbolic Representation

Atomic Proposition Symbolic Representation

p ¬x1 ∧ ¬x2

q ¬x1 ∧ x2 ∧ ¬x3

r x1 ∧ ¬x2 ∧ x3

s x1 ∧ ¬x2 ∧ ¬x3

The task is to find the setC ⊆ S of states, for whichf holds, i.e.,C
def
= {s ∈

S | K, s ⊥ f}.

Model checking Kripke Structures has limits due to the state space explosion problem,
which results from the fact that the state space that has to be explored grows exponentially
due to the cross product of concurrent modules or components in the model. A major enhance-
ment therefore was to applybinary decision diagrams(BDDs) and asymbolic representationof
the Kripke Structure under investigation [BCM+90]. Symbolic model checking codes a Kripke
Structure by using a vector of binary variables.

s4

s2 s3

s5

s1

s

p p

r q

s

p p

r q

(x ,x ,x)=(1,0,1)1 2 3

(x ,x ,x)=(0,0,1)1 2 3(x ,x ,x)=(0,0,0)1 2 3

(x ,x ,x)=(1,0,0)1 2 3

(x ,x ,x)=(0,1,0)1 2 3

(a) (b)

Figure 3.5: Sample Binary Coding of States

Example. Figure 3.5 provides an example. Given a Kripke StructureK = 〈Pr, S, S0, T, L〉
with Pr = {p, q, r, s}, S = {s1, . . . , s5}, S0 = {s1}, and transitions and state labels as given in
Figure 3.5(a). Symbolic model checking now transforms this model into another representation,
i.e., the states of the Kripke Structure are coded by binary variables. In the example, the five
states are represented by variablesx1, x2, andx3 (Figure 3.5(b)). Atomic propositions and
formula parts can then be described in terms of this coding. E.g., the set of states that holds in
the example is represented byx1 ∧ ¬x2 ∧ ¬x3. More examples are listed in Table 3.3.

A corresponding (reduced ordered) binary decision diagram (ROBDD) for the representa-
tion of s is shown in Figure 3.6. Note that the order of variables influences the size of a BDD.
Unfortunately, finding an optimal order is NP-complete. However, several approaches apply
heuristics to find ‘reasonable’ orders of variables for BDDs.

68 CHAPTER 3. FORMAL VERIFICATION

x
1

x
2

x
3

0 1

0
0

0

1

1

1

Figure 3.6: Binary Decision Diagram forx1 ∧ ¬x2 ∧ ¬x3

BDDs can be used to code Kripke Structures, such that model checking algorithms can
use this more compact structures for verification purposes. Basically, the transition relation is
coded by the symbolic state representation. E.g., the transition fromS1 to S2 in Figure 3.5 is
coded byx1¬x2¬x3¬x′1¬x′2¬x′3. I.e., each BDD variablex is duplicated byx′ to distinguish
between transition source and target states. The complete Kripke Structure is then represented
by disjunction of all transition formulas:

x1¬x2¬x3x
′
1¬x′2¬x′3 ∨ x1¬x2¬x3¬x′1¬x′2¬x′3 ∨ ¬x1¬x2¬x3¬x′1¬x′2x′3

∨ ¬x1¬x2¬x3¬x′1x′2¬x′3 ∨ ¬x1¬x2x3¬x′1x′2¬x′3 ∨ ¬x1¬x2x3x
′
1x

′
2¬x′3

∨ ¬x1x2¬x3¬x′1¬x′2x′3 ∨ x1¬x2x3¬x′1x′2¬x′3 ∨ x1¬x2x3x
′
1¬x′2¬x′3

Model checking of higher level software models has already been successfully applied
[CAB+98]. However, the results are still limited due to the mentionedstate explosion problem.
This problem has led to a number of modular [GKC99] and compositional [MC81] approaches
in model checking.

The two most popular model checking tools are SMV3 and SPIN4. SMV accepts modular
transition systems and CTL formulae as an input. There is a distinction between synchronous
and interleaving execution of modules, i.e., in the interleaving mode, one execution step refers
to one execution step of a single module only, while in the synchronous mode, all modules
synchronously perform an execution step. SMV has a notion offairness. Fairness properties
are necessary to restrict the set of possible execution paths for verification of required behavioral
properties.Strong fairnessensures that a module (or transition) that is infinitely often activated
will also infinitely often be executed (or: fired).Weak fairnessgarantuees that modules progress
independently from another in the interleaving mode.

SPIN uses a modeling language called PROMELA (PROcess MEta LAnguage) and supports
verification of LTL formulae. As a remarkable feature, on-the-fly model checking techniques
are employed that allow for verification of basic properties like safety and liveness properties.
On-the-fly model checking has the advantage that there is no need to build a global state graph
for the verification certain system properties.

3http://www-2.cs.cmu.edu/ modelcheck/smv.html
4http://spinroot.com/spin/whatispin.html

3.4. REAL-TIME MODEL CHECKING 69

3.4 Real-Time Model Checking

Most of the currently existing works on model checking do not consider time-dependent be-
havior. But to be able to verify models with an inherent notion of time, some model checking
approaches have been developed to also verify corresponding state transition systems.

Generally, adding a notion of time to state transition systems exacerbates the state explo-
sion problem, especially if multiple timed transition systems are to be combined and (non-
deterministic) timing intervals for transition times are allowed. Therefore, enhanced symbolic
representations by extensions BDDs have been applied for timed transition systems which are
more suitable for dedicated efficient verification algorithms.

On the one hand side, well-known CTL model checking techniques have been extended to
cope with timing aspects. These approaches usually allow for labeling transitions with delay
times (by means of natural numbers). Most notably, the underlying models assume a global
clock with discrete time. For property specification, these approaches apply quantized timing
parameters that are attached to temporal operators. Corresponding CTL extensions are, e.g.,
RTCTL (real time CTL, [EMSS92]), QCTL (quantized CTL, [FGK96]), and CCTL (clocked
CTL [RK97]). Tools following this approach are Verus [CCM97] and RAVEN (Real-time
Analyzing andVerificationENvironment) [Ruf01].

On the other side, a more general approach is based ontimed automataby Alur et
al. [ACD90]. In timed automata, time is represented by (an arbitrary number of) clocks car-
rying real numbers. The clocks are incremented synchronously. Each state is associated with
an invariant that is a requirement on the values of the clocks. However, comparisons of clock
values are only possible with constants. A transition is chosen based on input events and clock
predicates. When firing a transition, the corresponding clocks are reset to zero.

In timed automata, time is passing in states, while firing a transition does not take time. As
the clocks are real numbers, this results in an infinite state space. However, comparisons in
invariants can only be made over integer values, such that two clocks with actual different (real)
values might not be distinguished.

Properties over timed automata are expressed by Timed CTL (TCTL), an extension of CTL
with dense-time semantics. It has been shown that model checking timed automata over TCTL
is PSPACE complete [ACD90]. However, tools make use of enhanced techniques to build
efficient data structures such that the symbolic representation of the model still becomes man-
ageable.

Tools that base upon timed automata are Kronos5 and UPPAAL6. Note that UPPAAL only
supports limited subset of temporal logics for reachability analysis.

Another kind of model checking approach is considered by the HyTech tool. The under-
lying model arehybrid systemsthat comprise of continuous as well as discrete parts, i.e., a
common finite state machine is equipped with continuous variables. States are associated with
conditions over these variables and their first derivative (i.e., time). Transitions of a hybrid au-
tomata have a triggering condition, a number of assignment to variables, and might carry an
annotation to synchronize with other automata. The HyTech model checker works forlinear
hybrid automata, i.e., all derivatives of variables are constants. Note that a hybrid automaton, in

5http://www-verimag.imag.fr/TEMPORISE/kronos
6http://www.uppaal.com

70 CHAPTER 3. FORMAL VERIFICATION

which all derivatives are 1 and all variables of the transitions are set to zero, is basically a timed
automaton.

HyTech only supports a subset of TCTL, similar to UPPAAL. For hybrid automata, it has
been shown that for a given set of states one can determine the set of next states. But it cannot
be proved whether a given state will ever be reached. Thus, formal verification becomes semi-
decidable. But for model checking it is of more practical relevance that the memory complexity
and numeric precision can be handled.

3.5 Selection of a Real-Time Model Checking Tool

In this subsection, we review the four mentioned real-time model checkers Kronos, Verus, UP-
PAAL, and RAVEN in more detail. Basically, we can distinguish them by the following criteria:

• Underlying timing model (discrete or continuous),

• the number of clocks per module/component,

• the employed temporal logics (full TL or only partly supported),

• availability of a graphical user interface, and

• counter example representation.

Table 3.4 gives an overview about the model checkers. However, the performance of the
model checkers cannot be directly compared in a fair way, as each of these tools has its advan-
tages in a certain application domain. Only some comparisons are documented in literature,
e.g., [Wit99, Ruf01].

We identify the following list of requirements that have to be met by a model checker to be
suitable in the context of this thesis.

• The approach of this thesis aims to support verification of time-related properties in early
stages of development and thus on a rather high level of abstraction. We therefore do not
need to cope with subtle timing issues among system components (e.g., clock drifts). We
can thus assume aglobal notion of timesuch that the system components synchronously
perform execution steps at each tick of the global clock.

• We require synchronous as well as asynchronous communication among system compo-
nents, and assume that messages are never lost.

• We also assume that we know of a minimal time unit for executions of actions and state
transitions, which leads to adiscretizationof time.

• We need the ability to count the time elapsed since a state was entered. We therefore do
not need the full power of timed automata, as we do not need multiple clocks in a systems
component.

3.5. SELECTION OF A REAL-TIME MODEL CHECKING TOOL 71

Table 3.4: Overview of Real-Time Model Checkers

Criteria UPPAAL Kronos Verus RAVEN HyTech

Automata
Model

Timed
Automata

Timed
Automata

Common
Kripke
Structures

Time-
annotated
Kripke
Structures

Hybrid
Automata

Time Model Continuous Continuous Discrete
unit-delay

Discrete
multiple
delay

Continuous

Number of
Clocks

≥ 1 ≥ 1 1 per module 1 per module ≥ 1

Internal
State
Representation

Explicit Explicit BDDs Multi
Terminal
BDDs

Explicit

Temporal
Logics

Parts of
TCTL

TCTL TCTL CCTL Parts of
TCTL

GUI Graphical
Modeling
Environment

None None Text input,
GUI for
Model
Checking

Graphical
Modeling
Environment

Counter
Examples

Graphical
in GUI

Textual Textual External
Waveform
Browser

Textual

• We want to be able toverify general propertiesand can therefore not restrict on reacha-
bility analysis.

Discrete time, no need for multiple clocks, and support for general property specifications
lead to either choosing Verus or RAVEN. Note that asynchronous communication can be pro-
grammed by hand using intermediate channel modules.

As RAVEN does not only show a better performance in some case studies [Ruf01], but also
provides a user interface and additional timing analysis algorithms, this model checker was
chosen for performing verification in the context of this thesis.

The timing and value analysis algorithms do not only return yes/no answers to inform
whether properties hold or not. They determine minimal/maximal times that pass between
two specified system states as well as minimal/maximal values of variables. This can be very
helpful in the analysis phase.

72 CHAPTER 3. FORMAL VERIFICATION

3.6 RAVEN

In RAVEN, a model is given by a time-annotated state transition system, i.e., a set of so-called
I/O-Interval Structures [Ruf01]. I/O-Interval Structures are based on Kripke Structures with
[min,max]-time intervals at their state transitions and additional input and output signals to bet-
ter support communication among Interval Structures. The specification language of RAVEN
is calledClocked CTL(CCTL). Interval Structures, CCTL, and a corresponding input language
are discussed in the following subsections. The definitions in Sections 3.6.1 and 3.6.1.1 are
taken from the PhD thesis of Jürgen Ruf [Ruf00]

3.6.1 Interval Structures

Interval Structuresare basically state-transition systems with time-annotated transitions. Each
Interval Structure has exactly one clock that keeps track of elapsed time. The clock is reset to
zero when – after taking a transition – the transition destination state is entered. A statemay
be left if the current clock value corresponds to a delay time specified by (at least) one of the
outgoing transitions. The statemustbe left if the maximal delay time of all outgoing transitions
is reached, as illustrated in Figure 3.7.

s
1

1 2 3 4 t

s
0

s
1

s
0

[2,4]

Figure 3.7: Example Interval Structure Transition [RK99]

Definition 3.5 An Interval Structure= is a tuple= def
= 〈Pr, S, s0, T, L, I〉 with

• a set of atomic propositionsPr,

• a set of statesS,

• an initial states0 ∈ S,

• a transition relation between the statesT ⊆ S × S, in which every state has at least one
successor state, i.e.,∀s ∈ S ∃s′ ∈ S : 〈s, s′〉 ∈ T ,

• a state labeling functionL : S → P(Pr),

• a transition time labeling functionI : T → P(N).

3.6. RAVEN 73

Definition 3.6 The maximal state time of a states ∈ S is the maximal delay time of all outgoing
transitions ofs. It is defined by

MaxTime
def
=

{
S → N
s 7→ max{ v | ∃s′ ∈ S : 〈s, s′〉 ∈ T ∧ v ∈ I(s, s′)}

Every states of an Interval Structure must be left after the maximal state timeMaxTime(s).
Besides the states, we also have to consider the elapsed time since entering the current state to
determine the transition behavior of the system. Thus, the actual state of an Interval Structure is
given by a state together with the current clock value that represents the elapsed time. We call
this tuple anIS-configuration.

Definition 3.7 An IS-configurationg ∈ S × N is a states ∈ S associated with a clock value
v ∈ N0. The set of all IS-configurations in an Interval Structure= = 〈Pr, S, s0, T, L, I〉 is
given by:

G
def
= {〈s, v〉 | s ∈ S ∧ v ∈ N0 ∧ v < MaxTime(s)}

The dynamic semantics of Interval Structures is defined byruns, i.e., sequences of IS-
configurations.

Definition 3.8 Let= be an Interval Structure,= = 〈Pr, S, s0, T, L, I〉, and letg0 be an initial
IS-configuration. Arun r is an (infinite) sequence of IS-configurations(g0, g1, . . .). For the
IS-configurationsgi = 〈si, vi〉 of such a sequence holds either

• si = si+1 ∧ vi+1 = vi + 1 ∧ vi+1 < MaxTime(si), or

• 〈si, si+1〉 ∈ T ∧ vi + 1 ∈ I(si, si+1) ∧ vi+1 = 0.

3.6.1.1 I/O-Interval Structures

To enable communication between a set of Interval Structures, an extension calledI/O-Interval
Structureshas been proposed [RK99]. In these structures, input variables may be additionally
specified. Aninput label, i.e., a Boolean formula over input variables, is attached to each
transition. It is interpreted as an input condition that has to hold during the corresponding
transition times. If no input label is explicitly specified for a transition, it is set totrue by
default.

In the following definition, we formalize input labels with sets of valuations over the set

Prinput of input variables. An element of setInp
def
= P(Prinput) defines exactly one valuation

of the input variables: the propositions contained in the set are true, all others are false. An
element of setP(Inp) then defines all possible input valuations for one transition. E.g., given
the input variablesInp = {a, b}, the boolean function

(a ∧ ¬b) ∨ (a ∧ b) = a

is represented by set{{a} , {a, b}} ∈ P(Inp). This example shows that variableb has no effect
on the valuation, i.e., a transition labeled with formulaa may be taken independently of the
input variableb.

74 CHAPTER 3. FORMAL VERIFICATION

Definition 3.9 An I/O-Interval Structure is a tuple

=I/O
def
= 〈Pr, Prinput, S, s0, T, L, I, Iinput〉,

where

• the componentsPr, S, s0, L, andI are defined analogously to Interval Structures,

• Prinput is a finite set of atomic input propositions,

• the transition relation connects pairs of states and inputs:T ⊆ S × S × Inp.

Recall thatInp is the power set of input variables,Inp = P(Prinput).

• Iinput : T → P(Inp) is a transition input labeling function.

In T , the relevant input variables are defined for each transition, while inIinput, the valid
valuations of input variables are defined that enable a transition to fire. For accessing the first
component of a transitiont ∈ T , we writet[1]. We require the following restriction on input
labels:

∀t1, t2 ∈ T : (t1[1] = t2[1] ∧ t1 6= t2)

⇒ (Iinput(t1) = Iinput(t2) ∨ Iinput(t1) ∩ Iinput(t2) = ∅).

The restriction above ensures that if there are multiple transitions starting in the same state,
their input restrictions are either equal or disjoint. With this restriction, the input valuations on
transitions can be clustered as follows.

Definition 3.10 The cluster functionC computes all input valuations of a cluster represented
by an arbitraryi ∈ Inp.

C
def
=


S × Inp → P(Inp)

(s, i) 7→


Iinput(t) if ∃s′ ∈ S,∃i′ ∈ Inp :

t = 〈s, s′, i′〉 ∈ T ∧ i ∈ Iinput(t)

∅ otherwise

Because of the restriction on input labels in Definition 3.9, all clustersC(s, i) of one states ∈ S
are disjoint.

For a definition of the dynamic semantics of I/O-Interval Structures, the maximal state time
has to be formalized.

Definition 3.11 The maximal state timeMaxTime : S × Inp→ N is the maximal delay time
of all outgoing transitions, i.e.,

MaxTime
def
=


S × Inp → N

(s, i) 7→ max{ v | ∃s′ ∈ S,∃i′ ∈ Inp :

t = 〈s, s′, i′〉 ∈ T ∧
i ∈ Iinput(t) ∧ v = max(I(t)) }

3.6. RAVEN 75

In addition to the current state and elapsed time, configurations of I/O-Interval Structures
also have to consider the current inputs.

Definition 3.12 An I/O-IS-configurationg = 〈s, i, v〉 is an IS-configuration〈s, v〉 enriched by
an input valuationi ∈ Inp. The set of all I/O-IS-configurations is given by

GI/O
def
= {〈s, i, v〉 | s ∈ S ∧ i ∈

⋃
i′∈Inp

C(s, i′) ∧ 0 ≤ v ≤MaxTime(s, i)}

We are now able to define the dynamic semantics of I/O Interval Structures by means ofruns.

Definition 3.13 Let=I/O = 〈Pr, Prinput, S, T, L, I, Iinput〉 be an I/O-Interval Structure. Arun

r
def
= (g0, g1, . . .)

is a sequence of I/O-IS-configurations withgj = 〈sj, ij, vj〉 ∈ GI/O, and for all j ∈ N0 holds
either

gj+1 = 〈sj, ij+1, vj + 1〉
with ij+1 ∈ C(sj, ij) ∧ vj + 1 < MaxTime(sj, ij),

or

gj+1 = 〈sj+1, ij+1, 0〉
with t = 〈sj, sj+1, ij+1〉 ∈ T ∧ ij ∈ Iinput(t) ∧ vj + 1 ∈ I(t).

When we require that for every I/O-IS-configuration and for every input valuation there has
to be a successor I/O-IS-configuration, we need to introduce a specificfailure statefor each of
those transitions that have input restrictions and a delay time greater than 1. The failure state is
entered if the current input valuation does not fulfill the input restriction any more. This leads
to the following cases to be distinguished:

1. In the simplest case, a transition has no input restriction. Behavior is then as before in
Interval Structures.

2. A unit-delay transition has an input restriction. Then it must be ensured that for all input
valuations a successor state is specified.

3. A transition has an input restriction and a delay timeδ > 1. Then an additional transition
with interval [1, δ − 1] and no input restriction has to connect the transition source state
with a failure state.

To illustrate these cases, a graphical notation for I/O-Interval Structures is given in Figure
3.8. Input variables are denoted bya1, . . . , an, andf is a function withf : (Prinput)

n →
{true, false}.

76 CHAPTER 3. FORMAL VERIFICATION

s0 s1

f(a ,...,a)0 n

Unit-delay transition

s0 s1

f(a ,...,a),0 n d

Timed transition
with input restriction

s0 s1

d

Timed transition
without input restriction

fail

Figure 3.8: Graphical Notation for I/O-Interval Structures [RK99]

3.6.1.2 Extended I/O-Interval Structures

Finally, we extend I/O-Interval Structures by variables over finite value sets. Additionally,
transitions can be attached by assignments and input conditions may carry complex boolean
expressions over variables. These extensions are basically syntactical issues that can easily be
mapped to and expressed by simple I/O-Interval Structures.

Definition 3.14 An I/O-Interval Structure with variables and output signals is a tuple

=V ar
I/O

def
= 〈Q,Pr, Prinput, P routput, S, s0, V ar0, T, L, I, Iinput, Ioutput, Tassgn〉 .

• The componentsPrinput, S, T , L, andI are defined analogously to I/O-Interval Struc-
tures.

• Q
def
= {var1, . . . , varn} is a set of variables with finite value setsV al(vari). We require

∀i ∈ {1, . . . , n} : ∃rangei ∈ N : V al(vari) = {0, . . . rangei},

i.e., each variable is defined over a finite integer interval[0, . . . , rangei].

Alternatively, a variable may also be declared as an enumeration of identifiers over a
given alphabet or as bitvectors{0, 1}n. As these can easily be mapped to finite integer
intervals as defined above, we do not explicitly consider these alternatives in the remain-
der.

• The elements inPr are atomic propositions overQ, i.e.,

Pr
def
= {(vari ≡ valvari

) | 1 ≤ i ≤ |Q| ∧
vari ∈ Q ∧ valvari

∈ V al(vari)}

Semantically, we interpret(vari ≡ valvari
) to be true when variablevari has the value

valvari
in the current configuration, and false otherwise.

• The elements ofProutput are boolean variables representing output signals visible in other
I/O-Interval Structures. To avoid naming conflicts, we requireQ∩Proutput∩Prinput = ∅.

3.6. RAVEN 77

• FunctionIoutput : Proutput → P(Out) is an output signal labeling function, where

Out
def
= P(Pr ∪ Prinput ∪ Proutput).

An output labelIoutput(sig) for an output signalsig is a Boolean formula over variables
of setPr ∪ Prinput ∪ Proutput. Analogously to elements ofInp (i.e., valuations of input
variables), an elementlbl ofOut defines exactly one valuation of all atomic propositions:
the propositions contained inlbl are true, all others are false. An element of the set
P(Out) then defines all possible valuations for an output signal.

• The transition input labeling functionIinput : T → P(Inp ∪ Out) may now also carry
boolean expressions over output signalsProutput. We here leave out a more detailed
re-definition.

• In addition to the initial states0 ∈ S, we have to set initial values for all variables:

V ar0 = { (var1 ≡ val1), . . . , (varn ≡ valn) |
n = |Q|
∧ ∀i ∈ {1, . . . , n} : vari ∈ Q ∧ vali ∈ V al(vari)

∧ ∀j ∈ {1, . . . , n} : (i 6= j ⇒ vari 6= varj) }

• We assume that there is a simple expression languageAssgnQ available for specifying
assignments to variables of setQ.

• The transition assignment labeling functionTassgn : T → P(AssgnQ) defines updates
on the variables inQ. If for a transitiont ∈ T , an explicit update on a variablevar ∈ Q
is missing inTassgn(t), we have two choices:

1. The value ofvar gets an arbitrary value whent is fired, or

2. the value ofvar is kept unchanged whent is fired (this is also referred to asauto-
matic signal equivalence).

We here take automatic signal equivalence semantics as default.

• The execution semantics are the same as for I/O-Interval Structures. We assume that
assigning new values to variables is executed without consuming time. Output signals
are synchronously visible in all I/O-Interval Structures that are part of the model under
consideration.

3.6.2 Clocked Computation Tree Logic

Clocked CTL (CCTL) is a time-bounded temporal logic [RK97]. In contrast to classical CTL,
the temporal operatorsF (i.e., eventually),G (globally), andU (until) are provided with interval
time-bounds[a, b], a ∈ N0, b ∈ N0∪{∞}. The symbol∞ is defined through:∀i ∈ N0 : i <∞,
and it holdsi + ∞ = ∞ andi − ∞ = ∞. These temporal operators can also have a single

78 CHAPTER 3. FORMAL VERIFICATION

time-bound only. In this case the lower bound is set to zero by default. If no interval is specified,
the lower bound is zero and the upper bound is infinity by default. TheX-operator (i.e., next)
can have a single time-bound[a] only (a ∈ N). If no time bound is specified, it is implicitly set
to one.

The syntax of CCTL is recursively defined by the following grammar:

φ ::= p | true | false | φ ∧ φ | φ ∨ φ | ¬φ
| EX[a] φ | EF[a,b] φ | EG[a,b] φ

| E(φ U[a,b] φ) | E(φ U[a,b] φ)

| E(φ S[a] φ) | E(φ C[a] φ)

| AX[a] φ | AF[a,b] φ | AG[a,b] φ

| A(φ U[a,b] φ) | A(φ U[a,b] φ)

| A(φ S[a] φ) | A(φ C[a] φ)

wherep ∈ Pr is a proposition,a ∈ N0, andb ∈ N0 ∪ {∞}. For the symbol∞, we define
∀i ∈ N0 : i <∞.

The semantics of CCTL is defined as a validation relation ”|=”, using the notion ofruns,
which represent possible sequences of clocked states that occur during execution of=. Any
arbitrary clocked stateg0 may be the starting point of a run. Table 3.5 shows some sample semi-
formal descriptions of the validation relation for a given Interval Structure= and a clocked state
g0 = (s0, v0) ∈ G. Note thatφ andψ denote arbitrary CCTL (sub)formulae.
The semantics for temporal operators with path quantifierA (i.e., regardingall possible runs)
can easily be derived, e.g.,AX[a]φ is equivalent to¬EX[a]¬φ. Another example isAF[a,b]φ,
which is equivalent to¬EG[a,b]φ.

Extended CCTL Syntax. Analogously to the extension of I/O-Interval Structures, CCTL
can also be extended to allow for variables over finite value sets. The syntax is extended by the
following new rules for variable-based formulas.

φ ::= (var = val) | (var > val)| (var >= val) | (var < val) | (var <= val)

wherevar ∈ Q is a variable andval ∈ V al(var) is a value of a given I/O Interval Structure
=V ar

I/O The semantics of CCTL are kept unchanged, as the new variable-based formulas still
evaluate to a boolean value.

Example. For property specification, consider the following example. One requirement in
our case study is that the input buffer of a station must not be blocked for too long in order to
guarantee sufficient continuous workload, i.e., each accepted delivery request must be followed
by actually loading an item at the input buffer within 100 time units after acceptance. Due to
the dependency on other modules, in particular the AGVs, it is not obvious whether the model
satisfies this property. Therefore, a corresponding CCTL formula has to be specified:

3.6. RAVEN 79

Table 3.5: Semi-formal Description of CCTL Operators

Formula Denotation Description

g0 |= p (p ∈ Pr) Proposition g0 is valid inp, if p ∈ L(s0)

g0 |= ¬φ Negation g0 is satisfied by¬φ if g0 |= φ is false.

g0 |= (φ ∧ ψ) Conjunction g0 |= φ andg0 |= ψ

g0 |= (φ ∨ ψ) Disjunction g0 |= φ or g0 |= ψ

g0 |= EX[a] φ Next There exists a runr = (g0, . . .) such thatga |= φ

g0 |= EF[a,b] φ Eventually There exists a runr = (g0, . . .) anda ≤ i ≤ b s.t.gi |= φ

g0 |= EG[a,b] φ Globally There exists a runr = (g0, . . .) s.t. for all a ≤ i ≤ b
holdsgi |= φ

g0 |= E(φU[a,b] ψ) Strong Until There exists a runr = (g0, . . .) and ana ≤ i ≤ b s.t.
gi |= ψ and for allj < i holdsgj |= φ

g0 |= E(φU[a,b] ψ) Weak Until There exists a runr = (g0, . . .) and and either (a) there
exists ana ≤ i ≤ b s.t.gi |= ψ and for allj < i holds
gj |= φ, or (b) for all i ≤ b holdsgi |= φ

g0 |= E(φ S[a] ψ) Successor There exists a runr = (g0, . . .) s.t. ga |= ψ and for all
i < a holdsgi |= φ

g0 |= E(φ C[a] ψ) Conditional There exists a runr = (g0, . . .) for that holds: ifgi |= φ
for all i < a, thenga |= ψ

AG((acceptor.state = acceptor.accepting)
-> AF[100]((loader.state = loader.waitingForDelivery)

& AX(loader.state = loader.loading)
)

)

If RAVEN evaluates a CCTL formula to be incorrect, a counter example execution run can
be generated. Execution runs are given by time-annotated sequences of state changes. RAVEN
invokes a built-in waveform browser that lists all variables and their states over time.

3.6.3 RAVEN Input Language (RIL)

In the context of RAVEN, I/O-Interval Structures and a set of CCTL formulae are specified by
means of the textual RAVEN Input Language (RIL). A RIL specification contains

(a) a set of global definitions, e.g., fixed time bounds or frequently used formulae,

(b) the specification of parallel runningmodules, i.e., a textual specification of I/O-Interval
Structures, and

(c) a specificationwith a set of CCTL formulae, representing required properties of the
model,

80 CHAPTER 3. FORMAL VERIFICATION

(d) ananalyzesection with a set of analysis formulae that extract times for minimal/maximal
state transition times.

The following code is a fragment of the RIL model for the manufacturing case study.

MODULE agv1_negotiator
// the internal states are declared in the SIGNALS compartment

SIGNALS
state : { waitingForOrder computingBid waitingForAcknowledgement }
dest : { in ou ao pm mi mo am pd di do ad pw wi wo aw c1 c2 c3 c4 }
order : BOOL
currentItem : RANGE[0,20]

INPUTS // signals visible from other modules
disp_requestTransport_inpStation := (inpStation_requestTransport_agv1.state = true)
disp_requestTransport_mill := (mill_requestTransport_agv1.state = true)
disp_requestTransport_drill := (drill_requestTransport_agv1.state = true)
disp_requestTransport_wash := (wash_requestTransport_agv1.state = true)

... // further inputs omitted

DEFINE // declaration of output signals
bidding_inpStation := (sendBidding_inpStation = true)
bidding_mill := (sendBidding_mill = true)
bidding_drill := (sendBidding_drill = true)
bidding_wash := (sendBidding_wash = true)

... // further output signals are omitted

INIT // the initial value of the internal states
(state = waitingForOrder) & (order = false)

TRANS // transitions of the module
|- state=waitingForOrder

-- disp_requestTransport_inpStation & !order :1 --> dest:=in;
state:=computingBid

-- disp_requestTransport_mill & !order :1 --> dest:=mi;
state:=computingBid

-- disp_requestTransport_drill & !order :1 --> dest:=di;
state:=computingBid

-- disp_requestTransport_wash & !order :1 --> dest:=wi;
state:=computingBid

... // other transitions omitted

In RIL, we have to specify modules (i.e., I/O-Interval Structures) on the instance level, i.e.,
for each object, we have (at least one) module.7 In the code shown above, we consider parts of
the negotiation behavior of an AGV namedagv1.

In theSIGNALS compartment, the variables (or: attributes) of an object are declared. By de-
fault, variablestate comprises the states of the corresponding State Diagram part. As RAVEN

7This – among other restrictions – implies that we have to know in advance how many objects are created for a
concrete system. Later, we define corresponding rules for our application domain that restrict UML models to be
applicable to be mapped to I/O-Interval Structures.

3.6. RAVEN 81

only supports finite value sets, Integer values must be restricted to some finite value domain,
e.g., here the interval[0,20] is chosen for attributecurrentItem.

The set of dispatched events that trigger a transition is defined in theINPUTS compartment of
input signals. In the code listed, the prefixdisp shall indicate that these input signals represent
dispatched events. Event dispatching – in turn – is treated in separate modules and not shown
here.

In the DEFINE compartment, signals visible to other modules are listed (so-called output
signals). In the example, we use output signals to represent signals sent to other stations, e.g.,
to send bids in reply to requests for a transport.

In theINIT section, internal variables that have been defined in theSIGNALS compartment
get an initial value. This is of particular relevance for the corresponding initial State Diagram
state, i.e, we have to setstate = WaitingForOrder for our example.

TheTRANS compartment finally lists all transitions between the states. Conditions for taking
a transition are prefixed by--. To build more complex conditions, the usual logical operators
(&, |, ! for logical and, or, not) and relational operators can be applied.

An optional timing specification is prefixed by a colon. The timing specification can be a
single value or an interval. If it is omitted, the time bound is set to [1,1] by default. When
a transition is taken, the assignments following the arrow--> are executed. The assignments
can affect all variables defined in theSIGNALS or DEFINE compartment. For more complex
assignments, arithmetic operators (+ and−) can be applied. More details about the syntax of
RIL can be found in [Ruf01].

Specification and Analysis. Property specifications by CCTL formulae are given in theSPEC

compartment. Each CCTL formula gets a name to refer to. But basically, the syntax of CCTL
directly corresponds to the syntax as given in Section 3.6.2.

We here therefore focus on the analysis compartment with additional analysis queries. They
are of the following form.

analysisDeclaration ::= ’ANALYSIS’ analysis
analysis ::= analysisName ’:=’ anatype
anatype ::= ’MIN STABLE TIME OF’ ’(’ cctlFormula ’)’

| ’MAX STABLE TIME OF’ ’(’ cctlFormula ’)’
| ’MIN TIME FROM’ ’(’ cctlFormula ’)’ ’TO’ ’(’ cctlFormula ’)’
| ’MAX TIME FROM’ ’(’ cctlFormula ’)’ ’TO’ ’(’ cctlFormula ’)’

The grammar forcctlFormula is basically the same as for ordinary CCTL formulas. Only
some additional features are defined, e.g., the predefined variableINIT to refer to the overall
initial state of the model.

Analysis queries allow to compute time delays, i.e., minimal and maximal reaction times or
maximal wait times. AMIN STABLE query takes a CCTL formula as a parameter and computes
the minimal time for which the formula is true during execution of the corresponding model.
Analogously, aMAX STABLE query takes a CCTL formula and computes the maximal time for
which the formula is true during execution of the model. For example,

agv1_remainingInWaitingState :=
MAX STABLE TIME OF (agv1_negotiator.state=agv1_negotiator.waitingForOrder)

82 CHAPTER 3. FORMAL VERIFICATION

is a query to determine the maximal time in whichagv1 remains in statewaitingForOrder.8

MIN TIME andMAX TIME require two CCTL formulae as parameters. They compute the
minimal/maximal delay time between two conditions becoming true. The first parameter de-
termines thestart configuration set, i.e., those model states and time points, in which the first
CCTL formula is true. The second CCTL formula then determines thedestination configuration
set, i.e., those model states and time points, in which the second CCTL formula is true.MIN and
MAX compute the minimal and maximal time distances between these two configuration sets.
For example,

agv1_maxTime_firstAccept :=
MAX TIME FROM (INIT) TO (agv1_negotiator.sendAcceptBid_inpStation

| agv1_negotiator.sendAcceptBid_mill
| agv1_negotiator.sendAcceptBid_drill
| agv1_negotiator.sendAcceptBid_wash)

is a query to determine the maximal time until the AGV accepts to take an order for the first
time.

3.6.4 Graphical User Interface

While the RAVEN verification engine can be called directly from the console by a purely textual
command, the graphical RAVEN user interface is of great help due to the large number of
options that can be applied. We here only outline the main features of the GUI and refer to
[Ruf01] for more details.

The RAVEN GUI consists of three parts, i.e., (1) status information at the top, (2) main
buttons and different control sheets in the middle, and (3) log information at the bottom. The
four different control sheets are of special interest and need further explanation. TheComposi-
tion control sheet shown in Figure 3.9(a) on page 84 allows to select from different algorithms,
optimizations, and heuristics to build the internal representation of a given RIL model. Com-
pared to the standard expand-compose-reduce algorithm, other techniques may lead to faster
compilations, e.g., the algorithm ’combined’ performs the composition and reduction phases
in one step. The RAVEN manual states that the latter algorithm is preferrably to be used for
large models in themultiple delay mode. RAVEN basically distinguishes unit delay and multi-
ple delay mode (see Figure 3.9(b)). In multiple delay mode, a dedicated representation called
MTBDD (multi terminal binary decision diagram) is used that allows to use further optimiza-
tion techniques for model checking (e.g., time prediction and time jumps). In unit delay mode,
delay times of transitions are simply encoded by introducing additional stutter states. Other
preferences regard checks for correct clustering (see Definition 3.10) and dead-/livelocks.

TheModel Checking and Analysiscontrol sheet (Figure 3.9(c)) lists the parsed CCTL speci-
fications and timing analysis formulae. Again, different optimization techniques can be enabled
(e.g., ’time jump’ in multiple delay mode or ’abstraction’ for untimed specifications). Enabling
’counter example’ leads to the generation of an execution trace when a CCTL formula with

8Actually, the state formula becomes more complex when the the mapping of UML State Diagrams to I/O-
Interval Structures presented in Section 5.4 is considered. See Section 7.3 for more details.

3.7. CONTRIBUTIONS OF THE CHAPTER 83

A-quantifiers is falsified. Pressing the button ’check’ starts the verification with the chosen op-
tions. With the buttons ’show’ and ’new’, one can edit and update specifications directly within
the user interface. The ’reset’ button sets the proof state to unproved, such that a verification can
be performed again with different options. The analysis compartment in the lower part of the
control sheet shows the parsed timing analysis formulae. Its options and buttons can be used in
a very similar way. The simulation compartment is for randomly generating an example trace
of the model. Users can set the desired number of execution steps with a slider.

Finally, the Recourses and Statisticssheet shown in Figure 3.9(d) provides information
about the run times that were necessary for the different tasks of the verification. In particular,
the BDD-PACKAGE window gives detailed information about the generated internal represen-
tation of the investigated model.

3.7 Contributions of the Chapter

This chapter provides the following contributions:

• An overview of formal modeling and specification approaches w.r.t. the formal verifi-
cation method of model checking, especially real-time model checking, is given. The
property specification pattern system by Dwyer et al. is reviewed. We illustrated that
the CTL temporal logic formulas of that pattern system could be simplified under certain
reasonable assumptions.

• An evaluation of existing model checkers is made w.r.t. requirements relevant for the
considered domain. The RAVEN model checker is chosen to be applied in the context of
this thesis.

• I/O-Interval Structures are outlined. They build the underlying formal model of the
RAVEN model checker. Note that Section 3.6.1.2 is a new contribution developed in
the context of this thesis. In that section, the formal model of I/O-Interval Structures is
extended by variables over finite value sets, transitions that can be annotated by assign-
ments, and input conditions that may carry complex boolean expressions over variables.

• Correspondingly, the syntax of CCTL is extended to allow variables over finite value sets
and boolean operators to compare their values.

84 CHAPTER 3. FORMAL VERIFICATION

(b) Preferences

(c) Model Checking
& Analysis

(a) Composition

(d) Resources & Statistics

Figure 3.9: RAVEN Graphical User Interface

Chapter 4

Extended Object Model

The sciences do not try to explain,
they hardly even try to interpret,

they mainly make models.
By a model is meant a mathematical construct which,

with the addition of certain verbal interpretations,
describes observed phenomena.

The justification of such a mathematical construct
is solely and precisely that it is expected to work.

– John Von Neumann (1903 – 1957)

This section formally defines the syntax and semantics ofextended object modelsthat take State
Diagrams as a behavioral description of active classes into account. The notion of an extended
object model is based upon a formalization of the object model as presented by Richteres in
[Ric01]. Note that a number of definitions are adopted from that work, but the following con-
cepts are additionally introduced in this chapter:

• Signals for classes together with well-formedness rules,

• generalization of signals,

• State Diagrams and their relation to classes,

• an extension of the formal descriptor of a class,

• an extension of the formal definition of a system state, and

• a formal definition of system state sequences.

In Section 4.1, the syntax of extended object models is formally defined. In particular, we
define the syntax of (a significant part of) UML State Diagrams in Section 4.1.3. The semantics
of extended object models is defined in Section 4.2. The formalization of State Diagram state
configurations in Section 4.2.3 is of particular interest, as the deficiencies of the current informal
notion ofactive state configurationsfor UML State Diagrams are identified and resolved. Based
upon a definition of extendedoverall system statesas snapshots of an executed model in Section

85

86 CHAPTER 4. EXTENDED OBJECT MODEL

4.2.5, we define a high-level notion ofexecution traces, i.e., sequences of overall system states,
that comprise all necessary information to evaluate OCL expressions also w.r.t. state-oriented
operations. Section 4.3 then reviews the presented extension of the object model w.r.t. the
completion of the formal semantics of OCL 2.0.

4.1 Syntax

An Extended Object Modelis a tuple

M def
= 〈 CLASS,ATT,OP, SIG, isQuery, paramKind, SC,

ASSOC,≺,≺SIG, associates, roles,multiplicities 〉

with

• a setCLASS of classes,CLASS
def
= ACTIV E ∪ PASSIV E,

• a setATT of attributes,ATT
def
=

⋃
c∈CLASS ATTc,

• a setOP of operations,OP
def
=

⋃
c∈CLASS OPc,

• a functionisQuery : CLASS × OP → Boolean that determines whether an operation
is a query operation or not,

• a functionparamKind : CLASS × OP × N → {in, inout, out} that gives for each
operation parameter its parameter kind,

• a setSIG of signals,SIG ⊇
⋃

c∈CLASS SIGc,

• a setSC of State Diagrams,SC
def
=

⋃
c∈ACTIV E SCc,

• a setASSOC of associations,

• generalization hierarchies≺ for classes and≺SIG for signals, and

• functionsassociates, roles, andmultiplicities that give for each associationas ∈
ASSOC its dedicated classes, their role names, and multiplicities, respectively.

In the following, each of the tuple elements is considered in detail. For element names inM,
letA be an alphabet andN ⊆ A+ a set of finite, non-empty names.

4.1. SYNTAX 87

4.1.1 Types

We assume that there is a setΣ
def
= (T,Ω), whereT ⊆ P(N) is a set of type names andΩ a set

of operation signatures over types inT . In particular,T
def
= TB ∪ TE ∪ TC ∪ TS comprises

• a set of basic standard library typesTB, i.e.,Integer,Real,Boolean, andString,

• a setTE of user-defined enumeration types,

• a setTC of user-defined classes, and

• a set of special typesTS
def
= {OclV oid,OclState, OclAny}.

The elements of the typest ∈ T are kept in value setsITY PE(t). ITY PE(t) (or simplyI(t) when
the context is clear) is called thetype domainof t ∈ T .

OclVoid is a subtype of any other type and allows to operate with undefined values. The
only value ofOclVoid is calledOclUndefined and is denoted in the following by⊥. For
convenience, we presume that⊥ is included in each type domain, such that we have, e.g.,

I(OclV oid)
def
= {⊥},

I(Integer)
def
= Z ∪ {⊥},

I(Real)
def
= R ∪ {⊥},

I(Boolean)
def
= {true, false} ∪ {⊥},

I(String)
def
= A∗ ∪ {⊥},

I(OclState)
def
= N ∪ {⊥},

I(OclAny)
def
=

(⋃
t∈TB∪TE∪TC

I(t)
)
∪ I(OclState).

As the type domainI(OclState) is actually determined by the states of the State Diagrams
SCc of the referred UML user model, a more elaborated definition ofI(OclState) is given in
Section 4.2.6.

The domains of types inTE are simply the enumeration literals as given by the enumeration
types defined in the referred UML user model. For example, w.r.t. Figure 2.2 on page 21, we
have

TE = {MachineKind,AcceptState, LoaderState, ItemState, ItemKind}, and

I(MachineKind) = {Mill,Drill,Wash,⊥}.

Note that in the concrete OCL syntax, enumeration literals are represented by double colon
notation, e.g.,MachineKind::Mill.

The domains of types inTC areobject identifiersthat represent instances of classc. This
issue will be further discussed in Section 4.2.1.

Operations inΩ include, e.g., the usual arithmetic operations +, -, *, / forInteger values.
Moreover,collection typesfor sets, ordered sets, sequences, and bags are defined inΣ to manage
collections of values, e.g.,Set(String), Bag(Integer), andSequence(Real).

88 CHAPTER 4. EXTENDED OBJECT MODEL

4.1.2 Classes and their Characteristics

A class is a description for a set of objects sharing the same characteristics, i.e., attributes,
operations, signals, and associations.1 In conformance with the semantics of the adopted OCL
2.0 specification, we here do not distinguish between the UML classifier concepts of classes and
interfaces. OCL constraints are specified for instances of aninterface specification2. Whether
such an interface specification is given in the form of a UML class or interface definition does
not make a difference in the context of OCL. We first focus on attributes, operations, and signals.
Associations are separately defined in the setASSOC in Section 4.1.4.

Definition 4.1 (Classes and Types)
The set of classesCLASS is a finite set of names,CLASS ⊆ N . CLASS is the union of two
disjoint setsACTIV E andPASSIV E of active and passive classes,

CLASS
def
= ACTIV E ∪ PASSIV E.

Active classes specify entities capable of dynamic behavior, which is specified by an associated
State Diagram (see Definition 4.5).

Each classc ∈ CLASS induces a typetc ∈ TC ⊂ T having the same name as the class. A
valueval ∈ I(tc) of a typetc ∈ TC refers to an object of the corresponding classc ∈ CLASS.

The difference betweenc andtc is that the special value⊥ is additionally included inI(tc) for
all c ∈ CLASS. In the remainder, letc ∈ CLASS be a class andtc ∈ TC be the type of the
classc.

For example, the sets of active and passive classes w.r.t. the UML model in Figure 2.2 on
page 21 is

ACTIV E = { FactoryUnit, AGV, Station, InputStorage,OutputStorage,

Machine,Buffer, InputBuffer,OutputBuffer } and

PASSIV E = { Item,NegotiationParticipantTransport,

NegotiationParticipantDestination,NegotiationManager } .

Attributes. Classes are associated with attributes that describe characteristics of their objects.
An attribute has a name and a type that specifies the domain of attribute values.

Definition 4.2 (Attributes)
Letc ∈ CLASS be a class andtc ∈ T be the type of classc. The set of attributes ofc is defined

byATTc
def
= {〈a, tc, t〉 | a ∈ N ∧ t ∈ T}.

1In this thesis, we use the termcharacteristicsto refer to the elements that are calledpropertiesin terms of
UML, because we employ the notion of apropertyin a different context. We will use the termpropertyto refer to
a specification of a requiredbehavioralor dynamicproperty of a given model.

2Here, the terminterfaceis used in a general sense, i.e., we are not referring to the UML classifier concept
Interface.

4.1. SYNTAX 89

In the triple 〈a, tc, t〉, a denotes the attribute name,tc represents the type ofc to which the
attribute is applied, andt is the type ofa. Attribute names must be pairwise distinct, i.e.,

∀att, att′ ∈ ATTc with att = 〈a, tc, t〉, att′ = 〈a′, tc, t′〉 :

att 6= att′ =⇒ a 6= a′.

For example, the attributes of classInputBuffer are

ATTInputBuffer = { 〈acceptStatus, InputBuffer, AcceptState〉,
〈loaderStatus, InputBuffer, LoaderState〉,
〈announced, InputBuffer,Boolean〉 }.

Though the attribute names of a class must be pairwise distinct, attributes with the same
name may appear in several classes which are not related by generalization (cf. well-formedness
rules in Section 4.1.5).

Operations. In addition to attributes, a class may be associated with a number of operations
and signals. Operations are used to describe behavioral characteristics of objects. That behav-
ior might be specified by an associated State Diagram, but we here only consideroperation
signaturesthat declare an interface of operations.

Definition 4.3 (Operations)
Let c ∈ CLASS be a class andtc ∈ T be the type of classc. The operations of classc are
defined by a setOPc of operation signatures,

OPc
def
= {(ω : tc × t1 × . . .× tn → t) | ω ∈ N , n ∈ N0, and t, t1, . . . tn ∈ T}.

Symbolω determines the operation name, and the first parametertc denotes the type ofc to
which operationω belongs.

For example, the operations of the abstract classBuffer are

OPBuffer = { 〈load : Buffer × Item→ OclV oid〉,
〈unload : Buffer × Item→ OclV oid〉 }.

FunctionisQuery : CLASS × OP → Boolean determines whether an operation is a
query operation without side-effects on the current status of the executed model (cf. [OMG03d,
Section 2.5.2.7]). Only operationsop of a classc with isQuery(c, op) = true are allowed to
becalledwhen an OCL expression is evaluated, as the evaluation of OCL expressions must not
have side effects on the actual status of the referred UML user model.

Though not explicitly shown in Figure 2.2 on page 21, the following operations are query
operations:

〈getDistance : AGV × FactoryUnit→ Position〉,
〈getParkPos : AGV × Station→ Position〉,
〈getInputPos : AGV × Station→ Position〉.

90 CHAPTER 4. EXTENDED OBJECT MODEL

Operation Parameter Kinds. Note that UML generally allows operation parameters to be
of kind in, out, inout, or result [OMG03d, Sect. 2.5.2.31]. The current official OCL spec-
ification as well as the object model definition by Richters do not consider parameter types.
However, the adopted OCL 2.0 specification now considers parameter kinds.

Therefore, we introduce functionparamKind : CLASS × OP × N → {in, inout, out}
gives for each formal parameter its parameter kind [OMG03d, Section 2.5.2.31]. SetN is used
to access individual parameters, i.e., for an operation signatureop = (ω : tc×t1× . . .×tn → t),
positioni, 1 ≤ i ≤ n, refers to the parameter of typeti.

Parameter kindin represents an input parameter that is not changed after operation execu-
tion. Parameters of kindout are output parameter that are unassigned at the time of operation
call. They are assigned with a specific value when the operation call returns. Parameters of
kind inout are a combination of the two previous kinds, i.e., they provide an input value for the
operation, and this value might be changed when the operation returns (this is also known as
call-by-value-and-result).

OCL 2.0 assumes that at most one parameter of kindresult is specified [OMG03b, Ap-
pendix A.2.1.2 and A.3.2]. If neither a result type nor anyinout orout parameters are specified
for an operation, we set the result typet to the predefined typeOclVoid. If there areinout or
out parameters specified, the operation result type is a tuple in which the relevant parameter
values appear in their specified order, including the result value (if any) as the last element.

However, in this formalization we employ some simplifications without loss of generality.
First, we simply always consider the complete tuple of operation parameters, i.e., parameters
of kind in are always considered. All we have to require is that the values of input parameters
must not change when the operation call returns. And then we also always include a return
value, even if the operation return type isOclVoid. In this case, the return value is simply set
to⊥.

Signals. Signals are an asynchronous communication mechanism of UML. When a signal is
sent, the calling object simply continues its execution, while synchronous operation calls make
the invoking operation wait for a return value. In contrast, an asynchronous operation call is
like sending a signal, but note that a potential return value is simply discarded.

Richters has not considered asynchronous signals in his formal model. Reactions on signals
received by an objectobj are specified by a State Diagram associated with the class to whichobj
belongs. Consequently, when integrating State Diagrams into the formal object model, signals
now also have to be regarded as well.

In UML, signals are classifiers, i.e., signals are generalizable model elements defined in-
dependently of the classes handling them. The setSIG in the model description defines all
signals of a model. As we support generalization of signals,SIG is a superset of the individual
signal setsSIGc. The setSIGc of signals that can be handled by objects of a classc is speci-
fied by so-calledreceptions[OMG03d, Sect. 3.26.6]. Note that signals can only be handled by
instances of active classes, as passive classes do not have associated State Diagrams.

Definition 4.4 (Signals)
The signals that can be handled by instances of a classc ∈ ACTIV E are defined by the set

4.1. SYNTAX 91

SIGc of signal receptions,

SIGc
def
= {(ω : tc × t1 × . . .× tn) |ω ∈ N , n ∈ N0, and t1, . . . , tn ∈ T}.

Symbolω denotes the signal name, andtc refers to the type ofc to which signalω is applied.
As signals are asynchronous, no return value is expected, such that all signal parameters are all
input parameters.

For example, the negotiation of transports to be performed is modeled by signal communi-
cations in the UML Class Diagram shown in Figure 2.2 on page 21.

Visibility of Attributes, Signals, and Operations. Though supported in UML Class Dia-
grams, visibility features such asprivate, protected, or public are not reflected in the
formal object model. In the adopted OCL 2.0 specification, all model elements are considered
visible [OMG03b, Section 9.2.2], although it is also mentioned that tools may employ UML
visibility rules, i.e., only allow OCL expressions to be specified over model elements visible
from the expression’s context.

4.1.3 Abstract Syntax of State Diagrams

The UML 1.5 StateMachine package specifies concepts for modeling discrete behavior through
finite state-transition systems [OMG03d, Section 2.12]. The provided state machine formalism
is an object-based variant of Harel Statecharts [Har87]. Though state machines are applicable
to various model elements within UML, the graphical form ofUML State Diagramsis most
frequently used to model the reactive behavior of class instances.

UML allows multiple State Diagrams to be applied to a single class. The reason for this is
that it should be possible to associate different State Diagram to a class in different phases of
development, e.g., in the analysis and in the design phase. However, we here require that there
is one State DiagramSCc for eachc ∈ ACTIV E.

Note that UMLsubmachine statesandstub statesdo not appear in our general definition.
Submachine states are a syntactical convenience to represent a ‘call’ to a another state machine
as a ‘subroutine’, using stub states as entry and exit points. Thus, a submachine state is seman-
tically equivalent to a composite state, and we can assume that all these states have explicitly
been copied intoSC, such that all submachine states and stub states are eliminated.

Definition 4.5 (Abstract Syntax of State Diagrams)
Let c ∈ CLASS be a class. Eachc ∈ ACTIV E has an associated State DiagramSCc

representing the reactive behavior of instances ofc.

SCc
def
=



〈 Sc, V ARSc, TRc, EV TSc, GUARDSc, ACTSc,

internalTransc, shallowHistoryc, deepHistoryc,

initc, finalc, substatesc, entryc, exitc,

doActivityc, deferrableEventsc 〉,

if c ∈ ACTIV E

∅, if c ∈ PASSIV E.

92 CHAPTER 4. EXTENDED OBJECT MODEL

To keep the definition concise, we omit the class annotatorc for State Diagram components
in the following and provide the general definition of a State DiagramSC, i.e.,

SC
def
= 〈 S, V ARS,EV TS,GUARDS,ACTS, TR, internalTrans,

shallowHistory, deepHistory, defaultHistory, init, final,

substates, entry, exit, doActivity, deferrableEvents 〉,

where

1. S ⊆ N is a set of states.S is the union of the following disjoint sets.

• Pseudo statesPseudo, consisting of the disjoint sets of (a) initial statesInit, (b)
merging statesJoin, (c) splitting statesFork, (d) static conditional branch states
Junction, (e) dynamic conditional branch statesChoice, and (f) history states

History
def
= ShallowHistory ∪ DeepHistory,

• synchronization statesSynch,

• simple statesSimple,

• composite statesComposite, which in turn comprises the two disjoint sets of se-
quential composite statesXor and orthogonal composite statesAnd, and

• final statesFinal.

For more details about these states, see [OMG03d, Section 2.12.2]. For convenience, we
define

Proper
def
= And ∪Xor ∪ Simple.

2. V ARS ⊆ N is a set of local variables.

3. EV TS ⊆ EXPREvts is a set of events. We assume that there is an expression language
EXPREvts available to formulate events such as operation calls, signals, timers, etc.

4. GUARDS ⊆ EXPRGuards is a set of conditions. We assume that there is a language
EXPRGuards available to formulate boolean expressions.3

5. ACTS ⊆ EXPRActs is a set of actions. We assume that there is an expression language
EXPRActs available to formulate actions such as assignments, operation calls, signals,
etc.

6. TR ⊆ (S \ Final)×EV TS ×GUARDS ×ACTS × (S \ Init) is a set of transitions.
A transition connects a source states ∈ S \ Final and a destination states′ ∈ S \ Init,

3In this context, boolean OCL expressions are frequently applied.

4.1. SYNTAX 93

may have a trigger evente ∈ EV TS, a guard conditiong ∈ GUARDS, and an action
expressiona ∈ ACTS. In the following, the five convenience functions

trsrc : TR→ S \ Final,
trdst : TR→ S \ Init,
trevt : TR→ EV TS,

trgrd : TR→ GUARDS,

tract : TR→ ACTS

are used to extract the source state, destination state, event, guard, and action of a given
transition, respectively.

For a transitiont = 〈s, e, g, a, s′〉, we use the notations
e[g]/a−−−→ s′ and omite, g, ora when

trevt(e) = ∅, trgrd(g) = ∅, or tract(a) = ∅, respectively. Transitionst ∈ TR with
trsrc(t) = trdst(t) are calledself-transitions.

7. FunctioninternalTrans : Proper → P(EV TS × GUARDS × ACTS) gives the set
of internal transitionsfor a given states ∈ Proper. Internal transitions semantically
differ from self-transitions. When triggering an internal transition in a states, the exit-
and entry-actions ofs are not executed.

8. Functions
shallowHistory : Composite→ ShallowHistory,

deepHistory : Composite→ DeepHistory, and

defaultHistory : Composite→ History

determine for a given composite states ∈ Composite its (potential) shallow, deep, and
default history state, respectively. The concept of history states has already been pre-
sented in Section 2.3.2.

Let h ∈ History be a history state of a composite states, i.e.,h = shallowHistory(s)
or h = deepHistory(s). We require that there is at most one transitiont ∈ TR with
trsrc(t) = h. This transition leads to thedefault history stateof s, i.e., trdst(t) =
defaultHistory(s). This default state is entered only when (a) the composite states
is entered viah and (b) the composite states is entered for the first time.

9. Functioninit : Composite → Init gives for each composite state the unique initial
(pseudo) state. For alls ∈ Init, there is notr ∈ TR with trdst(tr) = s, i.e., initial states
do not have incoming transitions. Moreover, there is exactly one transitiontr ∈ TR with
trsrc(tr) = s, i.e., each initial state has exactly one outgoing transition that leads to a
corresponding proper state.

10. Functionfinal : Composite → Final gives for each composite state the unique final
state. There is no transitiontr ∈ TR with trsrc(tr) ∈ Final, i.e., final states do not have
outgoing transitions.

11. substates : Composite→ P(S) gives all substates of a state, such that

94 CHAPTER 4. EXTENDED OBJECT MODEL

(a) there is a unique statetop ∈ Composite with
∀s ∈ Composite : top 6∈ substates(s),

(b) ∀s ∈ And : substates(s) ⊆ Composite, 4

(c) ∀s ∈ Composite \ {top} there is exactly one path

〈s1, . . . , sn〉 ∈ Composite× . . .× Composite︸ ︷︷ ︸
n times, n≥2

,

with s1 = top ∧ sn = s ∧ si+1 ∈ substates(si) for 1 ≤ i ≤ n− 1.

12. Functionsentry, doActivity, exit : Proper → ACTS give the actions to take when a
state is entered, active, or left, respectively.

13. deferrableEvents : Proper → P(EV TS) gives the set of events to be retained for
later consumption.

Example. The AGV State DiagramSCAGV shown in Figure 2.4 on page 28 is formally ex-
pressed as follows.

InitAGV = { init1, init2 },
AndAGV = { AGV },
XorAGV = { Negotiator, T ransport },
SimpleAGV = { WaitingForOrder, ComputingBid,

WaitingForAcknowledgement, Idle,MovingToLoad, Loading,

MovingToUnload, Unloading,MovingToV acate },
V ARSAGV = { currentItem, s1, s2 },
EV TSAGV = { s1.^requestTransport(i), s2.^acceptBid(i), s2.^rejectBid(i),

s2.^requestTransport(i), agv.vacate(p), when(order = true) },
GUARDSAGV = { order = true, order = false, s2 = s1 and i = currentItem,

p = self.pos },
ACTSAGV = { order := true, order := false, currentItem := i, pos := dest,

dest := getInputPos(s1), dest := self.getInputPos(s1),

dest := getParkPos(), dest := currentItem.nextDest(pos),

send s1.rejectRequest(i), send s1.bidding(currentItem, bid),

send s2.rejectRequest(i), computeBid(dest),

move(dest), load(currentItem), unload(currentItem) },

4This is a well-formedness rule of the UML standard (see [OMG03d, Section 2.12.3.1]). In many alternative
formal syntax definitions, evens′ ∈ Xor is required in this case, leading to anormal formof alternating Xor- and
And-states in the state hierarchy.

4.1. SYNTAX 95

The rich setTRAGV of transitions is not listed for brevity reasons. To give an example, we
here only provide the self-transition of stateWaitingForOrder: The remaining transitions can
easily be obtained from the State Diagram in Figure 2.4.

WaitingForOrder
s1.requestTransport(i)[order=true]/send s1.rejectRequest(i)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ WaitingForOrder.

For the states inSAGV , the corresponding initial states and substates are defined as follows.
Note that in this special case final states do not appear, as we assume the ideal case that the
(physical) AGVs do not break down and their corresponding objects will never be destroyed.

initAGV (init1) = WaitingForOrder,

initAGV (init2) = Idle,

substatesAGV (AGV) = { Negotiator, T ransport },
substatesAGV (Negotiator) = {WaitingForOrder, ComputingBid,

WaitingForAcknowledgement },
substatesAGV (Transport) = { Idle,MovingToLoad, Loading, Unloading,

MovingToUnload,MovingToV acate },

Finally, the entry, exit, and do-activities are defined.

entryAGV (ComputingBid) = ′currentItem := i′,

exitAGV (MovingToLoad) = ′pos := dest′,

exitAGV (Loading) = ′dest := currentItem.nextDest(pos)′,

exitAGV (MovingToUnload) = ′pos := dest′,

exitAGV (Loading) = ′order := false′,

exitAGV (MovingToV acate) = ′pos := dest′,

doActivityAGV (computingBid) = ′computeBid(dest)′,

doActivityAGV (MovingToLoad) = ′move(dest)′,

doActivityAGV (Loading) = ′load(currentItem)′,

doActivityAGV (MovingToUnload) = ′move(dest)′,

doActivityAGV (Unloading) = ′unload(currentItem)′,

doActivityAGV (MovingToV acate) = ′move(dest)′,

All other components ofSCAGV are set to∅.

Some Remarks on Definition 4.5. The setFinal of final states resembles a pseudo state a
lot, e.g., a final state cannot have an entry action, activity, exit action, internal transitions, and
deferrable events. Therefore, one might argue that final states belong to the set of pseudo states.
But there is one significant semantic difference: Pseudo states are transient nodes, i.e., they are
never part of an active state configuration. Final states, however, may appear in an active state

96 CHAPTER 4. EXTENDED OBJECT MODEL

configuration (see Definition 4.12 on page 103), even across an indefinite number of execution
steps (i.e., run-to-completion steps, RTC-steps). This justifies to keep final states separated from
pseudo states.5

Definition 4.5 covers most of the abstract State Diagram syntax of the official UML 1.5
specification [OMG03d, Section 2.12.2]. There are only a few details left out (e.g., the bound
of synch states and some more syntactical restrictions [OMG03d, Section 2.12.3]), which can
easily be added to the definition if necessary. But for our purposes, it is sufficient to regard the
State Diagram components defined above.

There are several semantic issues arising when State Diagrams have to be considered along
the generalization hierarchy of classes (see Section 4.1.5).

UML State Diagrams do not have an inherent explicit time model, although it is possible to
syntactically specify time-related events. For example, a timeout that requires to leave a state
after 10 seconds can be specified by an eventafter(10 sec) attached to a transition. Later, in
Chapter 5, we formally define syntax and semantics of atimed State Diagram variant.

4.1.4 Associations

Associations are used to model structural relationships between classes. Though generally as-
sociations may connect an arbitrary number of classes, most frequently binary associations are
applied. Moreover, there is no restriction on the number of associations a class may participate
in.

Definition 4.6 (Associations)
The set ASSOC of associations is defined by

• a finite set of namesASSOC ⊆ N ,

• a functionassociates :

{
ASSOC → CLASS+

as 7→ 〈c1, . . . , cn〉 with n ≥ 2.

Functionassociates gives for each associationas ∈ ASSOC a tuple 〈c1, . . . , cn〉 that
represents the classes that participate in the association. Note that the elements of〈c1, . . . , cn〉
do not necessarily have to be distinct. In particular, binary associations withassociates(as) =
〈c, c〉, i.e., both association-ends are attached to the same classc, are called self-associations or
recursive associations. In general, a class may participate multiple times in a single association.
In order to distinguish the role of each association end in such a case, unique role names are
applied to be able to uniquely refer to a specific association end when navigating through the
model.

Definition 4.7 (Role Names)
Let as ∈ ASSOC be an association withassociates(as) = 〈c1, . . . , cn〉. Role names for an
association are defined by a function

roles :

{
ASSOC → N+

as 7→ 〈r1, . . . , rn〉 with n ≥ 2,

5see UML RTF1.4, issue 3201, http://cgi.omg.org/issues/issue3201.txt

4.1. SYNTAX 97

where all role names must be distinct, i.e.,

∀i, j ∈ {1, . . . , n} : i 6= j =⇒ ri 6= rj.

Functionroles(as) = 〈r1, . . . , rn〉 assigns each classci participating in the associationas a
unique role nameri. If no role name is provided for an association end, the respective name of
the class is taken by default, with the first letter in lower case. Note that for self-associations
unique role names must be provided, as discussed above.

Moreover, an additional syntactical constraint is needed to guarantee unique role names,
namely for the case that a class is part of multiple associations. Before we can formally express
this constraint, we need to define two help functions, i.e.,participating andnavEnds. First,
functionparticipating gives the set of associations a class participates in.

participating :


CLASS → P(ASSOC)

c 7→ { as | as ∈ ASSOC
∧ associates(as) = 〈c1, . . . , cn〉
∧ ∃i ∈ {1, . . . , n} : ci = c}.

Second, functionnavEnds gives the set of all role names that are reachable (or: navigable)
from a class along a given association.

navEnds :


CLASS × ASSOC → P(N)

(c, as) 7→ { r | associates(as) = 〈c1, . . . , cn〉
∧ roles(as) = 〈r1, . . . , rn〉
∧ ∃i, j ∈ {1, . . . , n} : i 6= j ∧ ci = c ∧ rj = r}.

Informally speaking, we have to guarantee that navigation ends of the associations a given
classc participates in are pairwise distinct. Otherwise, we might not be able to unambiguously
navigate along associations and functionnavigationEnds (see below) cannot correctly be built.
We therefore require

∀c ∈ CLASS,∀as, as′ ∈ participating(c) :

as 6= as′ =⇒ navEnds(c, as) ∩ navEnds(c, as′) = ∅.

We can now determine the set of role names that can be directly reached from a given class
by navigating along the associations this class participates in by functionnavigationEnds,
which is defined by

navigationEnds :

{
CLASS → P(N)

c 7→
⋃

as∈participating(c) navEnds(c, as).

An association specifies the possible existence of connections between objects. A connec-
tion between objects is also called alink in UML terminology (see Section 4.2.4).Association
multiplicitiesspecify the number of links that can be established on a given object.

98 CHAPTER 4. EXTENDED OBJECT MODEL

Definition 4.8 (Association Multiplicities)
Letas ∈ ASSOC be an association withassociates(as) = 〈c1, . . . , cn〉. Function

multiplicities(as) = 〈M1, . . . ,Mn〉

assigns each classci participating in the association,1 ≤ i ≤ n, a non-empty setMi ⊆ N0

withMi 6= {0}.

For example, we require that an item is always associated with a factory unit. This is in-
dicated in Figure 2.2 on page 21 by a number 1 attached to the associationis-at-unit at the
FactoryUnit end.

Aggregation and composition are special forms of associations representing part-whole re-
lationships among classes. They are denoted by hollow and filled diamonds in the UML Class
Diagram notation. Based on the observation that aggregations and compositions can be mapped
to simple associations and additional OCL constraints [GR99], it is sufficient to regard only
simple associations in this formal model.

4.1.5 Generalization

Generalization and specialization are taxonomic relationships between classes. Generalization
refers to the bottom-up approach of setting up a more general class from one or more existing
subclasses. Common features are adopted in the general class, while specific differences are
restrained. By specialization, we refer to a relationship between classes, in which a general class
is specialized in a top-down manner into one or more subclasses. Subclasses inherit features of
their superclasses (e.g., attributes and operations).

Basically, specialization and generalization are different views of the same concept, and
we will mainly use the termgeneralizationin the following to refer to this concept. Thus, we
may say that in a generalization relationship oftwo classes, we have a more general class (the
parent) and a more specific class (the child) that is consistent with the parent and carries some
additional information. Note that the notion of generalization is not only known for classes in
UML. For example, generalization relationships are also applied to signals, packages, and use
cases.

Definition 4.9 (Generalization Hierarchy, Child and Parent Classes)
A generalization hierarchy≺ is an irreflexive partial order onCLASS, i.e.,≺ is an irreflex-
ive, anti-symmetric, and transitive relation. Pairs in≺ describe generalization relationships
between two classes.

For c1, c2 ∈ CLASS with c1 ≺ c2, c1 is called a child class ofc2, andc2 is called a parent
class ofc1.

A child class transitively inherits characteristics (i.e., attributes, operations, signals, and associ-
ations) of its parent classes.

Correspondingly, the generalization hierarchy≺SIG defines an irreflexive partial order on
SIG. As a signal can be specified as the child of another signal, reception of that child signal
may also trigger any transition in a State Diagram that depends on any of its ancestor signals.

4.1. SYNTAX 99

The set of characteristics defined for a class together with its inherited characteristics is
called afull descriptor of a class. Before formalizing this issue, we define a function for col-
lecting all transitive parents of a given class.

parents :

{
CLASS → P(CLASS)

c 7→ {c′ | c′ ∈ CLASS ∧ c ≺ c′}.

The complete set of attributes ofc is the setATT ∗c that contains all inherited and direct at-
tributes.

ATT ∗c
def
= ATTc ∪

⋃
c′∈parents(c)

ATTc′ .

The complete set of user-defined operations is determined analogously.

OP ∗
c

def
= OPc ∪

⋃
c′∈parents(c)

OPc′ .

The complete set of user-defined signals is given by

SIG∗
c

def
= SIGc ∪

⋃
c′∈parents(c)

SIGc′ .

Finally, the complete set of navigable role names for a classc ∈ CLASS is given as follows.

navigationEnds∗(c)
def
= navigationEnds(c) ∪

⋃
c′∈parents(c)

navigationEnds(c′).

Definition 4.10 (Full Descriptor of a Class)
The full descriptor of a classc ∈ CLASS is a tuple

FDc
def
= 〈ATT ∗c , OP ∗

c , SIG
∗
c , SCc, navigationEnds

∗(c)〉

containing all attributes, user-defined operations, signals, navigable role names, and the possi-
bly associated State Diagram.

The UML standard requires that certain characteristics of a full descriptor must be distinct.
For example, a class may not define an attribute that is already defined in one of its parent
classes. These constraints are captured more precisely by the following well-formedness rules.
Each constraint must hold for eachc ∈ CLASS.

1. Attributes are defined in exactly one class.

∀〈a, tc, t〉, 〈a′, tc′ , t′〉 ∈ ATT ∗c :

a = a′ =⇒ tc = tc′ ∧ t = t′

100 CHAPTER 4. EXTENDED OBJECT MODEL

2. An operation may only be defined once in a full class descriptor. The first parameter of an
operation signature indicates the class in which the operation is defined. The following
condition guarantees that each operation in a full class descriptor is defined in a single
class.

∀(ω : tc × t1 × . . .× tn → t), (ω′ : tc′ × t′1 × . . .× t′n → t′) ∈ OP ∗
c :

ω = ω′ ∧ t1 = t′1 ∧ . . . ∧ tn = t′n =⇒ tc = tc′

3. A signal may only be defined once in a full class descriptor. The first parameter of a
signal signature indicates the class in which the signal is defined. The following condition
guarantees that each signal in a full class descriptor is defined in a single class.

∀(ω : tc × t1 × . . .× tn), (ω′ : tc′ × t′1 × . . .× t′n) ∈ SIG∗
c :

ω = ω′ ∧ t1 = t′1 ∧ . . . ∧ tn = t′n =⇒ tc = tc′

4. Role names are defined in exactly one class among the generalization hierarchy of a given
classc.

∀c1, c2 ∈ parents(c) ∪ {c} :

c1 6= c2 =⇒ navigationEnds(c1) ∩ navigationEnds(c2) = ∅

5. We have seen in Section 2.3.3.1 that OCL uses the same notation to refer to operations
and signals to specify OCL messages. To uniquely identify an operation or signal, the
operation and signal names of a class (in combination with the corresponding parameters)
must be pairwise distinct.

∀(ω : tc × t1 × . . .× tn → t) ∈ ATT ∗c ,
∀(ω′ : tc′ × t1 × . . .× tn) ∈ SIG∗

c : ω 6= ω′

Note that forω′, the typest1, . . . , tn are fixed by the parameter types ofω.

6. Similarly, OCL uses the same notation for accessing attributes and navigating by role
name. Therefore, attribute names and role names must be pairwise distinct.

∀〈a, tc, t〉 ∈ ATT ∗c ,∀r ∈ navigationEnds∗(c) : a 6= r

Note that it is allowed for operations and signals to have the same name as attributes or role
names, because the concrete syntax of OCL allows to distinguish between these cases.

4.2 Semantics

In the previous section, the syntax of extended object models has been defined. In this section,
we now present a formal semantics of extended object models.

4.2. SEMANTICS 101

4.2.1 Objects

The domain of a classc ∈ CLASS is the set of objects of this class and all of its child classes.
Objects are referred to by object identifiers that are unique in the context of the whole executed
model. In the remainder, no distinction will be made between objects and their identifiers, i.e.,
each object is uniquely determined by its identifier and vice versa.

Definition 4.11 (Object Identifiers and Domain of a Class)
The set of object identifiers of a classc ∈ CLASS is defined by an infinite set

oid(c)
def
= {objId

1
, objId

2
, . . .}.

The domain of a classc ∈ CLASS is defined as

ICLASS(c)
def
=

⋃
c′∈CLASS with c′≺c ∨ c′=c

oid(c′).

Correspondingly, the domain of typetc ∈ TC that is induced by classc, is

ITY PE(tc)
def
= ICLASS(c) ∪ {⊥}.

For brevity reasons, we omit the index ofICLASS(c) andITY PE(t) when the context is clear.

4.2.2 A Note about State Diagram Inheritance

The problem of consistency among generalization of classes and inheritance of characteristics
(i.e., attributes and operations) has been studied extensively for object-oriented languages, but
consistency among inheritance of behaviorin conceptual object-oriented design notations like
UML has received less attention. Different notions for consistency of behavior have been iden-
tified in this context [EE94, SS00, SS02a]. Their definition makes use of the dynamic execution
of State Diagrams by traces, which are execution runs through (the processes derived from)
State Diagrams.

First, weak invocation consistencyguarantees that each trace of the State Diagram for the
superclass is also contained in the set of traces of the State Diagram for the subclass. With other
words, a sequence of activities performable on instances of a superclass can also be performed
on instances of a subclass. Second,strong invocation consistencyguarantees the latter property
even if activities added to the subclass have been inserted arbitrarily in that sequence. Finally,
in observation consistency, the State Diagram of the superclass specifies an upper bound to
the behavior of the subclasses. It is guaranteed that every trace of an instance of a subclass is
observable as a trace of the superclass, when states, events, and activities added at the subclass
are neglected.

Apart from that classification, UML 1.5 provides an informal description of three different
inheritance policies for state machines [OMG03d, Section 2.12.5.3], which implicitly applies
as well to State Diagrams: subtyping, strict inheritance, and general refinement, where ’refine-
ment’ in this case is a synonym for inheritance.

102 CHAPTER 4. EXTENDED OBJECT MODEL

Subtypingrequires that a state in the subclass retains all its transitions. Transitions may
lead to the same state or a new substate of that state (i.e., strengthening of the transition post-
condition), and guard conditions may be weakened by adding disjunctions (i.e., weakening of
transition preconditions). This corresponds toweak invocation consistencyand complies to the
substitutability principle.

The other two policies provided by UML 1.5 support neither observation nor invocation
consistency and are instead oriented towards coding and inheritance issues.Strict inheritance
is intended to encourage reuse of implementation rather than preserving behavior. This kind of
policy results from the fact that in many programming languages features cannot be deleted in
subclasses once defined in a superclass. Thus, it is not allowed to remove outgoing transitions
in subclasses and to apply a different source state to an existing transition. Nevertheless, new
states and transitions can be added, and guard conditions, transition target states, and incoming
transitions may be altered without any further restrictions. Finally,general refinementbasically
places no restrictions on State Diagram inheritance.

Note that if a classc has multiple superclasses, the default State Diagram forc consists of all
the State Diagrams of its superclasses as orthogonal regions. This may be overridden through a
kind of State Diagram inheritance if required.

4.2.3 State Configurations

As a result from the discussion in the previous section we assume in the following that an
extended object modelM under consideration complies to a predefined policy of State Diagram
inheritance. This means that for each active classc ∈ ACTIV E there is a State Diagram
specificationSCc which is consistent with the State Diagrams of the superclasses ofc.

In a State Diagram with composite and concurrent states, the term ‘current state’ cannot
be applied without causing confusion, as more than one state can be active at the same time.
Consequently, UML 1.5 provides the notion ofactive state configurations[OMG03d, Section
2.12.4.3].

If the State Diagram is in a simple state that is contained in a composite state, then all
the composite states that (transitively) contain the simple state are also active. Furthermore, as
composite states in the state hierarchy may be concurrent, the currently active states are actually
represented by a tree of states starting with the single statetopc at the root down to individual
simple statessi ∈ Simplec at the leaves. Such a state tree is in UML 1.5 referred to as a
state configuration. In the following definition 4.12, we give a corresponding formal definition
of state configurations. But first, we define a convenience functionsuperstatec that gives the
direct superstate of a states ∈ Sc:

superstatec :


Sc → Compositec

s 7→

{
s′, if ∃s′ ∈ Compositec with s ∈ substatesc(s

′)

∅, else.

UML 1.5 does not consider final states in state configurations. In contrast, we include final
states in the following definition for state configurations, as they might be active after an RTC-
step. However, a final state that is a direct child state oftopc is not part of any configuration,

4.2. SEMANTICS 103

since entering that state is equivalent to termination (or: destruction) of the corresponding ob-
ject. Additionally, we explicitly excludeimmediate states. Immediate states are proper states
that are directly run through in an RTC-step, as they do not have outgoing transitions that have
to wait for a triggering event. Consequently, they can never be part of an active state configura-
tion after completion of an RTC-step. We here leave out a formal definition and simply refer to
setImmediatec to denote the set of all immediate proper states of a State DiagramSCc.

Furthermore, we make use of the following help sets for classesc ∈ ACTIV E:

ProperStayc
def
= Properc \ Immediatec,

Stayc
def
= ProperStayc ∪ {f ∈ Finalc | f 6∈ substatesc(topc)},

Basicc
def
= (Simplec \ Immediatec) ∪ {f ∈ Finalc | f 6∈ substatesc(topc)}.

Definition 4.12 (State Configurations with respect to state s)
Let c ∈ ACTIV E andSCc be the State Diagram forc. A state configurationC with respect to
a state sis a maximal set of states that the State Diagram can be simultaneously in, taking state
s as the root. Functioncfgc that maps a states ∈ ProperStayc to the set of configurationsC
with respect tos is defined by

cfgc :



ProperStayc → P(P(Stayc))

s 7→ {C ∈ P(Stayc) | s ∈ C
∧ ∀s′ ∈ C ∩ Andc : substatesc(s

′) ⊆ C
∧ ∀s′ ∈ C ∩Xorc : |substatesc(s

′) ∩ C| = 1

∧ ∀s′ ∈ C \ {s} : superstatec(s
′) ∈ C }.

Definition 4.13 (State Configuration)
The setISC(c) of overallstate configurationsfor a classc ∈ ACTIV E, which are state config-
urations with respect to the top statetopc, is determined bycfgc(topc).
For convenience, we defineISC(c) for all c ∈ CLASS by

ISC(c)
def
=

{
cfgc(topc), if c ∈ ACTIV E,
∅, if c ∈ PASSIV E.

By definition, each state configuration induces a state tree. But to uniquely determine a state
configuration, it is sufficient to have information about terminal states, i.e., the simple and final
states.

Definition 4.14 (Basic State Configurations)
Let c ∈ ACTIV E andSCc be the State Diagram forc. Let s ∈ ProperStayc be a state and
let C ∈ cfgc(s) be a state configuration with respect tos. The set

BC
def
= C ∩Basicc

is called abasic state configuration(with respect toC). The setBs of all basic configurations
with respect tos is then defined by

Bs
def
= {BC | C ∈ cfgc(s)} ⊆ P(P(Basicc)) .

104 CHAPTER 4. EXTENDED OBJECT MODEL

Note that the following condition holds (cf. [PU97, Lemma 1]):

∀s ∈ ProperStayc,∀BC ∈ Bs :

superstate∗(BC) ∩ substates∗(s) = C .

In other words, given a basic state configurationBC, we can uniquely determine the state con-
figurationC = cfgc(s) with respect to a states.

We here employed function

superstate∗ : P(Sc) → P(ProperStayc).

Basically, that function gives the set of transitive superstates on a given set of states (including
that given set of states). Functionsubstates∗ : ProperStayc → P(Stayc) in turn gives the set
of transitive substates on a given state (including this state).

Proper States: { S,X,Y,A,B,J,K,L,M,N }

Final States: { S::FinalState,B::FinalState }

Immediate States: { K }

State Configurations: { {S,X,A,B,J,M},{S,X,A,B,J,N},

{S,X,A,B,J,B::FinalState},

{S,X,A,B,L,M},{S,X,A,B,L,N},

{S,X,A,B,L,B::FinalState},

{S,Y} }

Basic Configurations: { {J,M},{J,N},{J,B::FinalState},

{L,M},{L,N},{L,B::FinalState},

{Y} }

X

A

J

Y

S

K L

B

M N
e

2
e

3

e
1

e
4

e
6

e
5

Figure 4.1: State Diagram Example

Figure 4.1 gives a State Diagram example with corresponding basic state configurations.
All proper states except immediate stateK have an outgoing transition with a specified eventei,
1 ≤ i ≤ 6. As UML does not provide a textual equivalent for final states, we use the parent state
name, double colons, and the keywordFinalState to syntactically refer to final states. Note
that S::FinalState is not part of the configuration set (cf. usage of setStayc in Definition
4.12).

4.2.4 Links

An association describes possible connections between objects (i.e., links) of the classes par-
ticipating in the association. Semantically, an association is a relation that describes the set of
all possible connections between objects of the associated classes (more precisely, classes and
their children).

4.2. SEMANTICS 105

Definition 4.15 (Links)
Each associationas ∈ ASSOC with associates(as) = 〈c1, . . . , cn〉 is interpreted as the prod-
uct of the sets of object identifiers of the participating classes:

IASSOC(as)
def
= ICLASS(c1)× . . .× ICLASS(cn).

A link is an elementlas ∈ IASSOC(as).

4.2.5 System State

In the following, we call a particular instantiation of an extended object model asystem. A
system is in different states as it changes over time, i.e., the (number of) objects, their attribute
values, State Diagram configurations, and other characteristics change when actually executing
the system. But it still has to be defined what a single system state exactly consists of. It
is important to point out here that different notions of a system state are generally possible,
depending on the scope of model analysis one wants to perform. In the original work on object
models [Ric01], a system state is a tuple consisting of three parts:

• the current set of objects,

• their attribute values, and

• the current links that connect the objects.

A semantics of a large part of standard OCL expressions is defined over such systems states in
[Ric01, Sect. 5.2]. However, as State Diagrams are not considered in that work, state-related
operations such asoclInState(statename:OclState) could not be handled so far.

In our approach, we additionally investigatesequencesof system states, i.e., we are going
to perform an analysis over possible future system states and thus reason about evolution of
State Diagram states. For this, we need a concise notion ofsystem state sequencesthat also
covers State Diagram configurations. In order to be able to formally define such sequences,
we need to define which operations are to be executed next (for operation preconditions) and
which operations terminate later (for operation postconditions). In this context, we adopt ideas
of [ZG02, ZG03] to formalize currently executed operations and define additional functions to
capture that information.

Definition 4.16 (System State)
A system state for an extended object modelM is a tuple

σ(M)
def
= 〈ΣCLASS,ΣATT ,ΣASSOC ,ΣCONF ,ΣcurrentOp,ΣcurrentOpParam〉

where

1. ΣCLASS
def
=

⋃
c∈CLASS ΣCLASS,c.

The finite setsΣCLASS,c contain all objects of a classc ∈ CLASS existing in the system
state, i.e.,

ΣCLASS,c ⊆ oid(c) ⊆ ICLASS(c).

106 CHAPTER 4. EXTENDED OBJECT MODEL

For further application, we defineΣACTIV E,c for active andΣPASSIV E,c for passive
classes correspondingly.

2. The current attribute values are kept in setΣATT . It is the union of functionsσATT,a :
ΣCLASS,c → I(t), wherea ∈ ATT ∗c . Each functionσATT,a assigns a value to a certain
attribute of each object of a given classc ∈ CLASS.

3. ΣASSOC
def
=

⋃
as∈ASSOC ΣASSOC,as comprises the finite setsΣASSOC,as that contain links

that connect objects, where

∀as ∈ ASSOC : ΣASSOC,as ⊆ IASSOC(as).

We refer to [Ric01] for detailed information about links, i.e., elements ofIASSOC(as),
and formalization of multiplicity specifications.

4. The current State Diagram configurations are kept by

σCONF
def
=

⋃
c∈ACTIV E {σCONF,c : ΣACTIV E,c → ISC(c)}.

Each functionσCONF,c assigns a state configuration with respect to the corresponding top
statetopc to each object of a given classc ∈ ACTIV E.

5. Let ID be an infinite enumerable set, e.g.,ID = N. The set of currently executed
operations is denoted by

ΣcurrentOp
def
=

⋃
c∈CLASS{σcurrentOp,c : ΣCLASS,c ×OP ∗

c → P(ID)}.

Each functionσcurrentOp,c gives a set of unique identifiers∈ ID that represents all cur-
rently executed operations for a given objectoid and operation signatureop. At the start-
ing point of an operation execution, a unique identifier∈ ID is associated with that
operation execution. We require that the associated identifier must not change until the
execution of that operation terminates.

6. ΣcurrentOpParam
def
=⋃

c∈CLASS{σcurrentOpParam,c : ΣCLASS,c ×OP ∗
c × ID → I(t1)× . . .× I(tn)× I(t) }

is a set of functions that gives the parameter values of each of the currently executed
operations. For eachc ∈ CLASS, we defineσcurrentOpParam,c as follows, whereop =
(ω : tc × t1 × . . .× tn → t) ∈ OPc:

σcurrentOpParam,c(oid, op, id) 7→{
〈val1, . . . , valn, returnV al〉, if id ∈ σcurrentOp,c(oid, op)

∅, otherwise.

In the definition above,valj ∈ I(tj) denotes an arbitrary value defined for typetj ∈ T ,
1 ≤ j ≤ n. The same holds forreturnV al ∈ I(t). If an operation is not returning a
result, the result typet of operationop is OclVoid. In that case, we setreturnV al =⊥.

4.2. SEMANTICS 107

Of course there are additional State Diagram characteristics that could also be taken into
account to be part of a system state, e.g., event queues and changes occurring to them or addi-
tional information required for re-entering composite states via history states. However, while
this can make sense in some specific approaches, the definition above is sufficient for reasoning
about currently activated states and executed operations.

4.2.6 Semantics of Operation oclInState(statename:OclState)

The notion of a system state with integrated active State Diagram state configurations enables
us to define a semantics of operationoclInState(statename:OclState). This issue is still
missing in the semantics of the adopted OCL 2.0 specification.

According to the OCL 2.0 specification, the operation signature ofoclInState(state-

name:OclState) is defined by

oclInState : OclAny ×OclState→ Boolean,

where the domain ofOclState is formally defined by

I(OclState) = (
⋃

c∈ACTIV E

Stayc) ∪ {⊥}.

For an operationop = (ω : tc × t1 × . . .× tn → t) ∈ OPc, a semantics is generally defined
by a total function with signature

I[[op]] : I(tc)× I(t1)× . . .× I(tn) → I(t),

where we implicitly assume a given system state.6

Correspondingly, we define the semantics of operationoclInState(statename:Ocl-

State) on a given system stateσ(M), a given objectoid ∈ ΣCLASS,c, and a state name
s ∈ I(OclState) by

I[[oclInState : OclAny ×OclState→ Boolean]](oid, s)
def
=

true, if oid ∈ ΣACTIV E,c ∧ s ∈ Stayc

∧ s ∈ σCONF,c(oid),

false, if oid ∈ ΣACTIV E,c ∧ s ∈ Stayc

∧ s 6∈ σCONF,c(oid),

⊥, if oid 6∈ ΣACTIV E,c

∨ (oid ∈ ΣACTIV E,c ∧ s 6∈ Stayc ∪ {⊥})
∨ s =⊥ .

6More precisely, the additional variable assignmentβ has also to be considered. Functionβ determines values
for OCL-specific variables, such as iterator variables and local variables of so-calledlet-expressions [OMG03b,
Section A.3.1.2].

108 CHAPTER 4. EXTENDED OBJECT MODEL

Note here thatoclInState(statename:OclState) returns⊥whenoid is a passive object
or when states is not element of setStayc of an active classc ∈ ACTIV Ec. Alternatively, we
could have chosen to returnfalse instead in these cases. Neither the UML 1.5 standard nor the
adopted OCL 2.0 specification give any information about this issue.

4.2.7 Traces

So far, it is not defined how a system state is actually built. The OCL 2.0 semantics simply
assumes that a system state〈ΣCLASS,ΣATT ,ΣASSOC〉 is given by a setΣCLASS of currently
existing objects, a setΣATT of attribute values for the objects, and a setΣASSOC of currently
established links that connect the objects. While this structure is easy to obtain from a concrete
(implementation of a) running system, the situation becomes more complicated when also State
Diagram states are considered.

We therefore have to definetraces, i.e., sequences of system states that keep track of all
‘noteworthy changes’ within a running system. In the context of checking OCL constraints,
we are, for instance, not interested in every single attribute value change that occurs during
execution of an operation. Instead, we are interested in those system states in which something
happens that is of relevance for evaluation of OCL expressions, e.g., when an operation has
been completed and a corresponding postcondition should be checked.

In the simplest case, e.g., when (an implementation of) the system is executed on a single
CPU, there is a clear temporal order on the system execution. But when (the implementation of)
the system is distributed, we have a partial order among the system executions. This problem
can be treated in an ideal case by introducing aglobal clockthat allows for a global view on the
system. We here follow the idea of a global view on the system.

Definition 4.17 (Trace)
A well-defined system state sequence calledtrace for an instantiation of an extended object
modelM is an (infinite) sequence of system states,

trace(M)
def
= 〈〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . .〉〉.

The first trace elementσ(M)[0] denotes the initial system state. Given a system stateσ(M)[i],
i ∈ N0, the next system stateσ(M)[i+1] is added to the trace when for at least one object a
noteworthy changeoccurs.

Noteworthy Changes. Let inv(c) denote the set of invariants of a classc ∈ CLASS. Let
inv∗(c) denote the full set of invariants for a classc, i.e.,

inv∗(c) = inv(c) ∪
⋃

c′∈parents(c)

inv(c′).

Similarly, let pre(op, c) and post(op, c) denote the pre- and postconditions of an operation
op ∈ OP ∗

c . Recall that we assume that there is aninheritance policyfor State Diagrams that
guarantees that state-related OCL expressions are well-defined over inheritance relationships
among active classes with associated State Diagrams.

4.2. SEMANTICS 109

We identified the following kinds ofnoteworthy changesrelevant for evaluation of OCL
expressions. In each case, we give a corresponding rule for updating the current system state
σ(M)[i] and indicate whether OCL constraints have to be checked. Note that different kinds of
noteworthy changes might occur in parallel at the same instant of time, such that more than one
rule might have to be applied on a given system stateσ(M)[i]. For example, a number of objects
can be created at the same time on different nodes in a distributed system, and in addition one
or more links can be established.

Although we abstract from an explicit notion of time here, we have to assume a global view
on the system to determine the set of noteworthy changes on the whole (in particular distributed)
system at each instant of time.

In the following rules, we are using the[i]-annotation also for the components and functions
defined inσ(M)[i], i ∈ N0.

1. Let oid1, . . . , oidn be theobjects of classescj ∈ CLASS, 1 ≤ j ≤ n, that are newly
created.

∀j ∈ {1, . . . , n} :

ΣCLASS,cj [i+1] = ΣCLASS,cj [i] ∪ {oidj}

Task: Check invariantsinv∗(cj) for all objectsoidj on system stateσ(M)[i+1].

2. Let oid1, . . . , oidm be theobjects of classescj ∈ CLASS, 1 ≤ j ≤ m, that arede-
stroyed.

∀j ∈ {1, . . . ,m} :

ΣCLASS,cj [i+1] = ΣCLASS,cj [i] \ {oidj}

3. Let lasj
, 1 ≤ j ≤ r, be thelinks of associationsasj ∈ ASSOC that are newlyestab-

lished.
∀j ∈ {1, . . . , r} :

ΣASSOC,asj [i+1] = ΣASSOC,asj [i] ∪ {lasj
}

4. Let lasj
, 1 ≤ j ≤ p, be thelinks for associationsasj ∈ ASSOC that areremoved.

∀j ∈ {1, . . . , p} :

ΣASSOC,asj [i+1] = ΣASSOC,asj [i] \ {lasj
}

5. Let cfgj, 1 ≤ j ≤ q, be thenew state configurationsthat arereachedfor objectsoidj

of active classescj.

∀j ∈ {1, . . . , q} :

σCONF,cj
(oidj)[i+1] = cfgj

Task: Checkinv∗(cj) for objectoidj on system stateσ(M)[i+1].

110 CHAPTER 4. EXTENDED OBJECT MODEL

6. Letopj = (ωj : tcj
× tj,1 × ... × tj,n → tj), 1 ≤ j ≤ x, be thewaiting operation calls

that arestarted to be executed by objectsoidj of classescj ∈ CLASS.

∀j ∈ {1, . . . , x} :

σcurrentOp,cj
(oidj, opj)[i+1] =

σcurrentOp,cj
(oidj, opj)[i] ∪ {newIdj}

where newIdj ∈ ID is a unique identifier foropj

and

σcurrentOpParam,cj
(oidj, opj, newIdj)[i+1] = 〈vj,1, . . . , vj,nj

, returnV alj〉,
where ∀k ∈ {1, . . . , nj} : vj,k ∈ I(tk)

∧
(
paramKind(cj, opj, k) = out ⇒ vj,k = ⊥

)
and returnV alj = ⊥ .

We require that the tuples〈vj,1, . . . , vj,nj
, returnV alj〉 remain unchanged until the corre-

sponding operation execution terminates. By default, we setreturnV alj = ⊥ to indicate
that the return value is currently undetermined. Correspondingly, output parameters are
also set to⊥. The values of parameters of kindin andinout are determined by the given
values of the referred operation call.

Task: For allj ∈ {1, ..., x}, checkpre(opj, cj) of operationopj with identifiernewIdj

on system stateσ(M)[i+1].

7. Let opj = (ωj : tcj
× tj,1 × ... × tj,n → tj) with opIdj, 1 ≤ j ≤ y, be theexecuting

operationsof objectsoidj thatterminate.

Note that it is not the scope of the semantics of OCL to perform updates on the parameter
values when an operation terminates, just as it is not the task of OCL to update attribute
values. We therefore assume that the system performs the necessary updates on the actual
parameter valuesvj,1, ..., vj,nj

and the return valuereturnV alj of the terminating oper-
ations identified byopIdj. Thus, all parameters of kindin are still unchanged and the
parameters of kindinout andout are already updated in system stateσ(M)[i]. We can
therefore simply assign the updated parameter values as follows.

∀j ∈ {1, . . . , y} :

σcurrentOpParam,cj
(oidj, opj, opIdj)[i+1] =

〈vj,1, ..., vj,nj
, returnV alj〉

Furthermore, in the next but one stepi+ 2, the operation identifiersopIdj must be elimi-
nated fromσcurrentOp,cj

(oidj, opj). The corresponding tuple of parameter values is elimi-
nated in statei+ 2 as well, as it is no longer needed.

σcurrentOp,cj
(oidj, opj)[i+2] = σcurrentOp,cj

(oidj, opj)[i+1] \ {opIdj}
and σcurrentOpParam,cj

(oidj, opj, opIdj)[i+2] = ∅

4.2. SEMANTICS 111

Task: For allj ∈ {1, ..., y}, checkpost(opj, cj) of operationopj with identifier opIdj

on system stateσ(M)[i+1]. For passive objectsoidj, we here also check the invariants
inv∗(c) on system stateσ(M)[i+1]. In contrast, invariants of active objects are only
checked after completion of RTC-steps, which is covered by noteworthy change (5).

All components of system stateσ(M)[i] except setATT and the ones that are explicitly
mentioned above remain unchanged for the subsequent system stateσ(M)[i+1].

Restrictions on Traces. The following additional restrictions apply to traces:

1. Two subsequent sequence elements may differ in at most one operation call per object.
In order to formally define this, we denote the overall number of operation executions for
an objectoid of classc in system stateσ(M)[i] by

ψ(oid)[i]
def
=

∑
op∈OPc

|σcurrentOp,c(oid, op)[i]|.

Using this definition, for each pair of adjacent system statesσ(M)[i] and σ(M)[i+1],
i ∈ N0, in trace(M), it holds:

∀c ∈ CLASS,∀oid ∈ ΣCLASS,c[i] :

oid ∈ ΣCLASS,c[i+1] ⇒ abs(ψ(oid)[i] − ψ(oid)[i+1]) ≤ 1

2. An object must not be destroyed when one of its operations is still executed. In turn, each
executed operation occurring in the sequence must eventually be terminated, i.e., for all
operation signaturesop ∈ OPc of an objectoid of a classc in a system stateσ(M)[i],
i ∈ N0, it must hold:

∀execOp ∈ σcurrentOp,c(oid, op)[i],∃j ∈ N, j > i :

∀i ≤ k ≤ j : oid ∈ ΣCLASS,c[k] ∧ execOp 6∈ σcurrentOp,c(oid, op)[j]

Our definition of a trace neither makes any assumptions about concurrency among objects
nor considers explicit time that has passed between two subsequent sequence elements. By
documenting system states with the tuple components as defined above, this work can be seen
as a general approach to capture those parts of the system runtime information that is necessary
to reason about all relevant system states. In particular, a trace consists of a sequence of system
states, documenting all situations

• immediately before any operation is executed, and

• immediately after any operation is terminated, and

• immediately after a new State Diagram configuration is reached.

These system states are sufficient to check OCL invariants as well as operation pre- and post-
conditions that make use of state-oriented operations.

112 CHAPTER 4. EXTENDED OBJECT MODEL

4.3 Discussion

With the syntax and formal semantics developed in this chapter, the formal semantics of OCL
2.0 is almost complete. Remaining issues not tackled here concern

1. a formalization of OCL messages,

2. a formal definition of global variable definitions within OCL constraints (so-called def-
clauses), and

3. formal descriptions of operations on collection typeOrderedSet.

Based on the extension of object models as presented in this chapter, a formalization of OCL
messages with a semantics of message operators and operations has already been published in
[FM04]. The necessary steps to integrate OCL messages are as follows.

• System states have to be further extended to keep the sequence of messages sent.

• Type domainsI(t) for t ∈ T have to be extended by a special symbol denoted by ? to
represent theundeterminedor unspecifiedstatus of a variable. Note that this symbol is
different from the String literal ‘?’.

• Object identifiers have to be used in a different way, as it might be necessary to refer to
an object that is no longer existing at the time of postcondition evaluation.

Assume that during execution of operationannounceOrder(i) of an output buffer object
buffer, messagesrequestTransport(i) have been sent to all associated AGV objects.
Consider the following postcondition and assume that one of the associated AGV objects,
sayagvObj, is for some reason destroyed while operationannounceOrder(i) is still
executing.

context OutputBuffer::announceOrder(i:Item)
post: machine.transporters@pre->forAll(vehicle:AGV |

vehicle^^requestTransport(i:Item)->size() = 1)

Then, at the time of evaluating this postcondition (i.e., at a later point of time), the object
agvObj does no longer exist. But still, we need to have a valid reference to it in order to
evaluate the subexpressionvehicle2equestTransport(i:Item).

This is the reason why we have to distinguish between ‘real’ objectsagvObj ∈ ΣCLASS,c

that are currently existing and object identifiersagvObj ∈ oid(c) that just refer to a
unique value.

The two other issues are quite easy to resolve; operations defined for ordered sets are basi-
cally the same as for sequences, and def-clauses can directly be mapped to so-calledOclHelper

variables and operations.OclHelper variables and operations, in turn, are stereotyped attributes
and operations of classifiers. Such variables and operations can be used in OCL expressions just
like common attributes and operations. Thus, it only has to be ensured that no naming conflicts
occur, while additional semantic issues do not occur.

4.4. CONTRIBUTIONS OF THE CHAPTER 113

One important remaining task is to complete the metamodel-based OCL semantics. First of
all, State Diagram states are still not considered at all in the metamodel-based OCL semantics.
But also consistency among the two semantics should be reviewed.

4.4 Contributions of the Chapter

This chapter provides the following contributions:

• The formal model of theobject modelfor OCL has been extended by several components.
In particular, an abstract syntax of UML State Diagrams has been developed.

• Correspondingly, the semantics of object models has been extended. We provided a for-
mal notion of state configurations that overcomes the deficiencies of the informal notion
of active state configurationsin the official UML specification.

• Moreover, a high-level dynamic semantics of traces, i.e., sequences of system states, is
defined. Traces are built based on a set of noteworthy changes that were identifed as being
sufficient to document all changes of a running system that are needed to evaluate OCL
constraints.

• Together with the definition of traces, we provided rules that determine when OCL in-
variants as well as pre- and postconditions have to be checked.

114 CHAPTER 4. EXTENDED OBJECT MODEL

Chapter 5

A Timed UML State Diagram Variant

Quid est ergo tempus?
Si nemo ex me quaerat,

scio;
si quaerendi explicare velim,

nescio.
– Aurelius Augustinus

In this chapter, we define a timed State Diagram formalism we will later apply to model real-
time behavior in the context of modeling manufacturing systems. On the one hand, we only
allow a limited subset of standard UML State Diagram model elements in our approach – pre-
sented in Section 5.1. On the other hand, we extend UML by allowing specification of time-
annotated operations in Class Diagrams, i.e., an operation is associated with a timing interval
that specifies the required (or estimated) [min,max] execution time. Furthermore, we introduce
transition priorities to UML State Diagrams to overcome potential conflicts for firing state tran-
sitions. The complete syntax of our timed State Diagram variant is given in Section 5.2. The
execution semantics of our timed State Diagram variant is then first informally described in
Section 5.3, while a corresponding formal translation to I/O-Interval Structures in Section 5.4
completes the formalization.

The current UML standard does not have an inherent notion of time. This has been inves-
tigated by different groups for the design of time-dependent systems, e.g., RT-UML [Dou00],
UML-RT based on ROOM [SR98], andUML Profile for Scheduling, Performance and Time
[OMG03c]. Furthermore, UML (on purpose) leaves several issues open that inhibit a unique
formal definition for the dynamic semantics of UML State Diagrams. E.g., there is no particular
dispatching policy defined, and it is not clear which event is selected next from the event queue
to trigger the next run-to-completion step (RTC-step) within the State Diagram.

While this approach might make sense for the intended general purpose of a modeling lan-
guage standard, it is essential to have a mathematically precise formal semantics of State Dia-
grams for formal analysis purposes. Studying the numerous publications on formal semantics of
UML State Diagrams, it can be observed that none of these covers all concepts of the extensive
syntax of UML State Diagrams. An overview is, for instance, given in [Bee02]. Nevertheless, it
is oftennotnecessary to regard the whole syntax of UML State Diagrams in a specific modeling
approach. However, the chosen sublanguage and the dynamic semantics for the specific context

115

116 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

must be clearly identified. Thus, a precise modeling approach that makes use of UML State
Diagrams must still additionally define a formal dynamic semantics, either by referring to an
existing one or defining a new one.

Motivation and General Strategy of the Approach. As the focus of this thesis is on spec-
ification of state-oriented real-time constraints with (an extension of) the Object Constraint
Language OCL, we have to build upon State Diagrams that are equipped with a notion of time.
On the one hand, we want to adopt a large number of UML State Diagram concepts in order to
support the rich set of modeling means. On the other hand, we have to define a new semantics
with an inherent notion of evolving time. This is simply because we cannot formally relate
time-bounded OCL constraints to an untimed referred UML user model.

Of course, we could make use of an existing timed variant of State Diagrams as described
in Subsection 2.4.3. But none of the existing approaches considers the combination of concepts
we want to address here (e.g., support of elapsed time events). Thus, we have to define our
own formal semantics for a new (sub)set of UML State Diagram concepts. First, several design
choices have to be made w.r.t. compositionality of State Diagrams, negated triggering events,
priority schemes for transitions and events, etc. All these issues will be further addressed in the
remainder of this chapter.

One of the most important design choices is the restriction to discrete time. This is due
to the considered domain of manufacturing systems (cf. Chapter 6) – as message exchange is
performed based on discrete events, we can assume discrete time. However, note that many
existing timed State Diagram semantics employ continuous time.

With this decision, it is possible to consider state-transition systems with discrete time as an
underlying formal basis for defining the execution semantics of timed UML State Diagrams. In
the context of this thesis, we choose I/O-Interval Structures as the target language. With a corre-
sponding mapping of state-oriented real-time OCL constraints to CCTL formulae (cf. Chapter
7), a formal relation between timed State Diagrams and real-time OCL constraints is then auto-
matically established by the semantics of CCTL over I/O-Interval Structures (cf. Section 3.6.2).

Again, note that one can of course apply other timed UML State Diagram variants that also
have a well-defined semantics, e.g., hierarchical timed automata [DMY02]. But then a different
– yet similar – translation of real-time OCL constraints to a corresponding other temporal logics,
e.g., timed CTL (TCTL) with continuous time has to be applied (cf. Chapter 7).

Relation to Synchronous Languages. In accordance with UML, we support point-to-point
communication – however, signal broadcasts are considered to be part of UML 2.0. Actually, it
turns out to be very easy to also integrate signal broadcasts into the formalization presented here,
as the target language of I/O-Interval Structures already supports global visibility of signals.

But in the context of this thesis, we focus on point-to-point communication with asyn-
chronous signals and synchronous operation calls. Synchronous operation calls block the send-
ing object until a result is received. This causes the calling object towait, which will take some
time in a running system. One can abstract from this issue and assume that the system isfast
enoughto reply without anotable time. This assumption refers to thesynchrony hypothesis
[Ber89]. Basically, the synchrony hypothesis says that a reaction on input events does not take
a notable time. If a system can thus react on all input events without loss of a received event and

117

if this property can be actually checked, modeling under the synchrony hypothesis is as good as
modeling with an explicit physical timing model.

But this is somehow in contrast to therun-to-completion steps(RTC-steps) defined in UML.
UML employs event queues, from which one event is dispatched at a time to perform a so-called
RTC-step, leading from one stableactive state configurationto another stable active state con-
figuration. Basically, this refers to asuperstepknown from other Statechart approaches. When
considering evolving time, it is obvious that no two different stable active state configurations
can exist at the same point of time, thus one has to assume a minimal elapsed time ofone time
unit between two stable active state configurations. This refers to aunit delay structure, similar
to µ-charts [PS97], a Statechart variant in which transitions take place in exactly one time unit.
µ-charts, however, have a different communication scheme withinstantaneous feedbackthat
makes a direct comparison with our approach difficult. In theµ-chart communication scheme,
the employed unit delay structure complies to the synchrony hypothesis, whereas in our ap-
proach, a Statechart might react on an input event not instantaneously, based on the dispatching
mechanism that takes only one event at a time out of the event queue of waiting events.

Supported UML State Diagram Concepts. In our timed variant of syntactically restricted
UML State Diagrams, we neglect some rarely used pseudo-state concepts (e.g., synch states)
and do not allow transitions to cross borders of And-states (as such transitions lead to subtle
side effects and determination of the next active state configuration is not possible without
further conventions, see Section 5.1). Furthermore, we annotate operations in Class Diagrams
by operation times. This is possible with standard UML means by a stereotyped note attached
to an operation (cf. theUML Language User Guide[BRJ99, p. 324]). Another, though non-
standard, way is to simply attach a time or timing interval directly to the operation as shown in
Figure 5.1.

Machine

type: MachineKind

[3 sec, 5 sec]
[3 sec, 5 sec]

load(i:Item) : Boolean
unload(i:Item) : Boolean

Machine

type: MachineKind

load(i:Item) : Boolean
unload(i:Item) : Boolean

« »semantics

executed within [3 sec, 5 sec]

« »semantics

executed within [3 sec, 5 sec]
(a)

(b)

Figure 5.1: Operations Specified with Execution Times, (a) in standard UML Notation Using
Structured Text, and (b) Our Shorthand Notation

A time expression attached to an operation in such a way specifies the operation’s time com-
plexity, typically the minimal/maximal time ofexpectedcompletion of an operation execution.
Such specifications can be used in different ways, e.g., the resulting running system can be

118 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

compared with the asserted times specified in the model. Alternatively, by adding up (asserted
or actual) operation times, compound times of entire transactions can be computed.

5.1 Syntactical Restrictions

Among the different state notions within the UML, only composite states, simple states, final
states, and initial pseudo states are considered. In particular, we do not regard the following
UML State Diagram modeling elements for states in our Timed State Diagram notation:

• StubState and SubmachineState.Submachine and stub states are used for syntactical
convenience and can be substituted by actual composite states.

In UML, submachine states are a syntactical convenience to represent a ‘call’ to a another
state machine as a ‘subroutine’, using stub states as entry and exit points. Thus, a sub-
machine state is semantically equivalent to a composite state, and we can assume that all
these states have explicitly been copied intoSC, such that all submachine states and stub
states are eliminated.

• SynchState.Synch States in UML State Diagram Diagrams are used to model synchro-
nizations among orthogonal regions. The firing of outgoing transitions from a synch state
can be limited by a bound on the difference between the number of times outgoing and
incoming transitions have fired. Synch states can be simulated by additional internal sig-
nals.

• Junction PseudoState.These are splits (also called forks or static conditional branches)
or merges (also called joins) of transitions. They are for syntactical convenience and can
simply be replaced by specifying corresponding simple state-to-state transitions.

• Choice PseudoState.These are dynamic conditional branches that can be simulated
by adding intermediate states, provided that visiting these intermediate states does not
take any additional time (as it is possible in the run-to-completion step semantics). In
our approach, though, transition to another state consumes at least one time unit, and
therefore these states cannot be directly simulated here.

With a translation to state-transition systems in mind, there are some more concepts in
UML State Diagrams that we do not need or explicitly want to abstract from. In particular, the
following UML State Diagram concepts are not regarded for our Timed State Diagram variant.

• Internal Transitions. Internal Transitions do not trigger entry- and exit-actions and are
sometimes even seen as unnecessary [Sim00], as internal transitions are actually modeling
behavior that belongs to a substate.

• History States. Shallow and deep history are a convenient modeling elements when
recently exited substates should be re-entered.

In our mapping to I/O-Interval Structures, exiting a composite statex is performed by
setting an internal variableactivatedto false, while the most recent activated substate,

5.2. SYNTAX 119

says, is retained in another internal variablestate. When re-entering composite statex
via a history state, variableactivatedhas simply to be set to true, and the right substates
is then automatically ‘re-entered’.

But although it is generally possible to construct a translation of this concept and even no
additional states are necessary, several additional cases have to be distinguished for the
already quite complex transition mapping that is illustrated in Section 5.4.2. Therefore a
formalization of this concept is left out in this thesis.

• Object Creation/Deletion. Actions for dynamic creation/deletion of objects are not sup-
ported, as we need to know all participating objects in advance to be able to instantiate a
corresponding system with Kripke Structures. This is also a requirement when real-time
model checking as described in Section 3.4 is to be performed.

• Event Parameters. Though standard UML allows parameters not only for operation
calls but also for asynchronous signals, we do not regard event parameters. Note that
these can be simulated by specifying a set of parameterless events, built based upon the
cross product of the parameters’ value sets.

• Deferred Events.Deferred events can be simulated by regenerating them as often as they
are to be deferred.

• Interlevel Transitions. We are going to give well-formedness rules for interlevel tran-
sitions that restrict the set of possible interlevel transitions. In particular interlevel tran-
sitions that cross the border of composite states are critical w.r.t. the affected orthogonal
regions.

• Local Variables. Local Variables in State Diagrams can be simulated by attributes de-
fined in the class the State Diagram belongs to.

What we preserve from UML State Diagrams are hierarchical states, interlevel transitions
to/from concurrent composite states, and synchronous and asynchronous event communication.

5.2 Syntax

We first formally define the supported subset of UML State Diagrams. LetN be a set of names.

Definition 5.1 A timed UML-like State DiagramSC is a tuple

SC
def
= 〈 S, init, final, EV TS,GUARDS,ACTS, TR,

substates, entry, exit, doActivity 〉,

where

1. S ⊆ N is a set of states.S is the union of the following disjoint sets.

• Simple (or: basic) states, denoted bySimple,

120 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

• Composite states – denoted byComposite – consisting of the two disjoint sets of
sequential composite statesXor and orthogonal composite statesAnd.

For convenience, we make use of function

type : S → {Simple, And,Xor}

to assign a type to each proper state.

Note that initial and final states are now handled in separate sets and functions.

2. Functioninit : Composite→ P(S) defines the initial state(s) of a composite state.

For each states ∈ Xor, init(s) contains exactly one direct substatex of s, which is the
default state that is entered (or: activated), whens is entered. In this case, we might just
write init(s) = x instead of the formally correct versioninit(s) = {x}. For each state
s ∈ And, we always haveinit(s) = substates(s). Note here that it holds∀s ∈ And :
init(s) ⊆ Xor.

3. Final states may appear as children ofXor states. Though it is generally allowed in UML
to draw several final states within a single Xor-state, we formally define that there is at
most one final state as a child of each states ∈ Xor.
Functionfinal : Xor → Final returns the final state of a given Xor-states, if existent.
If no final state is specified,final(s) = ∅. In the remainder, we may usefinal(Xor) to
denote the set of all final states.

For dealing with (implicitly generated) completion events, we additionally define function
τ : Conf × Composite → Bool that returns true, iff composite states is terminated in
configurationc.

τ(c, s)
def
=


false if type(s) = Xor ∧ final(s) 6∈ c
true if type(s) = Xor ∧ final(s) ∈ c∧

x∈substates(s) τ(c, x) if type(s) = And

4. EV TS ⊆ EXPREvts is a set of events. We assume that there is an expression language
EXPREvts available to formulate events such as operation calls, signals, timers, etc. We
propose the following basic syntax:

^s // asynchronous call event, s is the name of a signal received
op() // synchronous call event, op is the name of an operation call

An obvious extension to that proposed action syntax would be to allowevent parameters
as specified in standard UML. With the proposed basic syntax, event parameters can be
simulated by a set of parameterless events, i. e., one event for each element of the cross
product of the parameter value sets.

5.2. SYNTAX 121

For reasons of formality, letξevt ∈ EXPREvts be the null event which is later used to
denote that no triggering event is associated with a transition. As mentioned above, we
do not regard event parameters.

Elapsed time events. A relative time expression denoting anelapsed time eventin
EXPREvts is usually specified by ”after tm”, with tm ∈ N. Semantically,tm is relative
to the assumed minimal time unit. E.g., if the minimal time unit is 1ms, ”after 1000”
is equivalent to ”after 1 sec”. However, we assume in the remainder that all specified
timerstm directly refer to the assumed minimal time unit.

5. GUARDS ⊆ EXPRGuards is a set of conditions. We assume that there is a language
EXPRGuards available to formulate boolean expressions (e.g., standard OCL). We use
true ∈ EXPRGuards to refer to the guard that is always valid.

6. ACTS ⊆ EXPRActs is a set of actions. We assume that there is an expression language
EXPRActs available to formulate actions such as assignments, operation calls, signals,
etc. For convenience, we here define a very basic action syntax with

v := expr // assignment, v is an attribute, expr is an expression
// that evaluates to a value of the type of v

objId.^s // asynchronous call action,
// s is a signal sent to object objId

send objId.s // alternative syntax for signals sent
//

objId.op() // synchronous call action,
// op is an operation defined for object objId

This syntax can be easily extended if necessary (e.g., by event parameters similar as in
ACTS), but note that the effects from executing the actions must be formalized in the
semantics definition.

For reasons of formality, letξact ∈ EXPRAct be the empty action that is associated with
no action when evaluated.

7. TR ⊆ S×EV TS×GUARDS×ACTS×(S∪final(Xor)) is a set of transitions. A tran-
sition connects a source states ∈ Proper with a destination states′ ∈ S ∪ final(Xor),
may have a trigger evente ∈ EV TS, a guard conditiong ∈ GUARDS, and an action
expressiona ∈ ACTS.

UML does not allow transitions to cross borders of an And-state with a source outside of
that And-state. In addition, we also do not allow a transition to start in a substate of an
And-statea leading to a state outside ofa (see Figure 5.2). We are going to formalize this
well-formedness constraint at the end of this section.

Analogously to Definition 4.5, the five convenience functionstrsrc : TR → S, trdst :
TR → S ∪ final(Xor), trevt : TR → EV TS, trgrd : TR → GUARDS, tract : TR →
ACTS are used to extract the source state, destination state, triggering event, guard, and
action of a given transition, respectively.

122 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Figure 5.2: Invalid Transitions Crossing Boundaries of And-States

8. Funtionsubstates : Composite → P(S) gives all immediate substates of a state, such
that

(a) there is a unique statetop ∈ Composite with ∀s ∈ Composite : top 6∈
substates(s),

(b) ∀s ∈ And : substates(s) ⊆ Xor ∧ |substates(s)| > 1, 1

(c) ∀s ∈ Composite \ {top} there is exactly one path

〈s1, . . . , sn〉 ∈ Composite× . . .× Composite︸ ︷︷ ︸
n times, n≥2

,

with s1 = top ∧ sn = s ∧ si+1 ∈ substates(si) for 1 ≤ i ≤ n− 1.

Additionally, functionsubstates+ : Composite → P(S) is used to get all (transitive)
substates of a state, i. e.,

substates+(s) = substates(s) ∪
⋃

x∈substates(s)

substates+(x).

We also make use ofsubstates∗(s) = substates+(s) ∪ {s}.
Functionsubstates+ defines an irreflexive partial ordering among states (denoted by<),
i. e., we writes′ < s, iff s′ ∈ substates+(s). It holds

s′′ < s′ ∧ s′ < s ⇒ s′′ < s (Transitivity)

If s′ < s, we calls anancestorof s′. If eithers′ < s or s < s′, we say thats ands′ are
ancestrally related. We also make use of the reflexive partial ordering (denoted by≤),
i. e.,s′ ≤ s, iff s′ ∈ substates∗(s).

1The first condition is a restricted variant of a well-formedness rule in the UML standard [OMG03d, Section
2.12.3.1], which also allows And-states as substates of an And-state. Our proposed definition ensures that all direct
substates of an And-state are Xor-states.

5.2. SYNTAX 123

The least common ancestorc for a set of statesX ⊆ P(S) is defined by function

lca :


P(S) → Composite

X 7→ c where ∀x ∈ X : x ≤ c ∧
∀y ∈ S : (∀z ∈ X : z ≤ y) ⇒ c ≤ y

Two statess ands′ areorthogonal(denoted bys ⊥ s′), iff (1) s 6= s′, (2) s ands′ are not
ancestrally related, and (3)type(lca({s, s′})) = And.

If s′ ∈ substates(s), we call s the parentof s′ and define the three functionsparent,
parent+, andparent∗ : S → Composite according to functionsubstates. We set

parent(top)
def
= ∅.

A set of statesX ⊆ S is consistent, iff for every distinct pairx, y ∈ X eitherx andy are
ancestrally related orx ⊥ y.

A configurationfor a states is a maximal consistent setCs ⊆ substates(s). LetConf
be the set of all overall configurations, i.e.,Conf denotes all configurations for statetop.

9. Functionsentry, exit : Proper → ACTS give the actions to take when a state is entered
or left, respectively.

10. FunctiondoActivity : Proper → ACTS gives the activity to take when a state is acti-
vated. We allow that the activity has a specified timing interval that denotes how long the
activity might take at least and at most. Note that this issue is not standard UML, but an
extension we make use of for our analysis of timed State Diagram execution.

UML does not make syntactical restrictions for states with a specified do-activity and
different interpretations are possible for these activities, e.g., single execution or peri-
odic execution until some outgoing transition is fired, and in this context preemption of
activities, etc.

To keep concise, we here further restrict states with do-activities that denote local opera-
tion calls with a specified execution time greater than 1. We require that those states are
simple statesthat have aunique triggerless outgoing transitionto another (not necessar-
ily simple) state. The reason for these requirements is that it is not possible to perform a
transition in one time step if activities were to be executed as part of the chain of actions
that is determined by interlevel transitions. However, we allow entry- and exit-actions
and an action associated with the outgoing transition for simple states with do-activities.

As an effect, a state with such a do-activity will remain in that state for the specified
(interval) amount of time and then change to the target state of the outgoing transition.
Basically, this kind of behavior refers to that of UML Activity Diagrams.

Note that we do not allow transitions to cross boundaries of And-states, as illustrated in
Figure 5.2. In Figure 5.3, all kinds of legal transitions between different kinds of states (on

124 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

possibly different levels of hierarchy) are listed, provided that the transition conforms to the
following property:

∀tr ∈ TR :

∀x ∈ substates∗(lca({trsrc(tr), trdst(tr)})) ∩ parent+(trsrc(tr)) :

type(x) 6= And ∧
∀x ∈ substates∗(lca({trsrc(tr), trdst(tr)})) ∩ parent+(trdst(tr)) :

type(x) 6= And

Simple Xor And Simple Xor And Simple Xor AndHistory final

type(s) = Simple

type(s) = Or

type(s) = And

s is initial (pseudo) state --- ------ üüü

üüüüüü

üüüüüü

üüüüüü

from

to

ü

ü

ü

ü

ü

ü

ü

üüü

üüü

üüü

lower level same level upper level

------ --- ---

Figure 5.3: Legal Transitions

5.3 Semantics

The official UML Specification does not make specific timing assumptions for execution of
State Diagrams, e.g., it is possible for transitions to both be instantaneous or to take time
[OMG03d, Section 3.75.1]. Most-often, it is assumed that transitions take no time. The same
holds for states; they can be instantaneous as well as having a notable duration, e.g., when an
activity is specified for a state.

For a formal analysis of timed UML State Diagrams, we have to provide a precise execu-
tion semantics w.r.t. evolving time. So, we have to decide for which operational parts time is
evolving and how much time is needed for execution. We decide that

• A run-to-completion step takes one time unit. Basically, the system will change from one
stable source configuration denoting the current status of the object before commencing
the RTC-step to another destination configuration denoting the subsequent stable state
configuration right after the RTC-step. In other words, when considering evolving time
as an inherent characteristic of the system, two subsequent stable state configurations
cannot occur at the same time instance. Thus, we assume at least a minimal expired time
of one time unit between two stable state configurations to be able to distinguish these
two configurations, no matter if any actions or activities are to be executed or not.

If actions (i.e., exit, transition, or entry actions) are to be executed, we assume the follow-
ing timing scheme:

5.3. SEMANTICS 125

– assignments take no additional time (w.r.t. the run-to-completion step),

– asynchronous signal calls take no additional time (w.r.t. the run-to-completion step),

– a synchronous operation call blocks the corresponding region until a corresponding
response is received. Note that a synchronous operation call blocks the State Di-
agram region where the call is sent from, and in the meantime, time is of course
evolving.

• The dispatching mechanism dispatches an event as soon as the previous RTC-step is com-
pleted right at the next instance of time. In order to be able to proceed in one time step,
transition priorities have to be specified for conflicting transitions (cf. Section 5.4.2.3).

• We abstract from communication times, as we are primarily interested in duration of
object activities. The time an event needs when it is sent from one object to another is
one time unit by default, i.e., a signal sent as a reaction to some dispatched event is visible
after one time unit at the target object. Other approaches allow to specify delay times for
events [KMR02]. Note that this can easily be integrated into our approach as well (see
Section 5.4.1.3).

• In a timed model, synchronous operation call events sent toother objectscannot be seen
as actions ”with negligible time” as described in the UML specification, as time evolves
when waiting for an response on that operation call. Thus, we do not allow such operation
calls as exit-, transition-, or entry-actions of states. Furthermore, as we extend UML by
timing annotations on operations, synchronous operations invoked as exit-, transition-, or
entry-actions for the object itself must not have a specified execution time larger than 1.

• We restrict on clock-synchronous semantics, i.e., an object dispatches a new event from
its event queue to be processed by the corresponding State Diagram only at the tick of the
(global) clock, in the moment when the previous RTC-step is completed. In the official
UML specification, this issue is left open, such that alternatively, a clock-asynchronous
semantics can be assumed, i.e., an object dispatches a new event as soon as it can.

• We allow synchronous as well as asynchronous communication, i.e., synchronous opera-
tion calls block the sender until a returning answer is received, and asynchronous signals
sent appear as incoming signal events on the receiver side, but do not block the sender.
However, we restrict the positions where synchronous operation calls can be made; these
are only allowed as activities, as they block the State Diagram until an answer is received,
and that will take some time.

• We assume a perfect underlying communication technology, i.e., none of the communi-
cated events will be lost. We also abstract from the time needed for an event sent from
the sending object to the receiving object. An event is visible on the receiver’s side at the
next instance of time, i.e., the event will immediately be inserted into the event queue of
State Diagram associated to the receiving object. (This is different to, e.g.,my-Charts,
in which the synchrony hypothesis is preserved, i.e., inµ-Charts an action and the event
causing this action occur at the same instant of time.)

126 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

A possible extension is to attach a time (or timing interval) to activities to denote the
assumed time needed to terminate a certain task that is associated with the state. In some
approaches, that time specification may even be infinite, leading to situation in which
a sent call is never getting to its receiving object. In this case, model analysis has to
take into account additional so-called fairness properties, i.e., only those executions are
investigated that exclude such situations. As we assume a perfect technology, we can
abstract from this issue.

• As standard UML assumes, no compound triggers (i.e., at most one triggering event for
a transition), no negated trigger events, and only a single entry and exit action attached
to each state and a single action attached to each transition are allowed. Among the three
actions that are to be executed when a transition is taken (exit-, entry-, and transition
action), we do not allow mutual dependencies.2 E.g., we do not allow a transition that
connects states with exit actionx := 1 and entry actionx := x + 2.

• Priority preorder is UML-conform, i.e., transitions on a lower level have precedence on
higher level transitions.

• Instantaneous states are not possible due to our time semantics. The State Diagram re-
mains for at least one time unit in each entered non-pseudo state.

• The causality principle (cf. Section 2.4.3 is preserved due to our time semantics.

• We limit the length of event queues by the following assumptions. The most important
assumption is, that a limited, in advance well-known maximal number of objects of each
class is instantiated. Then, for each State Diagram (that is instantiated for an object), the
number of concurrently occurring synchronous call events is limited by the number of
parallel substates of all potential calling objects. We still have to cope with a potential
infinite number of received asynchronous signal events. This is limited by suppressing a
signal (namedsig) to be sent from objectobj1 to obj2, if there is already such a signal
sig waiting in the event queue ofobj2 that has been sent fromobj1 beforehand. Thus, a
maximal number of concurrently events in the event queue can be determined based on
the number of objects, and the event queue can be modeled by a finite number of states
that represent the received events.

• Elapsed time events w.r.t. absolute time, e.g.,when(time=15:00:00h), are not sup-
ported.

In Table 5.1, we present a comparison of the main differences between standard UML State
Diagrams and our Timed State Diagram variant.

5.4 Translation to I/O-Interval Structures

The problem of flattening hierarchical State Diagrams into flat FSMs has already been ad-
dressed in several publications (cf. Section 2.4.3). We here give a constructive translation of

2This is a restriction due to the translation to the execution semantics of I/O-Interval Structures in Section 5.4.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 127

Table 5.1: Comparison of Standard UML State Diagrams and Our Timed State Diagram Variant

Concept UML State Diagrams Our Timed State Diagram

Incoming Event Events are stored in an unlimited event
queue and subsequently dispatched
(one per RTC-step).

A limited event queue can store incom-
ing events, i.e., one operation event and
one signal event per sending object can
be queued.

Event Dispatching It is assumed that a reaction to all in-
coming events is eventually been car-
ried out, but no specific dispatching
mechanism is provided.

Non-deterministic choice.

Deferred Event Events that are dispatched can be de-
ferred for later consumption.

Not supported.

Transition Priority Innermost transition has higher prior-
ity.

Innermost transition has higher prior-
ity. Additional priorities for conflicting
transitions.

Interlevel Transi-
tions

No interlevel transitions crossing
boundaries of And-states in inbound
direction.

In addition, also no interlevel transi-
tions crossing boundaries of And-states
in outbound direction.

Transitions Time No standard semantics about time con-
sumption, but most commonly, it is as-
sumed that transitions take no time.

Getting from the source state to the des-
tination state takes one time unit.

Actions Actions have a negligible duration and
can be specified with transitions and
entering/exiting of states.

Actions have a negligible duration and
can be specified with transitions and
entering/exiting of states. Some restric-
tions on interdependencies among ac-
tions.

Activities Ongoing activities can be specified in
states (do/-activity).

Activities can be modeled by those op-
erations that have a specified timing in-
terval. Default is [1,1].

Communication Non-instantaneous, but no assumptions
or specification means for how long it
takes to send a message.

Sent messages visible after one time
unit. If required, an interval can be
specified to simulate a delay.

Connectivity No assumptions whether messages may
be lost or not.

Communication is always correctly
performed, no message will be lost.

Clock No assumptions about clocks. One local clock per State Diagram to
measure elapsed time since last enter-
ing of a state. Processing based upon a
global clock tick.

128 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

our restricted State Diagram approach to I/O-Interval Structures. We make use of both, the
formal mathematical set-theoretic definition of I/O-Interval Structures as defined in Definition
3.14 (cf. Section 3.6.1.1), and the more convenient representation of I/O-Interval Structures in
RIL (cf. Section 3.6.3).

Note that this translation doesnot claim to result in an efficient structure w.r.t. the target
language of I/O Interval Structures. In particular, hierarchical states with interlevel transitions
induce quite complex structures for flat FSMs, and additional signals have to be introduced to
manage the ‘synchronization’ among the different composite state levels.

Given a State DiagramSC as defined in Definition 5.1, we first determine the sets of exited
and entered states for each transitiontr ∈ TR. We define the least common ancestor for a
transitiontr ∈ TR by function

lca
def
=

{
TR → Composite

tr 7→ lca({trsrc(tr), trdst(tr)})

For eachs ∈ Composite, let InitConfs be the set of default initial substates relative tos, i.e.,

InitConfs
def
= {x ∈ S | x ∈ substates∗(s) ∧

(init(parent(x)) = x ∨ x = top) ∧
∀y ∈ substates∗(s) ∩ parent+(x) :

init(parent(y)) = y}

In particular,InitConftop denotes the initial overall configuration ofSC, wheretop is the
outermost composite state. The setExitStatestr of exited states and the setEnterStatestr of
entered states for a transitiontr ∈ TR are given by

ExitStatestr
def
= {x ∈ S | x ∈ parent∗(trsrc(tr)) ∩ substates+(lca(tr))}

∪ {x ∈ S | x ∈ substates+(trsrc(tr))}
EnterStatestr

def
= {x ∈ S | x ∈ parent∗(trdst(tr)) ∩ substates+(lca(tr))}

∪ {x ∈ S | x ∈ InitConfy,with y = trdst(tr)}

When a transitiontr is taken from a source states1 = trsrc(tr), states1 and all parent states
of s1 up to but excluding the least common ancestorlca(tr) as well as all substates ofs1 are
exited. Analogously, the set of entered states is determined by states2 = trdst(tr), its parent
states up to but excluding the least common ancestorlca(tr), and those substates ofs2 that build
the initial configurationInitConfs2. By definition, at most one substate of an Xor-state is in
EnterStatestr, i.e., for alltr ∈ TR andx ∈ Xor, it holds

0 ≤ |substates(x) ∩ EnterStatestr| ≤ 1.

With these preliminaries, we are now going to successively build I/O-Interval Structures for
a given State DiagramSC. We start with generatingrudimentaryI/O-Interval Structures that
comprise all necessary variables and local input and output signals, but do not include transitions
yet (Subsection 5.4.1). The set of transitions for I/O-Interval Structures is then determined in
Subsection 5.4.2. Conflicting transitions are tackled in a separate subsection at the end of this
chapter.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 129

5.4.1 Generating I/O-Interval Structures

We here assume that we have an instantiated UML model (as in Definition 4.1 on page 86)
with an initial system state (as in Definition 4.16 on page 105). We further assume thatall
objects necessary to perform the execution are already instantiated at the initial state of the
system; recall that we do not support dynamic creation and deletion of objects. While this issue
cannot generally be employed, it is acceptable for the considered domain of manufacturing
systems, in which active objects represent the production processes that transform production
items (cf. Chapter 6).

For each active objectobjId that is associated via its classc with a State DiagramSC, the
following I/O-Interval Structures will be constructed.

1. For each composite states of SC, we define a separate I/O-Interval StructureISobjId,s.
These will first be only rudimentary, but will be completed step by step in subsequent
sections, considering different cases, e.g., transitions with/without an elapsed time event
or intralevel/interlevel transitions. As interlevel transitions have an effect on several other
I/O-Interval StructuresISobjId,s′, we have to synchronize all affected I/O-Interval Struc-
tures by additional signals.

2. A separate I/O-Interval StructureV arISobjId is responsible for keeping attribute values
and executing actions. Firing a transitiontr in an I/O-Interval StructureISobjId,s causes
V arISobjId to execute the corresponding actions associated with that transition. Note
that it can happen that in orthogonal regions, transitions can be executed in parallel due
to the same specified triggering event. In that case, execution of actions must not have
side-effects.

3. The event queue forSC is modeled by a set of I/O-Interval Structures over the cross
product of objects that can send events toobjId and the particular (synchronous and
asynchronous) events on whichSC reacts.

4. The event dispatcherDispatchISobjId is an I/O-Interval Structure that non-deterministi-
cally selects queued events from the event queue. This part can be replaced by different
priority schemes if necessary.

5.4.1.1 Rudimentary I/O-Interval Structures for Composite States

Let ATTc, OPc, andSIGc be the attributes, operations, and signals defined in classc, respec-
tively.

Assuming that we have a fixed number of objects, i.e., we know in advance which objects
will be part of the system, we can statically determine the objects (object identifiers) that ex-
change messages by analyzing the State Diagrams associated with these classes. Thus, for each
object objId ∈ ΣCLASS,c, we define the set of objects that may send a particular operation
(signal) call event toobjId by functions

130 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

opSenders :


ICLASS,c ×OPc → P(ΣCLASS)

〈objId, op〉 7→ { ΣCLASS,c′ | c′ ∈ CLASS ∧
∃evt ∈ EV TSc′ : evt = op}

sigSenders :


ICLASS,c × SIGc → P(ΣCLASS)

〈objId, sig〉 7→ { ΣCLASS,c′ | c′ ∈ Class ∧
∃evt ∈ EV TSc′ : evt = sig}

We now generate a rudimentary I/O-Interval StructureISobjId,s for each states ∈
Composite as it is shown in Figure 5.4 on page 131.

For clarification purposes, some comments on Figure 5.4 are necessary here. First of all, we
make use of double square brackets as used in denotational semantics –[[expr]] – to explicitly
refer to theevaluation valueof an expressionexpr, e.g., in(state ≡ [[init(s)]]), the subexpres-
sion[[init(s)]] actually refers to the name of the initial state of composite states. For transitions
tr ∈ TR, we assume a naming scheme that allows to uniquely determine[[tr]], e.g., a simple
numberingt1, t2, etc.

The actualstatesof I/O-Interval StructureISobjId are of course the (direct) substates ofs.
But additionally, we explicitly model whethers is activated or not, using a boolean state called
activated. Furthermore, for all relevant transitionstr (i.e., those transitions withs = trsrc(tr)),
we define a boolean variabledone [[tr]] for synchronization with other I/O-Interval Structures
after completion of transitiontr.

Severalinput variablesare defined in Figure 5.4 to access (boolean) variable values from
other I/O-Interval Structures. Variablesinput [[evt]] are needed to determine whether an oper-
ation or signal call eventevt is selected to be dispatched. VariablesgrdV alue [[tr]] are used to
check whether a transition conditiontrgrd(tr) is true. Note that the actual condition expression
trgrd(tr) is evaluated remotely in an I/O-Interval Structure calledV arISobjId (see Figure 5.5).
Finally, input variablesfire [[tr]] combine event triggers and guards for each transitiontr in
the setTRs of transitions that affect a composite states.

The initial configurations0 of ISobjId,s is constructed by assigning initial values to all ele-
ments of setQ, depending on the type ofs ∈ Composite (s ∈ And or s ∈ Xor) and on the
initial overall configuration defined by State DiagramSC.

Note that this construction is by now only resulting in a set of rudimentary, incomplete I/O-
Interval Structures. The setT of transitions and functionsI, Iinput, andTassgn are still to be
defined in each case. This will be discussed in Section 5.4.2.

5.4.1.2 I/O-Interval Structures for Variables and Assignments

A separate I/O-Interval StructureV arISobjId is responsible for keeping attribute values and
executing actions. Firing a transitiontr in an I/O-Interval StructureISobjId,s causesV arISobjId

to execute the corresponding actions associated with that transition. See Figure 5.5 for the
definition ofV arISobjId.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 131

Given a states ∈ Composite.
Let state be a variable withV alue(state) = {x | x ∈ substates(s)} .
Let activated be a variable withV alue(activated) = {true, false}.
Let TRs = {tr ∈ TR | s ∈ ExitStatestr ∨ s ∈ EnterStatestr} be the set of
transitionstr that affects.
Let parentTRs = {tr ∈ TR | s = trsrc(tr)}.
Let done [[tr]] be a boolean variable for eachtr ∈ parentTRs.
LetOpEvtss ⊆

⋃
tr∈TRs

trevt(tr) be the operation calls specified for transitions inTRs.
Let SigEvtss ⊆

⋃
tr∈TRs

trevt(tr) be the signal triggers specified for transitions inTRs.
According to Definition 3.14, we generate a rudimentary I/O-Interval Structure
ISobjId,s = 〈Q,Pr, Prinput, S, s0, V ar0, T, L, I, Iinput, Ioutput, Tassgn〉
with:

Q =

{
{state, activated} ∪ {done [[tr]] | tr ∈ parentTRs}, if s ∈ Xor
{activated} ∪ {done [[tr]] | tr ∈ parentTRs}, if s ∈ And

Pr =
{

(vari ≡ valvari
) | 1 ≤ i ≤ |Q| ∧ vari ∈ Q ∧ valvari

∈ V al(vari)
}

Prinput =
{

(input [[opEvt]] := DispatchIS[[objId]].dispatch [[opEvt]])

| opEvt ∈ OpEvtss

}
∪

{
(input [[sigEvt]] := DispatchIS[[objId]].dispatch [[sigEvt]])

| sigEvt ∈ SigEvtss

}
∪

{
(grdV alue [[tr]] := V arIS [[objId]].[[tr]])

| tr ∈ TRs with trgrd(tr) 6= ∅
}

∪
{

(fire [[tr]] := input [[trevt(tr)]] ∧ grdV alue [[tr]])

| tr ∈ TRs, trevt(tr) 6= ∅, trgrd(tr) 6= ∅
}

∪
{

(fire [[tr]] := input [[trevt(tr)]])

| tr ∈ TRs, trevt(tr) = ∅, trgrd(tr) 6= ∅
}

∪
{

(fire [[tr]] := grdV alue [[tr]])

| tr ∈ TRs, trevt(tr) = ∅, trgrd(tr) 6= ∅
}

S = V alue(state)× V alue(activated)

s0 =


(state ≡ [[init(s)]]) ∧ (activated ≡ true), if s ∈ Xor ∩ InitConftop

(state ≡ [[init(s)]]) ∧ (activated ≡ false), if s ∈ Xor \ InitConftop

(activated ≡ true), if s ∈ And ∩ InitConftop

(activated ≡ false), if s ∈ And \ InitConftop

V ar0 =
∧ {

(done [[tr]] ≡ false) | tr ∈ parentTRs

}
L : S → P(Pr) with L(s) =

{
(state ≡ s), (activated ≡ true)

}
Ioutput =

{
(executed [[tr]] := (done [[tr]] ≡ true)) | tr ∈ parentTRs

}
Figure 5.4: Rudimentary I/O-Interval Structures for Composite States

132 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Finite Value Sets. Note here that only finite value sets for variables can be handled in the
translation, such that specified variables of typeReal, String, or Integer have to be re-
stricted to a finite value set. For simplicity reasons, we here require that all variables are defined
over finite value sets already on the modeling level of UML within Class Diagrams and State
Diagrams, i.e., all variables are basically of enumeration types with a limited set of values.

Related approaches that have formal verification by model checking in mind also restrict the
value sets in order to be able to map models into corresponding input languages, e.g., [Qui01].
They additionally employ reduction techniques like abstraction from data values to get a model
representation with a reduced state space. However, this is not in the scope of this thesis.

Let state be a variable withV alue(state) = {ok} .
Let V ARSc = {var1, ..., varm} be all attributes defined for classc to whichSC is
associated.
For eachvari, 1 ≤ i ≤ m, letV alue(vari) be a finite enumeration of variable values and
let init(vari) be the initial value ofvari.
We generate a rudimentary I/O-Interval Structure
V arISobjId = 〈Q,Pr, Prinput, S, s0, V ar0, T, L, I, Iinput, Ioutput, Tassgn〉
according to Definition 3.14 and define:

Q = {state} ∪ V ARSc

Pr = {(vari ≡ valvari
) | 1 ≤ i ≤ |Q| ∧ vari ∈ Q ∧ valvari

∈ V al(vari)}
Prinput = {fire [[tr]] | tr ∈ TR, trgrd(tr) 6= ∅}
S = V alue(state)

s0 = (state ≡ ok)

V ar0 = (var1 ≡ [[init(var1)]]) ∧ . . . ∧ (varm ≡ [[init(varm)]])

L : S → P(Pr) with L(s) = (state ≡ ok).

Ioutput = {(grdV alue [[tr]] := [[trgrd(tr)]]) | tr ∈ TR, trgrd(tr) 6= ∅}
The setT of transitions and functionsI, Iinput, andTassgn are still to be defined.

Figure 5.5: Rudimentary I/O-Interval Structure for Variables

5.4.1.3 I/O-Interval Structures for Operation and Signal Calls

Synchronous and asynchronous call events (i.e., operation calls and signals sent) are handled in
separate I/O-Interval Structures. More precisely, for each pair of objects (one calling and one
callee object), an own I/O-Interval Structure for each operation/signal is generated. To support
readability of this translation, we are going to provide these I/O-Interval Structures by means
of RIL syntax, the RAVEN Input Language. Note that the expressions inside double square
brackets have to be replaced by the values gained from evaluating these expressions, based on
the given State DiagramSC.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 133

For a concrete system with a given number of objects, we can determine which objects can
send call events to which other objects. For each operation of a classc, we then have to build the
cross product of all possible calling objects with all possible callee objects, i.e., we generate a
set of I/O-Interval Structures for each operation nameop (e.g.,getStatus()), while attaching
corresponding object identifiers to the structure’s name to be able to distinguish which particular
calling object is sending an event to which particular callee object.

For example,getStatus agv1 mill represents the name of the I/O-Interval Structure that
keeps track of an operation callmill.getStatus() sent fromagv1 to mill. Recall that such
a synchronous operation call is only allowed as ado-activityin our restricted version of UML
State Diagrams.

In the generated I/O-Interval Structures shown below,objId represents the identifier of
the callee object receiving an operation call event namedopEvt i for eachi ∈ {1, . . . , n},
n = |OPc|. We denote byobjId i 1 . . .objId i q(i) those calling objects that potentially
send an operation call eventopEvt i ∈ OPc to objId. Thus, we generate

∑n
i=1 q(i) many

I/O-interval Structures of the following form, wherei ∈ {1, . . . , n} andj ∈ {1, . . . , q(i)}:

Module op_[[opEvt_i]]_[[objId]]_[[objId_i_j]]
STATES state: {absent,waiting}
INPUTS opReceived := IS_[[objId_i_j]].sent_[[opEvt_i]]_[[objId]]

opExecuted := IS_[[objId]].executed_[[opEvt_i]]
DEFINE queued := (state=waiting)

opReturn := opExecuted
INIT state=absent
TRANS
|- state=absent -- opReceived --> state:=waiting

|-> state:=absent
|- state=waiting -- opExecuted --> state:=absent

|-> state:=waiting

Internal states areabsent andwaiting to model the fact that an operation call is currently
queued or not.

Input signalsopReceived andopExecuted are monitoring whether a call has been sent and
has been executed, respectively. Based on these ‘signals’, transitions between internal states
absent andwaiting are performed.

Output signalqueued is used in the dispatching mechanism to select an event. Output signal
opReturn is used to synchronize with the calling object to proceed its computation.

Analogously, we denote ther(i)-many objects that possibly send a signal call event
sigEvt i, i ∈ {1, . . . ,m}, m = |SIGc|, to objId by sigObj i 1 . . .sigObj i r(i),
and generate I/O-Interval Structures of the following form, wherei ∈ {1, . . . ,m} and j

∈ {1, . . . , r(i)}:

Module sig_[[sigEvt_i]]_[[objId]]_[[sigObj_i_j]]
STATES state: {absent,waiting}
INPUTS sigReceived := IS_[[sigObj_i_j]].sent_[[sigEvt_i]]_[[objId]]

sigConsumed := IS_[[objId]].consumed_[[sigEvt_i]]
DEFINE queued := (state=waiting)
INIT state=absent
TRANS

134 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

|- state=absent -- sigReceived --> state:=waiting
|-> state:=absent

|- state=waiting -- sigConsumed --> state:=absent
|-> state:=waiting

Limited Event Queue. The I/O-Interval Structures defined above can only store one event
of a certain kind at a time. In other words, the event queue of the State Diagram for an ob-
jectobjId 2 cannot store an eventevt sent from an objectobjId 1 more than once. Repeated
sending of such events is thus ignored up to the point of time, where the queued event is con-
sumed. For synchronous operation calls, this assumption is legitimate, as the calling object is
blocked until the operation returns, i.e., in the meantime no second synchronous operation call
can be made by the same calling object (at least unless orthogonal regions do not make concur-
rent calls). Concerning signals, the situation is different. The semantics we assume here imply
that there is no ‘loop’ that iteratively sends signals faster than they can be consumed. Other-
wise, events that represent a signal call will be discarded, in contrast to the UML semantics that
queue each individual event. However, this situation can be overcome by introducing additional
counter variables in the signal modules. But then, one has to specify an upper limit for that
counter in order to be able to express this issue in the target language RIL.

5.4.1.4 I/O-Interval Structure for Event Dispatching

We generate another I/O-Interval Structure to non-deterministically select one out of the queued
events. Note that UML does not make any statements of how the event dispatching mecha-
nism is implemented. Thus, we here assume that one of the currently queued events is non-
deterministically chosen.

Each transitiontr ∈ TR will have a corresponding set of transitions in the affected I/O-
Interval Structures to be generated for composite states (see Section 5.4.2). But for each tran-
sition tr, there is one particular I/O-Interval StructureISx (with x = parent(trsrc(tr)) ∈
Composite) that is especially responsible for executing the reactions induced bytr, while all
other affected I/O-Interval Structures are just synchronized withISx by additional signals.

The following code fragment represents the event dispatching mechanism in RIL syntax,
where

• objId is a given (uniquely identified) object of an active classc with State DiagramSC,

• for eachi ∈ {1, . . . , n}, n = |OPc|, we denote the objects that possibly send an operation
call eventopi ∈ OPc to objId by opObj i 1, . . . ,opObj i q(i),

• for eachi ∈ {1, . . . ,m}, we denote the objects that possibly send a signal call event
sigi ∈ SIGc to objId by sigObj i 1, . . . ,sigObj i r(i),

• opEvt 1 1, . . . ,opEvt n q(n) denote whether an operation call event is currently in the
event queue,

• sigEvt 1 1, . . . , sigEvt m r(m) denote whether a signal call event is currently in the
event queue,

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 135

• for eachi ∈ {1, . . . , |TR|}, IS [[x i]] is the name of the I/O-Interval Structure that
manages transitiontri,

• executed [[tr i]] is the signal of I/O-Interval StructureIS [[x i]] that indicates that
transitiontri has been completely executed.

Module DispatchIS_[[objId]]
STATES state: { select,

wait_[[opEvt_1_1]] , ..., wait_[[opEvt_n_q(n)]] ,
wait_[[sigEvt_1_1]], ..., wait_[[sigEvt_m_r(m)]] }

INPUTS
// list all operation and signal triggers

in_[[opEvt_1_1]] := op_[[objId]]_[[opObj_1_1]].queued
...
in_[[opEvt_n_q(n)]] := op_[[objId]]_[[opObj_n_q(n)]].queued
in_[[sigEvt_1_1]] := sig_[[objId]]_[[sigObj_1_1]].queued
...
in_[[sigEvt_m_r(m)]] := sig_[[objId]]_[[sigObj_r(m)_m]].queued

// transition completion signals
completed := IS_[[x_1]].executed_[[tr_1]]

| ...
| IS_[[x_k]].executed_[[tr_k]]

DEFINE
// output signals for triggering transitions

dispatch_[[opEvt_1]] := (state=wait_[[opEvt_1_1]])
| ... | (state=wait_[[opEvt_1_q(1)]])

...
dispatch_[[opEvt_n]] := (state=wait_[[opEvt_n_q(n)]])

| ... | (state=wait_[[opEvt_1_q(n)]])
dispatch_[[sigEvt_1]] := (state=wait_[[sigEvt_1_1]])

| ... | (state=wait_[[sigEvt_1_r(1)]])
...
dispatch_[[sigEvt_m]] := (state=wait_[[sigEvt_m_r(m)]])

| ... | (state=wait_[[sigEvt_m_r(m)]])
INIT state=select
TRANS
// non-deterministic choice
|- state=select -- in_[[opEvt_1_1]] --> state:=wait_[[opEvt_1_1]]

...
-- in_[[opEvt_n_q(n)]] --> state:=wait_[[opEvt_n_q(n)]]
-- in_[[sigEvt_1_1]] --> state:=wait_[[sigEvt_1_1]]
...
-- in_[[sigEvt_m_r(m)]] --> state:=wait_[[sigEvt_m_r(m)]]

|-> state:=select
// wait for completion of transition
|- state=wait_[[opEvt_1_1]] -- completed --> state:=select

|-> state:=wait_[[opEvt_1_1]]
...
|- state=wait_[[opEvt_n_q(n)]] -- completed --> state:=select

|-> state:=wait_[[opEvt_n_q(n)]]
|- state=wait_[[sigEvt_1_1]] -- completed --> state:=select

|-> state:=wait_[[sigEvt_1_1]]
...

136 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

|- state=wait_[[sigEvt_m_r(m)]] -- completed --> state:=select
|-> state:=wait_[[sigEvt_m_r(m)]]

Based on the chosen event, each I/O-Interval Structure for composite states checks whether
it has to execute a transition. A transition mapping to establish this behavior is detailly described
in the next section.

5.4.2 Transition Mapping

Some more definitions are necessary to prepare the transition mapping. Basically, each tran-
sition tr ∈ TR must be mapped to a set of transitions, i.e., one new transition is generated
for each composite state that is affected by transitiont. We divide the composite states of sets
ExitStatestr andEnterStatestr into the three following distinct sets.

ExitEntertr = {x ∈ Composite | substates(x) ∩ ExitStatestr 6= ∅ ∧
substates(x) ∩ EnterStatestr 6= ∅}

ExitOnlytr = {x ∈ Composite | substates(x) ∩ ExitStatestr 6= ∅ ∧
substates(x) ∩ EnterStatestr = ∅}

EnterOnlytr = {x ∈ Composite | substates(x) ∩ ExitStatestr = ∅ ∧
substates(x) ∩ EnterStatestr 6= ∅}

In ExitEntertr, we find composite states that have (potentially several) exited as well as an
entered substate w.r.t. transitiontr. The other two sets comprise of composite states that either
have exited substates or an entered substate.

As actions in I/O-Interval Structures can only be associated to transitions (and not to states
as in UML State Diagrams), entry and exit actions of State Diagram states must be attached to
corresponding transitions in I/O-Interval Structures. Unfortunately, we cannot allow interdepen-
dencies among these actions, as they are executed in a single step when running the I/O-Interval
Structures. Nevertheless, we here keep the order of actions, as this might be useful for future
approaches that can consider sequential execution of actions and interdependencies.

For each state that is left, we collect exit actions of all left states and entry actions of all
entered states and sort them according to the state hierarchy. The final sequence of actions
associated with transitiont is then

actionstr = 〈〈exit(x1), . . . , exit(xn), tract(tr), enter(y1), . . . , enter(ym)〉〉,

wheren = |ExitEntertr ∪ ExitOnlytr|, m = |ExitEntertr ∪ EnterOnlytr|, and actions
exit(x1), . . ., exit(xn) are sorted from lowest to uppermost state, i.e.,⋃

i=1...n

xi = ExitEntertr ∪ ExitOnlytr ∧ ∀i ∈ {1, . . . , n− 1} : xi ∈ substates(xi+1),

and actionsenter(y1), . . . , enter(ym) are sorted from uppermost to lowest state, i.e.,⋃
i=1...m

yi = ExitEntertr ∪ EnterOnlytr ∧ ∀i ∈ {1, . . . ,m− 1} : yi = parent(yi+1).

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 137

Transitions with and without Elapsed Time Event. In the following, we distinguish be-
tween transitions with and without elapsed time events.

elapsedT imeTR = {tr ∈ TR | trevt(tr) = ′after tm′, with tm > 1},
commonTR = TR \ elapsedT imeTR

First, we are going to translate all transitions ofcommonTR. A corresponding mapping of
transitions with elapsed time events is presented in a separate subsection thereafter.

5.4.2.1 Mapping of Common Transitions

For eachtr ∈ commonTR, we add transitions to all affected I/O-Interval StructuresISx (with
x ∈ ExitEntertr ∪ ExitOnlytr ∪ EnterOnlytr ⊆ Composite) as follows.

Transition Source State. If the transition source statetrsrc(tr) does not have a specified
timed activity, we add the following transition to the parent statex = parent(trsrc(tr))

3. We
introduce a transitiont = 〈a, b, condV ars〉 to the set of transitionsT in ISx, where4

a = 〈(state ≡ [[trsrc(tr)]]), (activated ≡ true)〉,
dest = substates(x) ∩ EnterStatestr,

b =

{
〈(state ≡ [[dest]]), (activated ≡ true)〉 if dest 6= ∅
〈(state ≡ [[trsrc(tr)]]), (activated ≡ false)〉 otherwise,

condV ars = {input [[trevt(tr)]], grdV alue [[tr]]}.

To complete the definition of transitiont, we set

I(t) = {1},
Iinput(t) = fire [[tr]],

Tassgn(t) = 〈(done [[tr]] := true)〉.

If the transition source statetrsrc(tr) is a simple state that has a specified timed activity with
timing interval [minTime,maxTime], the transition is – due to our syntactical restrictions –
a triggerless transition without any further annotations (i.e., no condition and action). We can
thus handle the activity duration simply like an elapsed time eventafter [minTime,maxTime]

attached to the transition. Note here that we allow a timing interval for elapsed time events,
which is an extension of UML syntax. The transition is then translated in Subsection 5.4.2.2.

Remark. Assume for the moment that all transitionstr ∈ TRs have already been considered.
For eachtr ∈ TRs with a specified event triggertrevt(tr), we still have to reset variables,
i.e., settingdone [[tr]] := false, by assignment actions in the respective subsequent transitions
(defined forb above), i.e., those transitions that start in the respective destination states. A
detailed formal description is left out here.

3Note here that in our restricted version of State Diagrams, we always havex ∈ Xor in this context.
4Note that for Xor-statesx, it holds0 ≤ |substates(x) ∩ EnterStatestr| ≤ 1, such that the destination state

b can uniquely be determined.

138 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Transition Actions. For the actions inactionstr, we have to add some more new output sig-
nals to I/O-Interval StructureISx. These output signals guarantee that in the corresponding
I/O-Interval StructureV arISobjId for variables and actions, an appropriate transition is syn-
chronously taken that reflects the variable assignment or sending of a call event, respectively.

Assignments. We extract the subsequenceassignmentstr that includes all variable assign-
ments ofactionstr and make some extensions to I/O-Interval StructureV arISobjId as follows.

1. Add a new input signal(assigns of [[tr]] := [[ISx]].fire [[tr]]) to set Prinput of
V arISobjId.

2. Add a new transitiont = 〈a, b, condV ars〉 to setT in V arISobjId, where

a = (state ≡ ok), I(t) = {1},
b = (state ≡ ok), Iinput(t) = [[ISx]].fire [[tr]],

condV ars = ∅, Tassgn(t) = [[assignmentstr]].

In the end, I/O-Interval StructureV arISobjId manages all variables and all assignments of
all transitions. In RIL code,V arISobjId has the following form.

Module VarIS_[[objId]]
STATES state : { ok }

// var_1 to var_m are attribute names of class c
[[var_1]] : { [[Value(var_1)]] }
...
[[var_m]] : { [[Value(var_m)]] }

INPUTS // triggers to execute a particular transition with assignments
// (i.e., variable update triggers)
assigns_of_[[tr_1]] := [[IS_x]].fire_[[tr_1]]
...
assigns_of_[[tr_n]] := [[IS_x]].fire_[[tr_n]]

DEFINE // conditions over variables that are used in other modules
grdValue_[[tr_1]] := [[tr_grd(tr_1)]]
...
grdValue_[[tr_n]] := [[tr_grd(tr_n)]]

INIT state=ok

TRANS
|- state=ok -- assigns_of_[[tr_1]] --> state:=ok; [[assignments_tr_1]]

...
-- assigns_of_[[tr_n]] --> state:=ok; [[assignments_tr_n]]

|-> state:=ok

Input signalsassigns of [[tr i]] are synchronously set to true when the corresponding
transitiontr i is fired. Thus, the transitions specified in theTRANS compartment ensure that all
necessary assignments are done in the same step as the corresponding transitiontr i.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 139

Signal Call Actions. Different syntactical styles for signal call actions can be found in the
literature, e.g.,/send targetObj.signalName or /targetObj.^signalName. But basically,
a signal call actionsigAct ∈ actionstr comprises of a target objecttargetObj and a signal
namesignalName. If a signal call action is to be executed as part of the action sequence
actionstr, a corresponding signal in the Interval Structure that simulates the event queue of the
target object has to be made.

For each signal call actionsigAct ∈ actionstr, if not yet defined, add a new output signal
sent [[signalName]][[targetObj]] := fire [[tr]] to V arISobjId. These output signals guaran-
tee that in the corresponding I/O-Interval Structuresig [[signalName]][[targetObj]][[objId]]
that simulates the event queue, a transition is made to the internal statewaiting. As signals are
asynchronous, no reply has to be waited for (as opposed to operation calls).

Operation Call Actions. In our version of State Diagrams, we abstract from local operation
calls as actions, as they are assumed to take no additional time. Note that local operation calls
with a specified time greater than 1 as well as synchronous operation calls to other objects are
considered asactivities, and their mapping is addressed in the corresponding sections.

After the described procedure has been performed for all transitions ofcommonTR, all trig-
ger events, all conditions, and all actions are translated and corresponding I/O-Interval Struc-
tures for all variables and all events have been generated. But for each transitiontr ∈ TR,
we still have to establish synchronization of the ‘transition parent’ state with the other affected
states determined by the setExitEntertr ∪ExitOnlytr ∪EnterOnlytr \ {parent(trsrc(tr))}.
We present this step by step with several cases.

Transitions both Exiting and Entering direct Substates. We first consider all Xor-states
x ∈ ExitEntertr ∩ Xor \ {parent(trsrc(tr))}. For all val ∈ substates(x) ∩ ExitStatestr,
we add transitionstval = 〈aval, b, condV ars〉 to the set of transitionsT in ISx, where

aval = 〈(state ≡ [[val]]), (activated ≡ true)〉,
b = 〈(state ≡ [[substates(x) ∩ EnterStatestr]]), (activated ≡ true)〉, and

condV ars = {[[parent(trsrc(tr))]].fire [[tr]]}.

For all these transitionstval, we set

I(tval) = {1},
Iinput(tval) = ([[parent(trsrc(tr))]].fire [[tr]] ≡ true),

Tassgn(tval) = ξact.

For And-statesx ∈ ExitEntertr∩And (by definition, thesex cannot beparent(trsrc(tr))),
we add a transitiont = 〈a, b, condV ars〉 to the set of transitionsT in ISx, where

a = 〈(activated ≡ true)〉,
b = 〈(activated ≡ true)〉,
condV ars = {[[parent(trsrc(tr))]].fire [[tr]]} ∪ {[[s]].state | s ∈ substates(x)}.

140 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

The latter set is necessary to keep track of the status of all (Xor-)substates.I(t) andTassgn(t)
are defined as above, whereasIinput(t) must be defined considering the completion event:

Iinput(t) = ([[parent(trsrc(tr))]].fire [[tr]] ≡ true) ∧∧
s∈substates(x)〈([[s]].state ≡ [[final(s)]]), ([[s]].activated ≡ true)〉.

Transitions only Exiting a Direct Substate. For Xor-statesx ∈ ExitOnlytr ∩ Xor \
{parent(trsrc(tr))} and for all val ∈ substates(x) ∩ ExitStatestr, we add transitions
tval = 〈aval, b, condV ars〉 to the set of transitionsT in ISx, where

aval = 〈(state ≡ [[val]]), (activated ≡ true)〉,
b = 〈(state ≡ [[val]]), (activated ≡ false)〉, and

condV ars = {[[parent(trsrc(tr))]].fire [[tr]]}.

Note here that the current value of variablestate is retained. This information might be
useful when re-entering the exited state via a history state – however, history states are not yet
regarded in this translation.5 As before, we set

I(tval) = {1},
Iinput(tval) = ([[parent(trsrc(tr))]].fire [[tr]] ≡ true),

Tassgn(tval) = ξact.

For And-statesx ∈ ExitOnlytr ∩And, we take the same approach as above for And-states
∈ ExitEntertr, but now replace the value of variableactivated by 〈(activated ≡ false)〉 for
the destination stateb.

Transitions only Entering a Direct Substate. For Xor-statesx ∈ EnterOnlytr ∩Xor6 and
for all val ∈ substates(x), we add transitionstval = 〈aval, b, condV ars〉 to the set of transitions
T in ISx, where

aval = 〈(state ≡ [[val]]), (activated ≡ false)〉,
b = 〈(state ≡ [[substates(x) ∩ EnterStatestr]]), (activated ≡ true)〉, and

condV ars = {[[parent(trsrc(tr))]].fire [[tr]]}.

We set
I(tval) = {1},
Iinput(tval) = ([[parent(trsrc(tr))]].fire [[tr]] ≡ true),

Tassgn(tval) = ξact.

5The main challenge here is to determine the different cases of history states in combination with default
transitions and other common transitions. These cases have all to be treated differently, which makes the mapping
to I/O-Interval Structures more complex. However, as there are already dedicated states in the target I/O-Interval
Structures that indicate whether a state is activated, no additional states have to be introduced to the I/O Interval
Structures when history states are considered.

6Note that by definition for allx ∈ EnterOnlytr it holdsx 6= parent(trsrc(tr)).

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 141

For And-statesx ∈ EnterOnlytr ∩ And, we add a transitiont = 〈a, b, condV ars〉 to the
set of transitionsT in ISx, wherea = 〈(activated ≡ false)〉, b = 〈(activated ≡ true)〉, and
condV ars = V ar(trevt(tr)) ∪ V ar(trgrd(tr)). Finally, we set

I(t) = {1},
Iinput(t) = ([[parent(trsrc(tr))]].fire [[tr]] ≡ true),

Tassgn(t) = ξact.

5.4.2.2 Mapping of Transitions with Elapsed Time Events

Transitions with elapsed time events do not have conditions and actions. The UML stan-
dard syntax is ‘after tm’, where tm is a non-negative natural number greater than 1. As
we handle local do-activities of simple states by elapsed time events of the formafter

[minTime,maxTime], the syntax is extended, such that timing intervals are now allowed in
contrast to standard UML. As we abstract from physical time units, it is important thattm is
specified in relation to the basic time unit that is assumed for performing a run-to-completion
step. For example, if the basic time unit is milliseconds,after 1000 refers to an elapsed time
of 1 second.

For tr ∈ elapsedT imeTR, letminTimetr andmaxTimetr be the specified timing interval
values intrevt(tr). The I/O-Interval StructureISx with x = parent(trsrc(tr)) gets an additional
counter variable for counting the number of steps passed since entering statetrsrc(tr). Note that
each I/O-Interval Structure does only need at most as many counter variables as the number of
concurrent substates, even if several transitions with an elapsed time event are specified. In
particular, forx ∈ Xor, at most one counter variable is necessary. I/O-Interval Structures for
composite statesy ∈ ExitStatestr ∪ EnterStatestr that are indirectly affected by transitions
with elapsed time events (i.e.,y 6= parent(trsrc(tr))) get an additional input variable to syn-
chronize withISx.

In the remainder, we concentrate on mapping transitions forx ∈ Xor. A mapping for
x ∈ And can be easily derived by iterating through all concurrent substates.

• Introducing counter variables. For all x ∈ Xor, if there is a transitiontr ∈
elapsedT imeTR with trsrc(tr) ∈ substates(x), we add a new variablecount to Pr
in ISx with

count : RANGE[0..maxTmx],

wheremaxTmx is the maximum of all specified timing values of transitions with elapsed
time events relevant forx, i.e.,

maxTmx = max{maxTimetr | tr ∈ elapsedT imeTR ∧
∃y ∈ substates(x) with y = trsrc(tr)}.

Variablecount is initialized by addingcount to s0, i.e.,s0 := s0 ∧ (count ≡ 0).

• Adding input variables. For all transitionstr ∈ elapsedT imeTR and for all states
y ∈ ExitEntertr ∪ ExitOnlytr ∪ EnterOnlytr with y 6= parent(trsrc(tr)), we add an
input variable[[parent(trsrc(tr))]].count to Prinput in ISy.

142 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

We can now add transitions to the I/O-Interval Structures, using the variables defined above.
For all tr ∈ elapsedT imeTR, we add the following transitions.

• For statex = parent(trsrc(tr)), we add four transitionst1, t2, t3, t4 to the setT of transi-
tions inISx. Let a = 〈(state ≡ [[trsrc(tr)]]), (activated ≡ true)〉 denote the transition
source state, andb = 〈(state ≡ [[trdst(tr)]]), (activated ≡ true)〉 the destination state.
We set

t1 = 〈a, a, {count}〉, t2 = 〈a, a, {count}〉,
t3 = 〈a, b, {count}〉 t4 = 〈a, b, {count}〉.

and the corresponding transition-related function values

I(t1) = {1}, I(t2) = {1},
Iinput(t1) = (count < [[minTimetr]]), Iinput(t2) = ((count >= [[minTimetr]])

∧ (count < [[maxTimetr]])),

Tassgn(t1) = 〈(count := count+ 1)〉, Tassgn(t2) = 〈(count := count+ 1)〉,

I(t3) = {1}, I(t4) = {1},
Iinput(t3) = ((count >= [[minTimetr]])

∧ (count < [[maxTimetr]])),

Iinput(t4) = (count = [[maxTimetr]]),

Tassgn(t3) = actionstr; 〈(count := 0)〉, Tassgn(t4) = actionstr; 〈(count := 0)〉.

Transitiont1 simply increments the counter variable while remaining in the source state
until the minimal time is reached. Then, it can non-deterministically be chosen between
firing t2 or t3. Transitiont2 remains in the source state and increments the counter, while
t3 changes to the target state and resets the counter to 0. Transitiont4 guarantees that the
targetstate is entered when the maximum ealpsed time is reached.

• For all statesx ∈ ExitEntertr \ {parent(trsrc(tr))} and for all substatesval ∈
substates(x) ∩ ExitStatestr, we add transitionstval = 〈aval, b, condV ars〉 to the set
of transitionsT in ISx, where

aval = 〈(state ≡ [[val]]), (activated ≡ true)〉,
b = 〈(state ≡ [[substates(x) ∩ EnterStatestr]]), (activated ≡ true)〉, and

condV ars = V ar(trevt(tr)) ∪ V ar(trgrd(tr)).

We set the following transition-related function values

I(tval) = {1},
Iinput(tval) = ([[parent(trsrc(tr))]].count == maxTimetr),

Tassgn(tval) = ξact.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 143

• For all statesx ∈ ExitOnlytr \ {parent(trsrc(tr))} and for all substatesval ∈
substates(x) ∩ ExitStatestr, we add transitionstval = 〈aval, b, condV ars〉 to the set
of transitionsT in ISx, where

aval = 〈(state ≡ [[val]]), (activated ≡ true)〉,
b = 〈(state ≡ [[val]]), (activated ≡ false)〉, and

condV ars = V ar(trevt(tr)) ∪ V ar(trgrd(tr)).

As before, we set

I(tval) = {1}, Iinput(tval) = (trevt(tr) ∧ trgrd(tr)), Tassgn(tval) = ξact.

• For all statesx ∈ EnterOnlytr and for all val ∈ substates(x), we add transitions
tval = 〈aval, b, condV ars〉 to the set of transitionsT in ISx, where

aval = 〈(state ≡ [[val]]), (activated ≡ false)〉,
b = 〈(state ≡ [[substates(x) ∩ EnterStatestr]]), (activated ≡ true)〉, and

condV ars = V ar(trevt(tr)) ∪ V ar(trgrd(tr)).

We set

I(tval) = {1}, Iinput(tval) = (trevt(tr) ∧ trgrd(tr)), Tassgn(tval) = ξact.

Assume for the moment that all transitions forT are yet defined in all I/O-Interval Structures
ISx with a counter variablecount as introduced above. In all these structures, we have to add
the assignmentcount := 0 to reset the counter in all transitions that change states, i.e., for all
t ∈ {r ∈ T | r[1] 6= r[2] ∧ (count := count + 1) 6∈ Tassgn(r)}, we addTassgn(t) =
Tassgn(t) +append 〈(count := 0)〉,

5.4.2.3 Conflicting Transitions

Conflicting Transitions might occur, when there are two activated ancestrally related states, say
s1 ands2, which each have an outgoing transition with the same triggering eventevt and valid
conditions (i.e., the transition guards both evaluate to true). In this case, the UML standard
specifies that the transition with thelower source statehas precedence and is taken. However,
this does not yet solve the cases1 = s2. For s1 = s2, we simply assume non-deterministic
behavior, i.e., a non-deterministic choice is made.

But for s1 6= s2, we have to add some additional conditions in our generated I/O-Interval
Structures to follow the precedence concept of UML State Diagrams. First, for a given event
e ∈ EV T we define the help sets

transe = {tr ∈ TR | e = trevt(tr)},
sourceStatese = {trsrc(tr) ∈ S|tr ∈ transe}, and

parentStatese,s = sourceStatese ∩ parents+(s)for eachs ∈ sourceStatese.

144 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Functionparents+(s) gives the transitive superstates of a states, excludings. For each
evente and stateswith parentStatese,s 6= ∅, the corresponding transition conditionsfire[[tr]]
of all s′ ∈ parentStates(e, s) have to be equipped with an additional negated condition, i.e.,
fire[[tr]] := fire[[tr]] ∧ ¬[[trgrd(s)]], to prevent the superstates from firing their transitions.

5.5 Contributions of the Chapter

In this chapter, a UML State Diagram variant has been defined that restricts on a subset of stan-
dard UML State Diagram model elements. In particular, rarely used pseudostates and critical
interlevel transitions are omitted.

The regarded subset of UML State Diagrams has then been extended in the sense that timing
specifications attached to operations – as specified in Class Diagrams – are considered as esti-
mated activity times in State Diagrams. The execution semantics of this timed State Diagram
variant is defined by a translation to I/O-Interval Structures over discrete time.

Chapter 6

Modeling Manufacturing Systems with
MFERT

As complexity rises,
precise statements lose meaning,

and meaningful statements lose precision.
—Lotfi Zadeh

MFERT constitutes a generic approach for specification and implementation of planning and
control assignments in manufacturing processes [DW93, Sch96, DW97]. It has been applied in
different projects with industrial partners and received the German science award of logistics.
Basically, MFERT builts upon concepts of Petri Nets, i.e., the structure of an MFERT model is
a bipartite graph of nodes that represent either production processes or storages for production
elements.Production Element Nodes(PENs) are used to model logical storages of material and
resources. The can be compared with places in Petri Nets.Production Process Nodes(PPNs)
represent logical locations where material is transformed. PPNs are comparable to transitions
in Petri Nets.Directed edgesbetween nodes denote the flow of production elements.

Example. Consider the production flow illustrated in Figure 6.1 that models the flow of pro-
duction items of the case study presented in Section 1.2. Primary input is modeled by PENs
RawEngines andRawShafts. Corresponding processes are used to supply these production
items into PENsEnginesSupplied andShaftsSupplied.

Different processes model the transformation of production items in the stationsmill, drill ,
and wash, i.e., Milling, Drilling, andWashing. Input and output buffers of stations are
modeled by PENs namedItemsBeforeMill, ItemsAfterMill, ItemsBeforeDrill, Items-
AfterDrill, ItemsBeforeWash, andItemsAfterWash.

Transports between stations are modeled by transporting processes namedTransporting-

ToMill, TransportingToDrill, andTransportingToWash. A fourth transporting process
is used to take production items to the output station. To perform a transport, an item and an
automated guided vehicle (AGV) is needed as an input. In the example, AGVs are modeled as a
production resource by means of a PEN. For performing a transport, the corresponding process
allocates an AGV from that PEN (i.e., it takes one AGV from that PEN), and after the process
has finished, it vacates that AGV (i.e., the AGV is re-entering the PEN).

145

146 CHAPTER 6. MFERT

SupplyingShafts ShaftsSupplied

AGVs

Milling EnginesAfterMill

TransportingToDrill ItemsBeforeDrill

Drilling ItemsAfterDrill TransportingToWash ItemsBeforeWash

Washing ItemsAfterWash TransportingToOutput OutputQueue

RawEngines

RawShafts

SupplyingEngines EnginesSupplied EnginesBeforeMillTransportingToMill

Figure 6.1: MFERT Graph of the Case Study

Thedynamicsof an MFERT model is defined by local functions associated with the nodes.
These local functions are also calledlocal managersor agents. An instantiation of an MFERT
model is therefore seen as a distributed system of interacting ‘agents’. Different approaches
are suitable to define local functions in this context, for instance, Quintanilla formally defines
a graphical notation calledinteraction diagrams[Qui01]. However, timing aspects are not
regarded in that approach.

We focus in this thesis on finite state machines (FSMs) and the timed UML State Diagram
variant that was introduced in Chapter 5 to define the local functionality of MFERT nodes –
more specifically, we employ additional restrictions on the set of actions and activities defined
in the timed UML State Diagram variant. In the context of MFERT, we only regard actions and
activities that denote (a) requests of PPNs to put and get elements to and from PENs, (b) actual
transfers of production items between MFERT nodes, and (c) local transformation activities that
have a notable duration.

For example, an FSM assigned to nodeTransportingToDrill in Figure 6.1 may specify
that such a transport requests a resource (i.e., an AGV) and an item to transport, i.e., either
a shaft or an engine. Additionally, the local activity of transporting an item is required to be
executed within 20 to 40 time units. This might be a well-known duration derived from the
concrete setting of the physical system or an estimated duration that is only assumed at time of
modeling. If we checked system properties based on this assumption, they are only valid if the

6.1. MFERT GRAPHS 147

estimated duration is really met in the running system.
In contrast to PPNs that actually control the production flow via their associated functions,

PENs are organized in are rather passive and wait for requests to react on. A PEN is mainly
used to store incoming and outgoing production elements in queues and shifts elements from
the input to the output queue with a certain delay.

In the following three sections, we describe the graphical notation, the formal model, and
the dynamic semantics of MFERT. In Section 6.4, we then outline a UML Profile for MFERT
models. This profile is the basis for applying OCL constraints to UML-based MFERT models,
which will be presented in Chapter 8.

6.1 MFERT Graphs

Graphically, two types of nodes are distinguished. An annotated triangle represents a PEN, an
annotated rectangle stands for a PPN. The annotation indicates the unique name of the node.
Directed edges from PENs to PPNs denote a material or resource input into a production pro-
cess, while directed edges from PPNs to PENs represent the output flow after completion of
production processes.

Edges are only allowed between nodes of different types (i.e. triangles and rectangles), so
that the resulting MFERT graph is bipartite. MFERT graphs show both a static and a dynamic
view of a manufacturing system. On the one hand, the nodes statically represent the participat-
ing production processes and element storages. On the other hand, edges represent the dynamic
flow of production elements (i.e., material and resources) within the manufacturing system.

In the original work on MFERT, annotations by means oftime barsare attached to PENs
and PPNs to illustrate incoming and outgoing events. In terms of UML, this basically conforms
to an interface specification of operations and signals that can be handled by a PEN or PPN,
respectively. The particular events drawn on the arrows only informally show possible in- and
outputs, i.e., they do not put any restrictions on their order. Therefore, we omit the graphical
element of time bars in our description of MFERT and instead assume that the interface of PPNs
and PENs is specified in a manner similar to UML. This is an important aspect when we are
going to develop a UML Profile for MFERT in Section 6.4.

6.2 Formal MFERT Model

The type system used in our MFERT definition is similar to the one of Coloured Petri Nets
(CP-nets) [Jen91]. The tokens that are running through the system are production elements of a
certain data type. A data typeD is a tuple of value sets. For instance, a data typeEngineOrder
may be defined by tuples of form

〈kind, kw, turbo, id〉 ⊆ {petrol, diesel} × {40, 56, 70} ×Boolean× Integer .

We assume that standard types, such asInteger orBoolean, together with their common oper-
ations are well-defined. In the following, letDT refer to the set of all data types defined in the
system.

148 CHAPTER 6. MFERT

Expressions, Variables, and SequencesIn general, complex expressions are combined from
primitives (i.e., variables or constants) and subexpressions by use of functions and operations.
We do not give a concrete expression syntax here; we just assume that such a syntax exists
together with a well-defined semantics, such that it is possible to talk about

• the type of a variablev, denoted byType(v),

• the value of a variablev, denoted byV alue(v),

• the type of an expressionexpr, denoted byType(expr),

• the set of variables in an expressionexpr, denoted byV ar(expr). This set only contains
the free variables, i.e., variables that are not bound internally inexpr, e.g., by a local
definition.

A sequenceq over a data typeD ∈ DT is a function

q ∈ {f | f : N → D ∪ {ε}, D ∈ DT} .

We denote a sequenceq by an enumerationq = 〈〈a1, a2, . . . 〉〉, with ai ∈ D. We can stop the
enumeration if there in an indexi such that all following sequence elements are equal to the
empty wordε. We denote the set of all well-defined sequences by

SeqD = {f | f : N → D ∪ {ε},∀i ∈ N : (f(i) = ε) ⇒ ∀j ≥ i : f(j) = ε} .

We assume that the common operations on sequences are well-known, e.g., concatenation of
sequences, accessing the i-th element, deleting at i-th position, etc. In particular, we denote by
Type(q) the unique data typeD ∈ DT over which a sequenceq is defined. In the following, let

SeqDT =
⋃

D∈DT

SeqD .

With these preliminaries, we can define the static structure of an MFERT model as follows.

Definition 6.1 AnMFERT model is a tuple

G
def
= 〈 PE, PP,E,DT,C, In,Out, CapIn, CapOut,

T ime, FSM,MFSM , InitIn, InitOut 〉,

where

(i) PE is a finite set of ProductionElementNodes,

(ii) PP is a finite set of ProductionProcessNodes,PP ∩ PE = ∅.

(iii) E ⊆ (PP ×PE)∪ (PE×PP) is a finite set of directed edges between PENs and PPNs.
The edges represent the element flow between nodes.

6.2. FORMAL MFERT MODEL 149

(iv) DT is a finite set of Data Types. A data typeD = 〈V SD,1, V SD,2, . . . , V SD,n〉 ∈ DT is
a tuple of – possibly infinite – value setsV SD,i 6= ∅, 1 ≤ i ≤ n.

(v) C : PE → DT is the mapping that gives eachpe ∈ PE a data type.

(vi) In : PE → SeqDT is the mapping that associates an input sequence to eachpe ∈ PE. It
holds∀pe ∈ PE : Type(In(pe)) = C(pe). In the following, letInPE =

⋃
pe∈PE In(pe).

(vii) Out : PE → SeqDT is the mapping that associates an output sequence to eachpe ∈
PE. It holds∀pe ∈ PE : Type(Out(pe)) = C(pe). In the following, letOutPE =⋃

pe∈PE Out(pe).

(viii) CapIn, CapOut : PE → N give each input and output sequence a maximal capacity.

(ix) Time : PE → N0 is the mapping that associates a delay time to eachpe ∈ PE.

(x) FSM =
⋃

pp∈PP fsmpp is a set of finite state machines,|FSM | = |PP |.
In order to be able to talk about particular elements of FSMs, we give a structural defini-
tion in Appendix A.1 We assume that it is possible to talk about a set of ‘proper states’ of
anfsm ∈ FSM , denoted bySTATESfsm, which is taken to describe the current status
of an FSM. In the following, letSTATESFSM =

⋃
fsm∈FSM STATESfsm.

Restrictions: Note that we restrict the type of actions in state transitions of FSMs; actions
that consume and actions that produce elements must not appear in the same transition.

(xi) MFSM : PP → FSM is the bijective mapping that associates a finite state machine
fsm ∈ FSM to each production processpp ∈ PP .

(xii) InitIn : PE → SeqDT is an initialization function that represents the initial marking of
the input sequence of eachpe ∈ PE. InitIn is defined fromPE into Sequences such that

∀pe ∈ PE : Type(InitIn(pe)) = C(pe) ∧ V ar(InitIn(pe)) = ∅ .

(xiii) InitOut : PE → SeqDT is an initialization function that represents the initial marking of
the output sequences of PENs.InitOut is defined fromPE into Sequences such that

∀pe ∈ PE : Type(InitOut(pe)) = C(pe) ∧ V ar(InitOut(pe)) = ∅ .

Note that this is a general functional definition of MFERT. In Section 6.4, we are going to define
a UML Profile for the domain-specific structural elements of MFERT, i.e., sets PP, PE, and E,
to have a graphical notation for modeling purposes. Additionally, we employ the timed UML
State Diagram notation as introduced in Chapter 5 for the FSMs in MFERT.

We define the overall runtime status of an instantiated MFERT model by means of the
configurationthe current values in the input and output sequences of PENs and the state con-
figurations of FSMs as follows.

1Though, that definition does not prescribe a finite state machine formalism with a particular execution seman-
tics, as this general MFERT definition abstracts from internal behavior of PPNs.

150 CHAPTER 6. MFERT

Definition 6.2 In an MFERT model with the finite setsPE, PP , andFSM , let

configuration : FSM → P(STATESFSM)

be the function that returns the current configuration of a finite state machine. AnMFERT
configurationis described by a tuple〈

OutPE, InPE,
⋃

fsm∈FSM

configuration(fsm)
〉
.

6.3 Dynamic Semantics of MFERT

Concerning the micro view semantics, i.e., the execution semantics of single processes, the gen-
eral MFERT definition in [Sch96] makes no particular assumptions. Also the general MFERT
definition 6.1 of this thesis so far has just an abstract notion of finite state machinesFSMs
to describe the behavior of production processes, but for an executable or verifiable model, we
need a particular execution semantics. We therefore take the timed UML State Diagram vari-
ant as the FSM formalism for MFERT. Recall that we have defined a mapping to I/O-Interval
Structures for these timed UML State Diagrams, such that the execution semantics is given by
means of the formal notion ofrunsof I/O-Interval Structures (cf. Definition 3.13 on page 75).

Concerning the macro view of communication between different MFERT nodes, there are
different execution semantics of MFERT identified, i.e., synchronous, asynchronous, and sim-
ulation semantics. As we focus on synchronous semantics in the remainder, we briefly discuss
the other two in Section 6.3.5.

The dynamic semantics ofsynchronousMFERT models is best described by an abstract
interpreter for PPNs and PENs, respectively. For PPNs, an interpreter controls the execution of
the FSMs. For PENs, the corresponding interpreter is cyclically shifting production elements
from input to output sequences.

6.3.1 Production Process Nodes

We assume that each PPN has its own thread of control and runs independently of a global
signal. A PPN works along the lines of an abstract interpreter as it is described in Figure 6.2.
Each interpreter cycle starts with selection of an applicable transition. After the selection phase,
first some checks on adjacent PENs are necessary. Note here, that some actions associated with
the selected state transition have an effect on adjacent PENs, e.g., by consuming production
elements from preceding nodes. It must be ensured that this is a valid operation. Finally, the
transition is fired and a new state is entered after the delay time determined by the selected tran-
sition. A delay time greater than 1 usually represents the time that is necessary for a particular
production step.

Given a states of an FSM,DetermineTransition(s) chooses a transitiont ∈ T out of the
set of applicable transitions. We do not specify how this transition is going to be chosen, as this
is defined in the dynamic semantics of the underlying state machine model, but we assume that
Conditions(t) evaluates to true at the time of chosingt.

6.3. DYNAMIC SEMANTICS OF MFERT 151

currentState =s0 // s0 is the initial state of the FSM
while true{
t = DetermineTransition(currentState)∈ Tr ∪ {ε} // selection phase
if (t 6= ε) {

grant = true
parallel do{ // checking phase
C = { (D, i) | ∀v ∈ V ar(ConsumeActions(t)) : D = Type(v) ∧ i = V alue(v)}
if (C 6= ∅) { grant = SendConsumeRequests(C) }

} || {
P = { (D, i) | ∀v ∈ V ar(ProduceActions(t)) : D = Type(v) ∧ i = V alue(v)}
if (P 6= ∅) { grant = SendProduceRequests(P) }

}

if (grant) {
Execute(Actions(t), Delay(t) - 1) // execution phase
currentState = NextState(t)

}
}

}

Figure 6.2: Abstract Interpreter for PPNs

Due to our definition of finite state machines in Appendix A, at least one of the setsC and
P is empty in each cycle.SendConsumeRequests(C) andSendProduceRequests(P) takeC
resp.P to send request messages to all corresponding adjacent PENs. These messages are sent
as a multicast with the same time stamp. We further require that these request messages are
sent synchronously, i.e., the interpreter waits until all replies are received. In the following, we
assume that all requests can be immediately answered by all PENs in one time step.

Replies are either acknowledgments or denials.SendConsumeRequests(C) andSendPro-
duceRequests(P) return a Boolean value, indicating whether access to all corresponding adja-
cent PENs is granted or not. Only if all requested PENs have replied with an acknowledgement,
Execute (Actions(t), Delay(t) -1) is called. That function executes the actions associated
with t and returns afterDelay(t) - 1 time units to proceed.

Concerning the current state configuration, we have to consider the evolution of time. We
therefore define the following timing restrictions for the interpreter cycle of PPNs.

1. The selection phase takes no time.

2. The checks for valid actions take one time step (send now and receive answers one step
later).

3. The execution phase takes as many time steps as specified in the selected transition, minus
one time step due to the checks. This means, that the new state is actually entered after
the corresponding number of time steps has passed.

The latter condition implies that the FSM remains in its current configuration up to the end
of the delay time and enters the new configuration exactly at that time when the specified time
steps have passed.

152 CHAPTER 6. MFERT

6.3.2 Production Element Nodes

The dynamic semantics of a PENpe ∈ PE is described by the following abstract interpreter
illustrated in Figure 6.3.

For shifting elements, we require exclusive access toIn(pe) andOut(pe), as it is indicated
by the functionsBlock() andUnblock(). Queries and manipulations onIn(pe) andOut(pe)
invoked by messages from PPNs are handled independently of the main cycle, but are also
performed with exclusive access to avoid conflicts.

while true{
Wait(Time(pe) - 1)
Block(Out(pe)) // exclusive access while shifting elements
Block(In(pe))
Out(pe) = Concat(In(pe),Out(pe)) // shifting
In(pe) = ∅
Unblock(In(pe))
Unblock(Out(pe))

}

Figure 6.3: Abstract Interpreter for PENs

Concerning the current state configuration, we here only have to define the timing restriction
that blocking, unblocking, and shifting takes place within 1 time step. This implies that the PEN
remains in its current configuration up to the end of theWait() command and enters the new
configuration exactly after the specified timeTime(pe) has passed.

6.3.3 Message Passing

Due to the required implicit multicast message passing mechanism in the PPN interpreter cycle,
conflicts like dead- or livelocks might occur when different PPNs send messages to common
PENs at the same point of time. In order to avoid such conflicts, we need to define an input
channelMsgQueuepe for eachpe ∈ PEN that takes incoming messages from adjacent PPNs.
Formally,MsgQueuepe is a sequence over a data typeMsg that is defined by

Msg = PPN︸ ︷︷ ︸
sender

×{reqCons, reqProd, consume, produce}︸ ︷︷ ︸
message type

× N0︸︷︷︸
timeID

×DT × N0︸ ︷︷ ︸
content

.

In the following, we may also writeMsg(pp, pe, timestamp) for an element ofMsg, as
the parameterspp ∈ PP andtimestamp ∈ N0 uniquely determine an incoming message for
pe ∈ PE. The message type can be derived, as only one message may be sent at each point
of time from pp to pe, andDT × N0 denotes the actual message content, i.e., the number of
production elements that are to be consumed or produced. The following assumptions are of
particular importance for the message passing model:

1. We require that there is at most one action in each state transition that invokes a message.

6.3. DYNAMIC SEMANTICS OF MFERT 153

2. PPNs send synchronous messages to PENs, i.e., each PPN waits for corresponding
replies.

3. Messages sent from PPNs immediately appear in each of the PEN’s input message queue
MsgQueuepe, pe ∈ PE.

4. We assume that all incoming messages are handled immediately after they are inserted
intoMsgQueuepe, i.e., an answer to a request (for consumption or production), consume,
or produce message is sent back exactly one time step later. Note that it can happen that
shifting and replying to messages must happen in the same step. We therefore define a
priority scheme in Section 6.3.4.

It follows that at each point of time there can be at most one message from each adjacent
PPN in eachMsgQueuepe. This limits the size|MsgQueuepe| of the message queues to the
number of adjacent PPNs.

6.3.4 Conflict Resolution in PENs

Assuming that messages are immediately answered by PENs, several actions might have to be
handled at a single point of time. Among these actions, we have to define a priority in order to
have a well-defined execution semantics. We define for a given point of timet:

1. If at the current time point the execution ofWait(Time(pe) -1) ends, shifting elements
from the input queue to the output queue has highest priority and is executed first.

2. Then, if there are produce messages inMsgQueuepe, these messages are handled in an
arbitrary order.

3. Then, if there are consume messages inMsgQueuepe, these messages are handled in an
arbitrary order.

4. Then, if there are request messages for production inMsgQueuepe, these messages are
handled in an arbitrary order.

5. Then, if there are request messages for consumption inMsgQueuepe, these messages are
handled in an arbitrary order.

6.3.5 Simulation Implementation

The simulation implementationof MFERT focuses on supervision of the capacities in PENs
[Zab03]. Though no formal semantics are defined, the models are executed in a very similar
way. The nodes act on a global signal, i.e., all nodes select a transition and communicate at the
same time with their adjacent nodes.

A visual interface for specification and simulation of MFERT models is presented in
[DDF+02]. In this tool, a notion of hierarchy has been introduced to MFERT to model dif-
ferent layers of abstraction. This means that a rectangle does not only represent a PPN, but

154 CHAPTER 6. MFERT

can also be seen as a placeholder for another MFERT (sub)model with particular in- and output
restrictions.

In the simulation environment, active transitions are marked red in each step, and underflow
in output sequences as well as overflow in input sequences is illustrated (cf. Figure 6.4).

Figure 6.4: Simulation of an MFERT Model

6.4 A UML Profile for MFERT

Modeling the static and dynamic aspects w.r.t. material and resource flow of manufacturing
systems can be done by UML Class Diagrams. We here introduce stereotypes that represent
production processes, storages, and element flow by the virtual metamodel shown in Figure 6.5,
where

1. aProductionDataType defines a tuple of data types. Only query and constructor oper-
ations are allowed for production data types, which may only aggregate or be composed
of DataTypes orProductionDataTypes.

2. TheElementList stereotype represents a parameterized interface that provides certain
operations to manage lists with elements of a certainProductionDataType. We assume
that appropriate operations for lists are specified.

3. MFERTNode is the abstract superclass ofProductionProcessNode andProduction-
ElementNode. MFERT nodes may only inherit from other MFERT nodes of the same
kind. Associations between two MFERT nodes have to be modeled usingElementFlow

associations. There is at most one relationship between each pair of MFERT nodes,
which is either a generalization or anElementFlow association. If the relationship is
a generalization, the participating MFERTNodes must be of the same subclass, i.e. either
ProductionProcessNodes or ProductionElementNodes.

6.4. A UML PROFILE FOR MFERT 155

4. An MFERTNode may not have an association among itself.

5. We do not allow aggregation and composition of MFERTNodes.

6. ProductionProcessNodes (PPNs) consume from and send production elements to
ProductionElementNodes. Each PPN has its own thread of control, i.e., the instances
are active objects.

7. ProductionElementNodes (PENs) store production elements for further processing by
subsequent PPNs. Two lists with production elements (ElementLists) are managed by
a PEN; one for incoming, one for outgoing production elements. The two lists are stor-
ing elements of a certainProductionDataType that is specified by the tagged value
elementType.

8. ElementFlow represents a restricted association between MFERT nodes. For brevity rea-
sons, the tagged valuesource is set to the classifier that is identified via the participant
association of the first element in the ordered list of AssociationEnds. The tagged value
target is set to the classifier that is identified via the participant association of the second
element in the ordered list of AssociationEnds. The tagged valuetype identifies a Pro-
ductionDataType. It represents the type of instances that may be exchanged between the
connected MFERTNodes from the source towards the target end. The main constraints of
ElementFlow are: They are only allowed between two concrete MFERT nodes. Tagged
valuessource and target refer to the two classifiers that are determined by the as-
sociation ends ofElementFlow. ElementFlow associations are only allowed between
concrete subclasses of MFERTNodes of different types, i.e., between ProductionProcess-
Nodes and ProductionElementNodes. We restrict multiplicity of these association ends
to 1, as anElementFlow association shall indicate a relationship between two instances
of MFERT nodes. Though it is allowed to navigate onElementFlow associations in both
ways, we graphically represent these associations as directed edges towards the target
end to indicate the direction of element flow. ElementFlow associations neither specify
aggregation nor composition relationships. Qualifying attributes are not considered for
ElementFlows.

This is only a summary of the model-inherent restrictions defined by the profile. For a
complete outline we refer to Appendix C. In [FM02a], a complete definition of the MFERT
profile is given including OCL constraints, the formal MFERT model, and a mapping to I/O-
Interval Structures.

The official UML 1.5 specification suggests a graphical notation for stereotypes [OMG03d,
Sections 3.17, 3.18, 3.35 and 4.3]. Based on this notation, we present an overview of the
MFERT profile by the virtual metamodel shown in Figure 6.5.

6.4.1 MFERT Graphical Notation in Class Diagrams

The possible alternative notation for MFERT nodes is already indicated in Figure 6.5. Though
navigable in both ways, we denoteElementFlow associations as directed edges towards the
target end to indicate the direction of production element flow. The multiplicities are omitted,

156 CHAPTER 6. MFERT

<<metaclass>>
Comment

<<stereotype>>
Declaration

<<metaclass>>
Class

<< >>stereotype
MfertNode

<<metaclass>>
Interface

<< >>stereotype
ProductionDataType

<<metaclass>>
Relationship

<< >>stereotype
ElementFlow

<< >>stereotype
ProductionElementNode

<< >>stereotype
ProductionProcessNode

source [1]

target [1]

time : Integer [1]
inputCapacity : Integer [1]
outputCapacity : Integer [1]

Tags

<< >>stereotype << >>stereotype<< >>stereotype<< >>stereotype

elementType [1] declaration [1]

Tags
expr : Expression [1]

<<taggedValue>>

<<taggedValue>>

<<taggedValue>> <<taggedValue>>

<<stereotype>>
ElementList

<< >>stereotype

<<taggedValue>>

<<taggedValue>>

inputSequence [1]

outputSequence [1]

Figure 6.5: MFERT Stereotypes

asElementFlow associations represent 1:1 relations. Annotation of the association name is
optional. Some examples that illustrate the MFERT notation are shown in Figure 6.6.

6.4.2 Validation Constraints

In the previous section, we already restricted the standard UML State Diagram notation. But in
order to be able to perform a mapping of MFERT designs to I/O-Interval Structures vis the UML
Profile for MFERT and the timed UML State Diagram variant, we have to make the following
additional restrictions.

1. We require that each concrete MFERT node is complete in the sense that its behavior
description is given in form of a single timed UML State Diagram.

2. Use, composition and generalization relationships between two classes are taken into
account for verification iff the two classes are (subclasses of) MFERT nodes.

3. As already mentioned, data exchanges between two MFERT nodes are necessarily per-
formed usingElementFlow associations.

4. An MFERT node may communicate with a non MFERT node by operation call, signal or
attribute modification, but these communications are not further considered.

5. Variables must have a finite value range to be applicable for the translation of timed UML
State Diagrams to I/O-Interval Structures, i.e., attributes can only be enumerations or
finite non-negative subsets of type Integer.

6.4. A UML PROFILE FOR MFERT 157

Common Stereotyped UML Notation Alternative MFERT Notation

« »ProductionElementNode
Engines

« »ProductionProcessNode
Transport

B
«ElementFlow»

11
A BA

Engines

Transport

Let A be a source PPN and B the target PEN

Figure 6.6: MFERT Notation Samples

6.4.3 Mapping to the Formal MFERT Model

In this section, we map the UML Class Diagram elements for MFERT as introduced in the
previous sections to the corresponding elements of the formal MFERT definition as described
in Section 6.2. As UML does not provide a particular way how to define such a mapping, we
take the following approach.

We extract instances of a particular UML model by means of OCL expressions and assign
the results from evaluating these OCL expressions to the corresponding elements of the formal
MFERT model.

As standard OCL expressions cannot result in a mathematical function definition, we
here introduce a new type calledOclFunction and an operation calledasFunction() de-
fined forOclAny. The new typeOclFunction is introduced for technical reasons to indicate
that a mathematical function is built from a given set of tuples. Basically,OclFunction is
has attributesdefinitionSet:Set(OclAny) and targetSet:Set(OclAny) and an opera-
tion f(arf:OclAny):OclAny that constitutes the actual function. A definition of operation
asFunction() is given by the following declaration.

obj->asFunction(): OclFunction
pre: obj.oclIsKindOf(Set(Tuple(OclAny,OclAny)))
pre: obj->collect(elem : Tuple(OclAny,OclAny) | elem.at(1))

->isUnique(name)
post: result.definitionSet = obj->collect(elem | elem.at(1))->asSet()
post: result.targetSet = obj->collect(elem | elem.at(2))->asSet()
post: obj->forAll(elem | result.f(elem.at(1)) = elem.at(2))

This operation can be applied to finite collections of tuples with 2 elements each. The first
elements of the tuples form the definition set of the function, the second elements form the target
set. The result is a function with a definition and a target set and a mapping that can be accessed
via operationf(). In order to provide a total function, we implicitly setresult.f(elem) =

158 CHAPTER 6. MFERT

OclUndefined for all elements of the definition set type that do not appear in the regarded set
of tuples.

With this help function, the structural elements of a UML model that complies to the vali-
dation constraints for MFERT can be mapped to the components of the formal MFERT model.
Table 6.1 on page 159 lists the corresponding definitions.

Concerning the setFSM of finite state machines, we here simply substitute the general
notion ofFSMs by the timed UML State Diagram variant. Note that this notation allows more
general behavior of MFERT nodes than the abstract interpreter functionality defined in Sections
6.3.1 and 6.3.2. We therefore restrict the actions and activities of MFERT nodes according to
the definition of timed FSMs in Appendix A.

6.5 Contributions of the Chapter

This chapter addressed the following issues:

• In this chapter, a set-theoretic formal model of MFERT is defined. Basically, it is a sim-
plified version of the general functional MFERT description scheme by Uta Schneider
[Sch96]. In particular, certain kinds of actions and activities are identified for MFERT
nodes, i.e, requests for putting and getting production elements, actual transfers of pro-
duction items between MFERT nodes, and transformation activities with a notable dura-
tion.

• The dynamic semantics of MFERT is defined by means of abstract interpreters that are
local to each node.

• For a concrete notation of the behavior of MFERT nodes, FSMs in form of the timed
UML State Diagram variant of Chapter 5 are employed. Note that further restrictions on
the set of actions and activities are employed.

• A UML Profile for the structural elements of MFERT is defined. This allows to associate
OCL constraints to MFERT nodes, as MFERT nodes are interpreted as stereotypes of
classes. For UML classes, in turn, OCL constraints in form of invariants can be applied
(cf. Section 2.3.3).

6.5. CONTRIBUTIONS OF THE CHAPTER 159

Table 6.1: Mapping to Formal MFERT

PE := ProductionElementNode->allInstances()

PP := ProductionProcessNode->allInstances()

E := ElementFlow->allInstances()
->collect(e:ElementFlow | Sequence{e.source, e.target})
->asSet()

DT := ProductionDataType->allInstances()
->collect(pdt:ProductionDataType |

pdt.allAttributes()->collect(type)->sortedBy(name))
->asSet()

C := ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.elementType})->asFunction()

In := ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.inputSequence})->asFunction()

Out := ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.outputSequence})->asFunction()

CapIn := ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.inputCapacity})->asFunction()

CapOut := ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.outputCapacity})->asFunction()

Time := ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.time})->asFunction()

FSM := ProductionProcessNode->allInstances()
->collect(p | p.behavior) -- ’behavior’ is a link to
->asSet() -- a timed UML State Diagram

MFSM := ProductionProcessNode->allInstances()
->collect(p | Sequence{p, p.behavior})->asFunction()

InitIn := ProductionElementNode->allInstances()
->collect(p |

Sequence{p, p.inputDeclaration.expr.oclAsType(String)})
->asFunction()

InitOut := ProductionElementNode->allInstances()
->collect(p |

Sequence{p, p.outputDeclaration.expr.oclAsType(String)})
->asFunction()

160 CHAPTER 6. MFERT

Chapter 7

Real-Time Properties with OCL

Professional Engineers are expected to use discipline, science, and
mathematics to assure that their products are reliable and robust.

We should expect no less of anyone who produces programs professionally.
– David Lorge Parnas [Par95]

In the domain of database systems, different types ofsemantic integrity constraintsare distin-
guished [EN00]. Static constraintsdefine required properties on nontransient system states,
i.e., static properties within one system state.Transition constraintsdeal with system changes
between two subsequent states. In real-time systems design, additionallytemporal constraints
are identified that consider sequences of state transitions in combination with timing bounds.
While static and transition constraints can already be expressed with OCL, it currently lacks
means to express temporal constraints.

To overcome this, we introduce temporal OCL operations that enable modelers to specify
state-oriented behavior. The proposed OCL extension reasons about future object states, since
we define the semantics based on a future oriented tree temporal logic without loss of generality.
Accordingly, OCL can also be easily extended for specification of past-oriented constraints.
This work has evolved through the recent years. Due to a missing OCL metamodel in the current
UML 1.5 specification, we first took the OCL type metamodel presented by Baar and Hähnle
[BH00] and performed a rather heavyweight extension by directly extending that metamodel
[FM02c]. In March 2003, the OCL 2.0 proposal by Ivner et al. [IHJ+03] has been recommended
for adoption by the Analysis and Design Platform Task Force of the OMG [OMG03a]. With the
official adoption of OCL 2.0 in October 2003 [OMG03b], we can now develop a ‘lightweight’
extension by means of a UML Profile for our temporal OCL extension.

There are other works concerning temporal extensions of OCL. We will discuss them at the
end of this chapter. As a guideline for developing a consistent and successful OCL extension,
we here formulate some requirements to fulfill:

Requirement 7.1 An OCL extension that enables to specify temporal requirements should
reuse existing OCL concepts and keep the common syntax of OCL to keep the learning curve
low for OCL users.

Requirement 7.2 With the resulting OCL extension, it must be possible to express all patterns
identified in the specification pattern system by Dwyer et al. in [DAC98a] (cf. Section 3.2.2).

161

162 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

As timing issues are not covered at all in the pattern system, it is necessary to additionally pro-
vide corresponding time-related specification means for the domain of real-time systems. For
the context of this thesis, we therefore additionally consider the following additional, domain-
specific requirement.

Requirement 7.3 In order to be able to express real-time constraints, explicit timing annota-
tions and timing intervals must be supported in the resulting OCL extension. The corresponding
temporal OCL expressions must have a formal semantics.

7.1 UML Profile for Real-Time Constraints with OCL

The integration of State Diagram states into the formal model for OCL expressions allows
to extend OCL towards specification of constraints that regard thestate-related behaviorof a
model.

For example, consider again the manufacturing scenario with classesMachine andInput-
Buffer. Assume that classInputBuffer has an associated State Diagram in which state con-
figurationSet{Loading} represents that an item is currently being loaded into the buffer. In
such simple cases, we allow to omit the set-notation and may simply specifyLoading to denote
a configuration.

To ensure production progress, we require that items have to periodically arrive at the input
buffer within 400 time units. With other words, stateLoading is always reached again within
400 time units. In our temporal OCL extension, a corresponding OCL constraint is

context InputBuffer inv:
self@post(1,400)->forAll(trace | trace->includes(Loading))

Operationpost(a,b) basically returns the set of all possible traces of state configurations start-
ing in the current system state. Parametersa andb are timing delimiters that specify the timing
interval to consider. In the example, this is the next 400 time units, i.e.,post(1,400) returns a
set of traces, where each trace is a sequence of 400 elements. The elements of a trace in turn are
state configurations (formally, we restrict on the componentΣCONF of traceσ(M) as defined in
Definition 4.17). In the example, stateLoading already specifies a state configuration, such that
we can applyp->includes(Loading) to require that tracep must include state configuration
Loading.

Further examples can be found in Chapter 8. In the remainder of this section, we define a
corresponding language extension based on the adopted OCL 2.0 specification by the following
approach.

Syntactically, we first extend the abstract OCL syntax by stereotypes for temporal expres-
sions in Subsection 7.1.1. But to support modeling at the user level, a concrete syntax and
operations have additionally to be defined for this extension on layer M1 of the UML 4-layer
architecture. Therefore, we add some new production rules to the concrete syntax grammar of
the OCL 2.0 specification in Subsection 7.1.2. Note that we cannot avoid the overlap with the
M1 layer in an OCL Profile, since OCL predefines types and operations on that level. As the
concrete OCL syntax only partly provides the operations that are defined in OCL expressions,

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 163

a standard library of predefined OCL operations is specified in [OMG03b, Chapter 11]. Cor-
respondingly, we define operations in the context of temporal expressions in Subsection 7.1.3.
Semantically, our proposed state-based temporal OCL extension makes use of the notion of
time-based tracesthat are also defined in that subsection.

7.1.1 OCL Metamodel Extensions

The OCL 2.0 specification distinguishes two subpackages for its metamodel packageOcl-

AbstractSyntax (see Figure 2.9); theOCL type metamodeldescribes the predefined OCL
types and affiliated UML types, while theOCL expression metamodeldescribes the structure of
OCL expressions.

States in OCL. In the OCL type metamodel, the metaclass for State Diagram states is
OclModelElementType. Generally, the metaclassOclModelElementType represents the types
of elements that areModelElements in the UML metamodel. In that particular case, the model
elements are states (or more precisely, instances of a concrete subclass of the abstract meta-
classState), and the corresponding instance ofOclModelElementType on layer M1 is the
predefined OCL typeOclState.

For each state, there implicitly exists a corresponding enumeration literal inOclState,
i.e., OclState is seen as an enumeration type on the M1 layer, accumulating the state names
of all State Diagrams. As there is no particular information provided how these enumeration
literals are syntactically defined, we require here that the complete path – excluding the top
state – is used (cf. Definition 4.5, item 7(c)). The state names along the path are syntactically
separated by double colons, e.g., stateN in Figure 7.1 becomes the enumeration literalX::B::N.
In anticipation of the concrete syntax changes to be introduced, we identify final State Diagram
states by the new OCL keywordFinalState.

X

A

J

Y

S

K L

B

M N
e

2
e

3

e
1

e
4

e
6

e
5

Figure 7.1: Concurrent State Diagram

Configurations. The building blocks of State Diagrams are hierarchically ordered states.
Note that we do not regard pseudo states (like synch, stub, or history states) in this context
and recall that acomposite stateis known as a state that has a set of substates and can be
concurrent, i.e., consisting of orthogonal regions which in turn are (composite) states.Simple

164 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

statesare non-pseudo, non-composite states. To uniquely identify an active state configuration,
it is sufficient to list the comprising simple states, which we denote as abasic configurationin
accordance with Definition 4.14.

However, several other notions are imaginable in this context and can be easily adapted,
e.g., the approach of UML 1.5 that takes the whole state tree as a configuration. For explicit
specification purposes, we might also allow forunderspecified configurationsto represent sets
of valid configurations. For instance, in Figure 7.1,Set{X::A::J,X::B} could be a valid
configuration specification in the sense that it denotes the set of configurations

{ Set{X::A::J,X::B::M}, Set{X::A::J,X::B::N}, Set{X::A::J,X::B::FinalState} } .

TemporalExp

PastTemporalExp FutureTemporalExp

PropertyCallExp

<<stereotype>>

Operation
(from Core)

OclExpression

+referredOperation1

0..n {ordered}

+arguments

OperationCallExp

+appliedProperty

0..1

+source0..1

Figure 7.2: Stereotypes for Temporal Expressions

Temporal Expressions. In the OCL expression metamodel, we introduce a new kind of
operation call, i.e., stereotypeTemporalExp represents a temporal expression that refers to
traces of state configurations (cf. Figure 7.2)1. It is the abstract superclass of stereotypes
PastTemporalExp for past-oriented andFutureTemporalExp for future-oriented temporal
expressions, respectively. We need these two stereotypes in order to define a semantics for
corresponding temporal operations (see Section 7.1.4).

1For our stereotype definitions, we make use of the graphical notation suggested in the official UML 1.5 spec-
ification [OMG03d, Sects. 3.17, 3.18, 3.35, and 4.3]. In Figures 7.2 and 7.3, metaclasses taken from the OCL 2.0
metamodel are marked by gray boxes.

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 165

TraceLiteralPart<<stereotype>>

<<taggedValue>> upperBound[1]

<<taggedValue>> lowerBound[1]

CollectionLiteralExp

kind : CollectionKind

<<enumeration>>
CollectionKind

Collection
Set
OrderedSet
Bag
Sequence

CollectionLiteralPart

+parts 0..n {ordered}

CollectionItemCollectionRange

+type

1

OclExpression

+first 1 1+last

+item

1

Classifier
(from Core)

TraceLiteralExp<<stereotype>>

Figure 7.3: Parts of the OCL Expression Metamodel with Stereotypes for Traces

Trace Literals. As we want to reason about traces by means of states and configurations,
we also need a mechanism to explicitly specify traces with annotated timing intervals by lit-
erals. We therefore define stereotypesTraceLiteralExp andTraceLiteralPart as illus-
trated in Figure 7.3. The following restrictions apply here, leaving out the corresponding well-
formedness rules by means of OCL for reasons of brevity.

1. The collection kind of stereotypeTraceLiteralExp is CollectionKind::Sequence.

2. The type associated with aTraceLiteralPart must beSet(OclState). Note that
we do not require explicit specification of a set when a state configuration can already
be specified by one state only. In this case, typeOclState is implicitly casted to
Set(OclState).

3. EachTraceLiteralPart has a lower bound and an upper bound.

4. Lower bounds must evaluate to non-negative Integer values.

5. Upper bounds must evaluate to non-negative Integer values or to the String ‘inf’ (for
infinity). In the first case, the upper bound value must be greater or equal to the corre-
sponding lower bound value.

7.1.2 Concrete Syntax Changes

Having defined new classes for temporal expressions on the abstract syntax level, modelers are
not yet able to use these extensions, as they specify OCL expressions by means of a concrete
syntax. In Chapter 4 of the OCL 2.0 specification, a concrete syntax is given that is compliant
with the current OCL standard. The new concrete syntax is defined by an attributed grammar

166 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

with production rules in EBNF that are annotated with synthesized and inherited attributes as
well as disambiguating rules.Inherited attributesare defined for elements on the right hand
side of production rules. Their values are derived from attributes defined for the left hand
side of the corresponding production rule. For instance, each production rule has an inherited
attributeenv (environment) that represents the rule’s namespace.Synthesized attributesare
used to keep results from evaluating the right hand sides of production rules. For instance, each
production rule has a synthesized attributeast (abstract syntax tree) that constitutes the formal
mapping from concrete to abstract syntax.Disambiguating rulesallow to uniquely determine a
production rule if there are syntactically ambiguous production rules to choose from.

In the following, we present some additional production rules for the concrete syntax of the
OCL 2.0 specification. A mapping to the extended abstract OCL syntax is provided for each
new production rule.

OperationCallExpCS2

Eight different forms of operation calls are already defined in the OCL 2.0 concrete syntax. In
particular, it is distinguished between infix and unary operations, operation calls on collections,
and operation calls on objects (with or without ‘@pre’ annotation) or whole classes. We ad-
ditionally introduce rule [J] for temporal operation calls and list the synthesized and inherited
attributes for syntax [J] below. Disambiguating rules for syntax [J] are defined in the specific
rules for temporal expressions.

[A] OperationCallExpCS ::= OclExpressionCS[1] simpleNameCS OclExpressionCS[2]
[B] OperationCallExpCS ::= OclExpressionCS ’->’ simpleNameCS ’(’ argumentsCS? ’)’
[C] OperationCallExpCS ::= OclExpressionCS ’.’ simpleNameCS ’(’ argumentsCS? ’)’
...
[J] OperationCallExpCS ::= TemporalExpCS

Abstract Syntax Mapping:
-- (Re)type the abstract syntax tree variable ’ast’
OperationCallExpCS.ast : OperationCallExp

Synthesized Attributes:
-- Build the abstract syntax tree
[J] OperationCallExpCS.ast = TemporalExpCS.ast

Inherited Attributes:
-- Derive the namespace stored in variable ’env’
[J] TemporalExpCS.env = OperationCallExpCS.env

TemporalExpCS
A temporal expression is either a past- or future-oriented temporal expression.

[A] TemporalExpCS ::= PastTemporalExpCS
[B] TemporalExpCS ::= FutureTemporalExpCS

We leave out the rather simple attribute definitions here. Basically, the abstract syntax mapping
definesTemporalExpCS.ast to be of typeTemporalExp, the synthesized attributeast is built
from the right hand sides, and the inherited attributeenv is derived fromTemporalExpCS.

2All non-terminals are postfixed by ‘CS’ (short forConcrete Syntax) to better distinguish between concrete
syntax elements and their abstract syntax counterparts.

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 167

FutureTemporalExpCS
A future-oriented temporal expression is a kind of operation call. We additionally have to
introduce the operator ‘@’ to indicate a subsequent temporal operation. Note that an operation
call in the abstract syntax has a source, a referred operation, and operation arguments, so the
abstract syntax treeast must be built with corresponding synthesized attributes.

FutureTemporalExpCS ::= OclExpressionCS ’@’ simpleNameCS ’(’ argumentsCS? ’)’

Abstract Syntax Mapping:
FutureTemporalExpCS.ast : FutureTemporalExp

Synthesized Attributes:
FutureTemporalExpCS.ast.source = OclExpressionCS.ast
FutureTemporalExpCS.ast.arguments = argumentsCS.ast
FutureTemporalExpCS.ast.referredOperation =

OclExpressionCS.ast.type.lookupOperation(simpleNameCS.ast,
if argumentsCS->notEmpty() then
argumentsCS.ast->collect(type)

else
Sequence{}

endif)
Inherited Attributes:

OclExpressionCS.env = FutureTemporalExpCS.env
argumentsCS.env = FutureTemporalExpCS.env

Disambiguating Rules:
-- Operation name must be a (future-oriented) temporal operator.

[1] Set{’post’}->includes(simpleNameCS.ast)
-- The operation signature must be valid.

[2] not FutureTemporalExpCS.ast.referredOperation.oclIsUndefined()

If other temporal operations than @post(a,b) need to be introduced at a later point of
time, only disambiguating rule [1] has to be modified correspondingly. For instance,next()

might be introduced as a shortcut forpost(1,1), or post() without any parameters could be
the shortcut forpost(1,’inf’).

A corresponding extension to past temporal operations can be easily introduced, e.g., by
means of the operation namepre(). In the remainder, we only focus onFutureTemporal-
ExpCS. Note thatpre andpost as operation names cannot be mixed up with pre- and postcon-
dition labels or the @pre time marker, because operations require subsequent brackets.

TraceLiteralExpCS
Trace literal expressions are a special form of collection literal expressions, as they represent
sequences of explicitly specified configurations. In order to allow interval definitions for trace
specifications, we have to specify some new production rules. We first introduce a new chain
production rule to provide an alternative to common collection literal expressions.

[A] CollectionLiteralExpCS ::= CollectionTypeIdentifierCS
’{’ CollectionLiteralPartsCS? ’}’

[B] CollectionLiteralExpCS ::= TraceLiteralExpCS

Abstract Syntax Mapping:
CollectionLiteralExpCS : CollectionLiteralExp

168 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

Synthesized Attributes:
...
[B] CollectionLiteralExpCS.ast.parts = TraceLiteralExpCS.ast.parts
[B] CollectionLiteralExpCS.ast.kind = TraceLiteralExpCS.ast.kind

Inherited Attributes:
...
[B] TraceLiteralExpCS.env = CollectionLiteralExpCS.env

In syntax [A], CollectionTypeIdentifierCS distinguishes between literals for collections
(Set, OrderedSet, Sequence, andBag), and production ruleCollectionLiteralPartsCS
collects a number of expressions. Option [B] is added to provide a notation for traces. The
collection kind of traces isCollectionKind::Sequence by default, as specified below.

TraceLiteralExpCS ::= ’Trace’ ’{’ TraceLiteralPartsCS ’}’

Abstract Syntax Mapping:
TraceLiteralExpCS.ast : TraceLiteralExp

Synthesized Attributes:
TraceLiteralExpCS.ast.parts = TraceLiteralPartsCS.ast
TraceLiteralExpCS.ast.kind = CollectionKind::Sequence

Inherited Attributes:
TraceLiteralPartsCS.env = TraceLiteralExpCS.env

We here introduce the new keywordTrace to denote trace specifications, but note that no new
kind of collection type is necessary on the metalevel, as we treat traces simply as sequences.

TraceLiteralPartCS
The production ruleTraceLiteralPartsCS assembles the individual elements of a trace spec-
ification. It is defined correspondingly to the already existing production rule for collection
literal parts, such that definitions ofast andenv are left out for reasons of brevity.

TraceLiteralPartsCS[1] ::= TraceLiteralPartCS (’,’ TraceLiteralPartsCS[2])?

For each trace literal part, a timing interval may be associated, which specifies how long a
configuration is active. Intervals are of the syntactical form[a,b], with a evaluating to a non-
negative Integer, andb either a non-negative Integer withb ≥ a or the String ’inf’ (cf. well-
formedness rules ofTraceLiteralExp in Section 7.1.1). If only one delimiter is specified, this
is taken as the upper bound, and the lower time bound is implicitly set to zero. If no interval is
specified at all, the bounds are implicitly set to[0,’inf’]. The corresponding grammar rule
is as follows.

TraceLiteralPartCS ::= OclExpressionCS[1]
(’[’ (OclExpressionCS[2] ’,’)?

(OclExpressionCS[3] | ’inf’) ’]’
)?

Abstract Syntax Mapping:
TraceLiteralPartCS.ast : TraceLiteralPart

Synthesized Attributes:
TraceLiteralPartCS.ast.item = OclExpressionCS[1].ast

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 169

TraceLiteralPartCS.ast.lowerBound = if OclExpressionCS[2]->notEmpty() then
OclExpressionCS[2].ast

else
’0’

endif
TraceLiteralPartCS.ast.upperBound = if OclExpressionCS[3]->notEmpty() then

OclExpressionCS[3].ast
else
’inf’

endif
Inherited Attributes:

OclExpressionCS[1].env = TraceLiteralPartCS.env
OclExpressionCS[2].env = TraceLiteralPartCS.env
OclExpressionCS[3].env = TraceLiteralPartCS.env

CollectionTypeCS
To allow trace specifications as part of variable definitions and provide a means for explicit
typing on the concrete syntax level, we need to add a rule forexplicitreferencing to a type called
Trace. We therefore add an alternative production rule in the context ofcollectionTypeCS.

[A] collectionTypeCS ::= collectionTypeIdentifierCS ’(’ typeCS ’)’
[B] collectionTypeCS ::= ’Trace’

Abstract Syntax Mapping:
typeCS.ast : CollectionType

Synthesized Attributes:
...
[B] collectionTypeCS.ast.oclIsKindOf(SequenceType)
[B] collectionTypeCS.ast.elementType.oclIsKindOf(SetType)
[B] collectionTypeCS.ast.elementType.elementType.oclIsKindOf{OclState)

Inherited Attributes:
-- none for [B]

7.1.3 Standard Library Operations

In our previous work [FM02c], we introduced two new built-in types calledOclConfigura-

tion andOclPath on the M1 layer to handle temporal expressions. We present an alternative
approach that avoids to introduce new types and instead operates on the already existing OCL
collection types.

Configuration Operations. For configurations as a special form of sets of states, we have to
elaborate on operations applicable to sets that return collections since the resulting collection
can be an invalid configuration with an arbitrary set of states. Nevertheless, most of the existing
general collection operations [OMG03b, Section 11.7] can be directly applied to configurations.
These are:=,<>, size(), count(), isEmpty(), notEmpty(), includes(), includesAll(), excludes(),
and excludesAll(). In addition, iterator operations exists(), forAll(), any(), one() are applica-
ble as well [OMG03b, Section 11.9.1]. Other OCL set operations applied to configurations,

170 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

e.g., union() and intersection(), might result in arbitrary sets of states rather than in valid con-
figurations. We allow such operations, but explicitly mention that they have to be used with
care.

Trace Operations. Similar to configurations, many of the existing OCL sequence operations
can immediately be applied to traces of configurations. These operations are:=, <>, size(),
isEmpty(), notEmpty(), includes(), includesAll(), excludes(), excludesAll(), subSequence(),
prepend(), first(), at(), exists(), forAll(), any(), one(). Operations last() and append() can be
applied to traces of finite length only. Note that some sequence operations may result in invalid
traces, e.g., select() and collect().

Additional Operations for OclAny. We introduce an operationoclInConf() that checks
for an active configuration. Given a system stateσ(M), an objectoid ∈ ΣCLASS,c, and a set of
statescfg ∈ Itype(Set(OclState)), the semantics of operationoclInConf() is then defined by
function

I[[oclInConf : OclAny × Set(OclState) → Boolean]](oid, cfg)
def
=

true, if oid ∈ ΣACTIV E,c ∧ cfg ∈ Bc

∧ cfg = σCONF,c(oid),

false, if oid ∈ ΣACTIV E,c ∧ cfg ∈ Bc

∧ cfg 6= σCONF,c(oid),

⊥, if oid 6∈ ΣACTIV E,c ∨ cfg =⊥
∨ (oid ∈ ΣACTIV E,c ∧ cfg 6∈ Bc ∪ {⊥}).

In the definition above,Bc denotes the set of basic configurations of State DiagramSCc

(based on Definition 4.14). The definition does not consider underspecified configurations
as discussed in Subsection 7.1.1. We here only describe the idea how to achieve the com-
plete formal semantics. First, we additionally define the setUnderSpecifiedc of valid un-
derspecified configurations for a given State DiagramSCc. Then, we provide a mapping
basicConfsc : UnderSpecifiedc → Bc that gives for each underspecified configuration the
corresponding set of basic configurations. Finally, the conditions of the formal semantics are
adjusted, e.g.,UnderSpecifiedc replacesBc and conditioncfg = σCONF,c(oid) is replaced by
the condition∀b ∈ basicConfsc(cfg) : b ∈ σCONF,c(oid).

We also introduce operationpost(a,b) as a new temporal operation ofOclAny and allow
the @-operator to be used only for such temporal operations. @post(a,b) returnsa set of
possible future tracesin the interval [a,b]. First, all possible traces that start with the current
configuration are regarded, and then the timing interval [a,b] determines the subtraces that have
to be returned by the operation. The result has to be aset of traces, as there are typically
different orders of executions possible in the future steps of a State Diagram. Note that in an
actual execution of a State Diagram there is of course only exactly one of the possible traces
selected. An informal semantics ofpost(a,b) is given as follows.

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 171

OclAny.post(a:Integer,b:OclAny) : Set(Sequence(Set(OclState)))
pre: a >= 0 and ((b.oclIsTypeOf(Integer) and b >= a) or

(b.oclIsTypeOf(String) and b = ’inf’))

-- The operation returns a set of possible future state configuration traces
-- in the interval [a,b] including the configurations of time points a and b.

Additional operations, such as @post(a:Integer) or @next(), can be easily added
[FM02c]. These are operations basically derived from @post(a,b).

7.1.4 Semantics of Temporal Expressions

In this subsection, we define a formal semantics of operationpost(a,b). We make use of the

nested collection typeTRACE
def
= Sequence(Set(OclState)).

When UML State Diagrams are equipped with time, system state traces as given by Defi-
nition 4.17 must be extended to capture timing information as well. In this context, theUML
Profile for Scheduling, Performance and Timeprovides a variety of timing concepts [OMG03c,
Chapter 5]. In particular, timing mechanisms by means of a stereotype� RTclock� can be
introduced together with appropriate tagged values, e.g.,RTresolution. Progress of time is
usually measured by counting the number of expired cycles of a strictly periodicreference clock.
This results in a discretization of time, i.e., distinct physical instants might be associated with
the same clock instant when they are temporally ‘too close’ to each other. Therefore, a sufficient
resolution of the reference clock must be chosen for the particular model under investigation.

We assume in the following that a system-wide reference clock is defined together with a
known resolution. The duration between two time instants is referred to as onetime unit. This
leads to an Integer-based notion of unit time delay, i.e., each time instant can be represented by
an Integer value (in contrast to dense time, where time instants are represented by Real values).
A trace in such a timed model is then defined as follows.

Definition 7.1 (Time-based Trace)
A time-based tracefor an instantiation of an extended object modelM is an (infinite) sequence
of system states,

trace(M)
def
= 〈〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . . 〉〉,

where eachσ(M)[i], i ∈ N0, represents the system statei time units after start of execution. In
particular,σ(M)[0] denotes the initial system state.

Note that we still require the same properties as in common traces, in particular, only one
operation call per object is permitted in consecutive elements of the trace. This can be guaran-
teed by assuming that execution of an operation takes at least one time unit. System states of
time-based traces can be compared toclocked statesof runsfor Interval Structures as described
in Section 3.3 and Table 3.5. We describe the corresponding semantic mapping in Subsection
7.1.4.

Given a system stateσ(M)[i] at time instanti, an objectoid ∈ ΣCLASS,c, an integer value
a ∈ Itype(Integer), and a valueb ∈ Itype(Integer) ∪ {∞}. For parameterb, we assume here

172 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

that the string ‘inf’ defined in the concrete syntax is directly mapped to∞. For the symbol∞,
it holds that

∀i ∈ N0 : i <∞ ∧ i+∞ = ∞ ∧ i−∞ = ∞.

A tracetraceoid,a,b [i] ∈ Itype(TRACE)) for objectoid that starts at timei + a and ends at
time i+ b− a is then defined by

traceoid,a,b [i]
def
= 〈cfg0, . . . , cfgb−a〉, where ∀j ∈ {0, . . . , b− a} : cfgj ∈ σCONF (oid)[i+j].

Eachtraceoid,a,b [i] is interpreted as apossiblefuture execution path. It is just a possible
trace, as is is not determined at timei whethercfgj, j ∈ {1, . . . , b − a}, will be reached at the
later point of timei+ j.

In the case thatb = ∞, a tracetraceoid,a,b [i] is of infinite length. An explicit instantiation
of such traces as part of the model is therefore not intended. However, it is possible to give
corresponding formal specifications by means of temporal logics, as illustrated below. Temporal
logics specifications can then be directly used by model checkers.

Denoting the set of all possible future execution paths by{traceoid,a,b [i]}, the semantics of
operationpost(a,b) is then defined by

I[[post : OclAny × Integer ×OclAny → Set(TRACE)]](oid, a, b)
def
=

{ traceoid,a,b [i] }, if oid ∈ ΣACTIV E,c

∧ a ≥ 0 ∧ b ≥ a,

⊥, if oid 6∈ ΣACTIV E,c,

⊥, if a < 0 ∨ a = ⊥
∨ b < a ∨ b = ⊥ .

7.2 Expressing Specification Patterns

In this section, we demonstrate how to express patterns of the pattern system presented in Sec-
tion 3.2.2 by means of our temporal state-oriented OCL extension.

It turns out that only some minor extensions are necessary to cover all property patterns.
Firstly, a new operation needs to be introduced that is particularly applicable to traces, i.e., op-
erationstartsWith(Sequence(Set(OclState)):Boolean that checks for a matching sub-
sequence of configurations. And secondly, specification means for trace literal parts have to be
extended. A trace literal part becomes a logical expression with configurations as operands and
unary and binary operators (such asnot, and, or) as connectives.

We here take the absence pattern as an example and provide corresponding temporal OCL
expressions in Table 7.1. To understand the OCL expressions in that table, we informally ex-
plain their semantics in the remainder.

We apply the patterns in terms ofstate configurations, i.e., the set of states that uniquely
determines the currently active states in a UML State Diagram. Consequently, in contrast to the
original patterns,P, Q, andR denote configurations in the remainder. Nevertheless, note that in
the simplest case a configuration consists of one state. As configurations uniquely determine

7.2. EXPRESSING SPECIFICATION PATTERNS 173

Table 7.1: OCL Expressions for Absence Pattern (Assumptions implicitly as in Table 3.2)

P is false. . .

. . . globally inv: not self.oclInConf(P)

. . . beforeR init: self@post()->forAll(g | g->startsWith(Sequence{not P, R}))

. . . afterQ inv: self.oclInConf(Q) implies self@post()->forAll(g | g->excludes(P))

. . . betweenQ andR
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not P, R}))

. . . afterQ until R
inv: self.oclInConf(Q) implies

not self@post()->exists(g | g->startsWith(Sequence{not R, P}))

the current state-related status of an object, conditions of form ‘P and not Q’ are equal to the
simple formula ’P’, as two distinct configurations of a State Diagram can by definition never
occur at the same time.

The following concepts and operations have been newly introduced to OCL to be able to
express the specification patterns. Note that we keep compliant with the existing standard OCL
syntax and reuse as often as possible existing collection operations likeforAll(), exists(),
includes(), andexcludes().

1. The only state-related operation of the current OCL standard as well as the new OCL
2.0 specification is calledoclInState(s:OclState). It is defined over objects of user-
defined classes that have an associated State Diagram. OperationoclInState(s:Ocl-

State) returns true if states is currently active.

Additionally, we define and make use of operationoclInConf(c:Set(OclState)) for
State Diagram configurations. This operation returns true if the object is in configuration
c at time of evaluation.

2. In addition to OCL invariants declared by the keywordinv, we introduce a new clause
calledinit. In contrast to an invariant over an objectobj that has to hold each time after
obj’s status has changed, the expression of aninit-clause has to hold only at the starting
point of execution. Nevertheless, note that the expression of theinit-clause may be a
temporal OCL expression.

3. Temporal OCL expressions are a new concept introduced to enable specification of dy-
namic, behavioral constraints. In our approach, temporal OCL expressions make use of a
specialtemporal operationwith signaturepost(a:Integer,b:OclAny). To further em-
phasize that this is a temporal operation, we make use of a leading separator@ instead of
the common dot-notation. The operation can be applied to objects of user-defined classes
that have an associated State Diagram.

When@post(a,b) is evaluated at a certain point of timet, we obtain the set of possi-
ble configuration sequences in the timing interval[t+a,t+b]. If parametersa andb are
omitted, we seta = 1 andb = ’inf’ (short for infinity to cover infinite future execu-
tions).

174 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

4. We have defined an extended syntax for explicit specification of configuration sequences.
This syntax is particularly tailored to the needs for formulating general execution paths
that may be subject to some additional conditions. Basically, we allow that logical unary
and binary operators such as ‘not’, ‘ and’, ‘ or’ are applied to sequence elements [FM02c].
For the real-time domain, we also allow explicit timing intervals in this context, but note
that these are not required for the general patterns we investigate in this thesis. E.g., the
sequence specification

Sequence{ not P [1,100], P [1,’inf’], Q }

means that configurationP must not be true until within 100 time units configurationP is
reached, and afterwards configurationQ must eventually become true. When the timing
interval for one of the firstn − 1 sequence elements is left out, it is implicitly set to
[1,’inf’], but note that consecutive configuration specifications must still eventually
become true (so-calledstrong untilsemantics).

5. We newly introduce the boolean operationstartsWith(g:Sequence(T)), which can be
applied to sequences of objects of some typeT. That operation checks whether a given
sequence starts with a sequence specified by parameterg.

In particular, whenT is equal to typeSet(OclState) and the elements ofT denote state
configurations, we can make use of operationstartsWith() to formulate restrictions
over State Diagram execution paths, using the syntax for configuration sequences as il-
lustrated under item 4.

Using operationstartsWith() is similar to selecting a subsequence with the standard
OCL operationsubSequence(a:Integer,b:Integer) and then matching the extracted
subsequence withg. But unfortunately, we cannot a priori provide an upper boundb from
our particular viewpoint of possibly infinite execution runs, such that we cannot make use
of existing OCL operations.

For the sake of completeness, Tables D.1, D.2, D.3, and D.4 in Appendix D provide corre-
sponding temporal OCL expressions for the other main property specification patterns.

Expressing Assumptions with OCL. To capture the additional assumptions we make con-
cerning the occurrence of scope delimiters, different approaches are imaginable. One idea uses
only standard OCL language concepts. The expression

if <assumption> then
<pattern>

else
OclUndefined

endif

makes use of the three-valued logic of OCL that includesOclUndefined as the third logical
value. For example, the complete OCL invariant for pattern ‘P is false after Q’ is defined
as follows.

7.3. MAPPING TO THE TEMPORAL LOGICS CCTL 175

inv: if @post()->forAll(g | g->includes(Q)) then
self.oclInConf(Q)
implies
self@post()->forAll(g | g->excludes(P))

else
OclUndefined

endif

Note that OCL has a three-valued logic, i.e., OCL type Boolean actually comprises the
valuestrue, false, andOclUndefined. In the expression above,OclUndefined is returned
when the if-condition does not hold. Unfortunately, such an expression cannot directly be
mapped to a temporal logic like CTL or LTL due to a missing third logical value.

Another idea is to extend OCL and introduce a dedicated new clause, e.g., namedassume,
to express an assumption in the same manner as a precondition of an operation. For instance,
the assumption ‘R becomes true on all paths’ can then be expressed by

assume: @post()->forAll(g | g->includes(R)) .

Similarly, it has already been suggested by other authors to introduce means to formulateexcep-
tionswith OCL, such that undesired situations can be specified [SF99] and dealt with [SS01].
We can make use of such an approach to specify a corresponding exception for each assump-
tion simply by negating the assumption expression. When the exception evaluates to true, the
assumption does not hold, and the respective pattern cannot be validated.

The advantage of this approach is that such assumption and exception expressions can di-
rectly be mapped to temporal logic formulae for further usage in verification tools.

7.3 Mapping to the Temporal Logics CCTL

In this section, we provide a mapping from instances ofFutureTemporalExpCS to tempo-
ral logics formulae. We here concentrate on CCTL as described in Subsection 3.3, but it is
also possible to derive similar mappings to other future-oriented temporal logic formulae, e.g.,
dense-time TCTL or timed LTL formulae. The mapping of temporal OCL constraints to tem-
poral logics depends on the formal underlying model. As we consider I/O-Interval Structures
as the formal model in the context of this thesis, we map temporal OCL constraints to the cor-
responding temporal logics CCTL. The relation of CCTL and I/O-Interval Structures is defined
by a satisfaction relation that is described in Section 3.6.2 on page 77.

Representation of OCL states in CCTL. For a state specification in OCL, a corresponding
representation of that state in CCTL has to be given. In this context, we have to consider how
anactivatedOCL state of a State Diagram is represented in I/O-Interval Structures. Recall that
composite OCL statess of objectsobjectId are translated into separate I/O-Interval Struc-
turesISobjId,s (or, in RIL syntax,IS [[objId]] [[s]], respectively) (cf. Section 5.4.1.1) and
that an additional internal boolean variable calledactivatedis introduced to that I/O-Interval
Structure to indicate whether the composite state is currently activated or not.

Given a state specificationstateName for an objectobjId within an OCL expression, the
corresponding CCTL formula is

176 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

((IS_[[objId]]_[[parent(stateName)]].state = [[stateName]])
& (IS_[[objId]]_[[parent(stateName)]].activated = true)) .

In this formula, [[parent(stateName)]] denotes the direct composite superstate of
stateName. If [[parent(stateName)]] is the topmost state, this is the corresponding class
name ofobjId.

A complete state configuration is then built by conjunction of all corresponding CCTL state
formulae.

Mapping of Temporal OCL Expressions. By definition, OCL invariants for a given class
must be true for all its instances at any time [OMG03b, Section 7.3.3]. In the context of (time-
based) traces, this means that the invariant expression must be true on all possible traces at
each position. Consequently, corresponding CCTL formulae have to start with theAG operator
(‘On All pathsGlobally’), i.e., the expression followingAG must be true on all possible future
execution paths at all times.

Table 7.2 lists OCL operations that directly match to CCTL expressions. In that table,expr

denotes a Boolean OCL expression.cctlExpr is the equivalent Boolean expression in CCTL
syntax. cfg denotes a valid configuration andcctlCfg is the corresponding set of states in
CCTL syntax.p andc are iterator variables for traces and configurations, respectively.

Consider, for example, the last row of Table 7.2. When taking the particular interval
[1,100] and a configuration from Figure 7.1 forcfg, the resulting OCL expression is:

inv: obj@post(1,100)->forAll(trace | trace->includes(Set{X::A::L,X::B::N}))

We read that formula as: At any time, given the current configuration of the State Diagram
associated to objectobj, all future tracesp starting from the current configuration reach –
at a certain point of time within the next 100 time units – the configuration represented by
Set{X::A::L,X::B::N}.

Note that with the CCTL formulae of Table 7.2 we can only investigate models with ‘persis-
tent’ active objects, i.e., corresponding objects must exist from the initial system state onwards
during the complete execution time. Otherwise, we have to determine the maximal number of
created objects for a modelin advance. Only then we are able to build a corresponding set of
communicating finite state machines by means of I/O-Interval Structures for each object.

Dynamic object creation and deletion is not addressed in this work. However, an idea to rep-
resent this feature is to introduce additional variables within the according I/O-Interval Struc-
tures, e.g., by a Boolean variableobj1.isAlive for an objectobj1. The value of that variable
is then additionally checked in the CCTL formulae of the mapping. E.g., in the example above,
the resulting CCTL formula is

AG(obj1.isAlive →
A(obj1.isAlive U[1,100]

(!obj1.isAlive | (obj1.isAlive &

obj1.S X A = L &

obj1.S X B = N)

)))

7.4. TEMPORAL OCL QUERIES 177

For mapping trace literal expressions, lete1, e2, . . . , en be the trace literal parts of
TraceLiteralExpCS with timing intervals [ai, bi], 1 ≤ i ≤ n − 1. The temporal OCL ex-
pression

inv: obj@post(a,b)-> includes (Sequence{e1[a1, b1], e2[a2, b2], . . . , en})

maps to CCTL applying thestrong untiltemporal operator (i.e.,expr1 U[a,b] expr2 requires that
expr1 must be true betweena andb time units untilexpr2 becomes true) as follows:

AG[a,b] EF(E(e1 U[a1,b1] E(e2 U[a2,b2] E(... E(en−1 U[an−1,bn−1] en)...))))

Note here that the path quantifier, which is applied to each sequence element, depends on the
preceding operations. Though we have given only some examples here, more complex formulae
can be easily derived from the above.

Table 7.2 lists temporal OCL operations that directly match to CCTL expressions. In that
table,expr is an OCL expression andconfiguration is a set of OCL states that denote a state
configuration. The table gives a translation by templates and can easily be applied to form more
complex expressions as well.

Table 7.2: Mapping Temporal OCL Expressions to CCTL Formulae

Temporal OCL Expression CCTL Formula

inv: obj@post(a,b)→exists(p| p→forAll(c | expr)) AG EG[a,b](cctlExpr)

inv: obj@post(a,b)→exists(p| p→exists(c| expr)) AG EF[a,b](cctlExpr)

inv: obj@post(a,b)→exists(p| p→includes(cfg)) AG EF[a,b](cctlCfg)

inv: obj@post(a,b)→forAll(p | p→forAll(c | expr)) AG AG[a,b](cctlExpr)

inv: obj@post(a,b)→forAll(p | p→exists(c| expr)) AG AF[a,b](cctlExpr)

inv: obj@post(a,b)→forAll(p | p→includes(cfg)) AG AF[a,b](cctlCfg)

7.4 Temporal OCL Queries

Corresponding to the recently introduced notion of OCL 2.0 as a general expression and query
language, we can also investigate objects in a model under the aspects of execution times needed
(at least or at most) to get from one configuration to another. We here only provide an informal
description of the proposed OCL operations. They can directly be mapped to the corresponding
RAVEN analysis queries presented in Section 3.6.3.

OclAny::minStableTime(cfg:Set(OclState)) : Integer
-- Returns the minimal time during which the corresponding State Diagram remains
-- in the given configuration cfg.
-- Returns 0 if never configuration cfg is never entered.
-- Returns OclUndefined if the configuration is entered only once at remains
-- forever in that configuration.

178 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

This operation refers to the RAVEN analysis queryMIN STABLE TIME OF (x), wherex
represents the state configurationcfg in CCTL syntax. For maximal stable times, the operation
signature is very similar:

OclAny::maxStableTime(cfg:Set(OclState)):Integer
-- Returns the maximal time during which the corresponding State Diagram remains
-- in the given configuration cfg.
-- Returns 0 if the configuration is never entered.
-- Returns OclUndefined if the State Diagram can remain infinitely long in the
-- configuration cfg.

Finally, the two following operations represent analysis queries that extract the minimal
and maximal transition times between two configurations. Again, they can directly be mapped
to RAVEN analysis queries of the formMIN TIME OF FROM (x) TO (y) andMAX TIME OF

FROM (x) TO (y), respectively.

OclAny::minTransitionTime(cfg1:Set(OclState), cfg2:Set(OclState)) : Integer
-- Returns the minimal time of getting from configuration cfg1 to configuration
-- cfg2.
-- Returns 0 if the configuration cfg1 is never entered.
-- Returns OclUndefined if configuration cfg2 is never entered.

OclAny::maxTransitionTime(cfg1:Set(OclState), cfg2:Set(OclState)) : Integer
-- Returns the maximal time of getting from configuration cfg1 to configuration
-- cfg2.
-- Returns 0 if the configuration cfg1 is never entered.
-- Returns OclUndefined if configuration cfg2 is never entered.

7.5 Related Work

In this section, we give an overview on proposals that either extend OCL to enable spec-
ification of temporal constraints or find another way to express real-time constraints in the
context of UML. A more detailed comparison of temporal OCL extensions can be found in
[FM02e, Fla03b].

Ramakrishnan et al. [RM99, RM00] extend OCL by additional rules with unary and binary
temporal operators, e.g.,always andnever to specify safety and liveness properties. A very
similar approach in the area of business modeling that also considers past temporal operators is
published by Conrad and Turowski [CT00, CT01]. However, general user-defined operations
are allowed in the temporal expressions of these works, whereas in standard OCL, only query
operations may be used. Moreover, the resulting syntax of these works does not combine well
with standard OCL, as temporal expressions appear to be similar to temporal logics formulae.

Kleppe and Warmer [KW00] introduce a so-called action clause to OCL. Basically, ac-
tion clauses enable modelers to specify required (synchronous or asynchronous) executions of
operations or dispatching of events. Similarly, the OCL 2.0 specification introduces message
expressions [OMG03b].

Distefano et al. [DKR00] define BOTL (Object-Based Temporal Logic) in order to facili-
tate the specification of static and dynamic properties. BOTL is not directly an extension of

7.5. RELATED WORK 179

OCL; it rather maps a subset of OCL into object-oriented Computational Tree Logic (CTL).
Syntactically, BOTL looks very similar to temporal logics formulae in common CTL.

Bradfield et al. [BKS02] extend OCL by useful causality-based templates for dynamic con-
straints. Basically, a template consists of clauses, the cause and the consequence. The cause
clause starts with the keywordafter, followed by a boolean expression, while the consequence
is one ofeventually, immediately, infinitelyetc., followed by an OCL expression. The templates
are formally defined by a mapping into observational mu-calculus, a two-level temporal logic,
using OCL as the lower level logic.

Ziemann and Gogolla [ZG02, ZG03] present an OCL extension, in which future-oriented
temporal development of attribute values and existence of objects and links can be restricted.
Similar to other approaches, temporal operators likealways, next, andsometime are intro-
duced. For defining a formal semantics, they build upon the set-theoretic OCL semantics de-
veloped by Richters [Ric01] and definetraces, i.e., sequences of system states. Such a trace
employs a high-level notion of the development of a running system with only that information
which is necessary to evaluate OCL expressions.

Note that none of the approaches mentioned so far considers real-time constraints. Besides
the rudimentary and informal UML modeling elements described in Subsection 2.4 (in par-
ticular, time expressions attached as comments without semantics), we know of the following
approaches.

The work presented by Roubtsova et al. [RvTdR01, RT01] defines a UML profile with
stereotyped classes for dense time as well as parameterized specification templates for dead-
lines, counters, and state sequences. Each of these templates has a structural-equivalent dense-
time temporal logics formula in TCTL (Timed Computation Tree Logic). Roubtsova et al. do
not extend OCL on purpose, as they argue that”. . . OCL has no path notion. Any extension of
OCL to present properties of computation paths breaks the idea of the language and makes it
eclectic”. In contrast to this, we think that the notion of execution paths can be introduced to
OCL, as shown in the next sections.

Sendall and Strohmeier [SS01, SS02b] introduce timing constraints on state transitions in
the context of a restricted form of UML protocol statemachines called SIP (System Interface
Protocol). A SIP defines the temporal ordering between operations. Five time-based attributes
on state transitions are proposed, e.g., (absolute) completion time, duration time or frequency of
state transitions. Using these attributes, one can then relate actions to timing constraint failures
in an extended form of transition condition (or, in UML terms: transition guard).

Cengarle and Knapp [CK02] present OCL/RT, a temporal extension of OCL with modal
operatorsalways andsometime over event occurrences. These can be used for specifying
deadlines and timeouts of operations and reactions on received signals. On the metamodel,
events are equipped with time stamps by introducing a metaclassTime with attributenow to
refer to the time unit at which an event occurs. In turn, each instance can access the set of
current associated events at each point of time, i.e., at eachsystem state.

Table 7.3 lists the mentioned approaches. The last row of Table 7.3 refers to publications
this thesis is based upon.

Those approaches, for which a formal semantics is provided, all have formal verification
by model checking in mind. Formal verification by theorem proving using OCL is investigated
in the KeY project. That approach aims to facilitate the use of formal verification for software

180 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

Table 7.3: Temporal OCL Extensions and Real-Time Specification

Approach Syntax Formal Semantics Real-Time

Ramakrishnan et al. [RM99] OCL + temp. operators – no

Conrad/Turowski [CT00, CT01] OCL + temp. operators – no

Kleppe/Warmer [KW00] OCL + action clause – no

Distefano et al. [DKR00] CTL + OCL subset BOTL no

Bradfield et al. [BKS02] OCL + template clauses Observational
mu-calculus

no

Ziemann/Gogolla [ZG02, ZG03] OCL + temp. operators Trace semantics no

Roubtsova et al.
[RvTdR01, RT01]

Stereotyped classes TCTL yes

Sendall/Strohmeier [SS01] OCL consistent – yes

Cengarle/Knapp [CK02] OCL + temp. operators Trace semantics yes

Flake/Mueller [FM02c, FM02d] OCL consistent CCTL yes

specifications [ABB+00]. Here, OCL is applied without modifications to specify constraints on
design patterns. As standard OCL currently has no formal semantics, this approach translates
OCL specifications to dynamic logic (DL), an extension of Hoare logic [Hoa69]. DL is used as
input for formal verification by theorem proving.

7.6 Implementation

The temporal extensions as presented here are integrated into a prototype OCL parser and type
checker (see Figure 7.4). The checker is implemented in Java 1.3 using Swing components. The
visual capture loads and edits OCL types, model descriptions, and OCL constraints in parallel.
The parsers are implemented with JavaCC3 based on an early implementation of OCL Version
1.1 [War97]. Correctly parsed types are integrated into type tree structures. Class models and
State Diagrams are currently modeled by textual means. For this, we have implemented a
system to parse textual descriptions of class models and State Diagrams.

7.7 Contributions of the Chapter

This chapter provides the following contributions:

• A UML Profile for an extension of OCL is developed that allows to specify state-oriented
real-time constraints. The profile builts upon the OCL 2.0 metamodel. Existing OCL
concepts, such as invariants, sets, sequences, states, are re-used whenever possible. This
meets Requirement 7.1.

3http:www.webgain.com

7.7. CONTRIBUTIONS OF THE CHAPTER 181

Figure 7.4: OCL Parser and Type Checker

Syntactically, the temporal OCL extension builts upon the concrete syntax of the OCL
2.0 specification. Semantically, the main new concept is the temporal expression that is
modeled as a special kind of operation call.

• A separate section illustrates that the proposed OCL extension has the expressive power
to express all kinds of specifications that are regarded as relevant in practice, based upon
the specification pattern library by Dwyer et al. [DAC98a]. This meets Requirement 7.2.

• The semantics of state-oriented real-time OCL expressions is defined by means of a high-
level time-based trace semantics. This conforms to Requirement 7.3.

Additionally, a mapping of state-oriented real-time constraints to formulae of the time-
annotated temporal logics CCTL is given. The CCTL formulas are built w.r.t. the mapping
of timed UML State Diagrams to I/O-Interval Structures as presented in Section 5.4

• Some new useful OCL operations are proposed, in particular operations that reason about
minimal and maximal times between state configurations.

For further application, these operations can directly be mapped and applied in the model
checker RAVEN.

182 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

Chapter 8

Manufacturing Case Study

The oldest, shortest words – yes and no –
are those which require the most thought.

– Pythagoras

This chapter addresses the translation of an MFERT model in the context of the manufacturing
case study that has been presented in Section 1.2. We focus on early stages of system devel-
opment and abstract from specific implementation issues, such as bidding among stations and
AGVs (Automated Guided Vehicles) to select the most appropriate AGV for a transport. Re-
call that the formal MFERT model as presented in Chapter 6 represents production elements
(i.e., material and resources) as data elements within PENs (Production Element Nodes) and
PPNs (Production Process Nodes), such that production elements, e.g., AGVs, do not have an
own thread of control in the context of MFERT.1 The MFERT model presented in this chapter
focuses on the time-constrained production progress of PPNs, and we abstract from

• the grid of positions along which the AGVs are moving,

• the bidding scheme that determines the most appropriate AGV for a transport, and

• unique identifiers for production items and resources.

One effect of these abstractions is that we cannot reason about the time a specific production
item, e.g., an engine, needs from entering the manufacturing system until it is fully processed.
In subsequent stages of system development, such parameters have to be included in the model,
but formal analysis and verification then of course becomes more complex, if not too com-
plex for formal verification tools like model checkers. Experiences with MFERT models and
I/O-Interval Structures that also capture information about the grid positions are described in
[DDF+02, Ruf02]. Those works focus on the specification and verification of models that guar-
antee collision-free AGV movements in the context of the case study.

1In contrast, the holonic manufacturing systems (HMS) approach [WHS94] interprets AGVs – among other
parts of manufacturing systems – asholons. Holons are originally seen as autonomous and cooperative entities
with fixed rules and flexible strategies [Koe67]. In the HMS approach, holons are redefined to be autonomous and
cooperative production units consisting of a software-based information processing component and a physical part
[Dee03].

183

184 CHAPTER 8. MANUFACTURING CASE STUDY

Nevertheless, the MFERT model presented in the remainder makes use of the timed State
Diagram notation of Chapter 5 and is appropriate to demonstrate the applicability of the time-
bounded state-oriented OCL extension of Chapter 7. The remainder of this chapter is divided
into two sections. In Subsection 8.1, the case study-based MFERT model is shown and its trans-
lation to I/O-Interval Structures is outlined. Though the translation has been performed by hand,
the provided code should demonstrate that an automated translation is possible. In this context,
a graphical MFERT editor has recently been developed that maps very similar MFERT models
to I/O-Interval Structures [Zab03] (see also Section 6.3.5). In that tool, PPNs are specified as fi-
nite state machines by means of rule tables. The tool is mainly used for simulation and analysis
purposes, and property specification means to support formal verification by model checking
have still to be integrated. Subsection 8.2 then presents some typical constraints expressed by
time-bounded state-oriented OCL invariants. In each case, a corresponding CCTL formula is
given that has been verified over the I/O-Interval Structures outlined in Subsection 8.1.

8.1 The MFERT Model

Though the timed State Diagram variant that has been presented in Chapter 5 is employed for
modeling the timed behavior of PPNs, the general mapping to I/O-Interval Structures is simpli-
fied here w.r.t. the input queues of waiting signals and operations. This can be done because of
the syntactical restrictions in MFERT models, i.e., the bipartite structure that demands that all
nodes a PPN communicates with are PENs. PENs, in turn, immediately process their incoming
messages synchronously in a reactive manner (cf. the semantics defined in Sections 6.3.2 and
6.3.4), such that corresponding replies are sent back to PPNs in the next time step. When PPNs
determine their next actions based on these replies, they ‘know’ what incoming messages to
wait for. I.e., all communications between PPNs and PENs take place as a pair of a request and
a corresponding reply (which is either a grant for access or denial). This allows to omit explicit
input queues in the I/O-Interval Structures of MFERT models.2

Many parts of the mapping of MFERT nodes to I/O-Interval Structures result in very similar
RIL code (RAVEN Input Language code), such that we only list the code of representative (parts
of) I/O Interval Structures here. For example, the PPNs forSupplyingEngines, Milling,
Drilling, andWashing mainly differ in the times that represent the processing of an item,
such that it is sufficient to describe one PPN, e.g.,SupplyingEngines, in more detail. Figure
8.1 shows those parts of the MFERT model that are further regarded in the remainder. That
figure is an excerpt of the MFERT graph shown in Chapter 6 on page 146, but note that PENs
are now annotated with

• concrete values for their shifting intervals,

• the size of input and output sequences, and

• initial values when appropriate.

2However, in other modeling domains, the input queue of the timed UML State Diagram variant is essential.
For example, the compositional verification approach of real-time UML designs published in [BFG+03] could
already make use of this work in the context of a shuttle railway system.

8.1. THE MFERT MODEL 185

AGVs
Tags:

time:= 1
inputCapacity:=3
outputCapacity:=3

Milling EnginesAfterMill
Tags:

time:= 5
inputCapacity:=1
outputCapacity:=3

TransportingToDrill

TransportingToWash

TransportingToOutput

SupplyingEngines

EnginesSupplied
Tags:

time:= 1
inputCapacity:=1
outputCapacity:=1

EnginessBeforeMill
Tags:

time:= 5
inputCapacity:=1
outputCapacity:=3

TransportingToMill

<<Declaration>>

outputSequence := Sequence{agv1,agv2,agv3}

[1,1] putEngine()

Figure 8.1: Selected Parts of the MFERT Graph of the Case Study (cf. Figure 6.1)

For example, PENAGVs is initialized with 3 AGVs available for transports. If not explicitly
specified, the sequences of PENs are initially empty by default. Moreover, the operations on
PPNSupplyingEngines are shown, but operations of the other PPNs are hidden to remain
concise.

PPNs to Process Items. First of all, PPNSupplyingEngines is used as a generator to fill
the PENEnginesSupplied each time a production item is taken out of the output sequence of
that PEN, i.e., the input storage that keeps the items that are to be processed will never become
empty. The corresponding timed State Diagram is shown in Figure 8.2 and the RIL code of the
I/O-Interval Structure that is derived from that State Diagram is shown below. Note that due
to the simple structure of the State Diagram there is no need to take care about activation and
deactivation of composite substates. We also abstract from a timed activity to physically get an

186 CHAPTER 8. MANUFACTURING CASE STUDY

SupplyingEngines

Unloading

Empty
Getting

Reloading

do/ RawEngines.requestGetEngine()

do/ EnginesSupplied.requestPutEngine()do/ putEngine()

Figure 8.2: PPN SupplyingEngines

item from PENRawEngines, i.e., after an acknowledgement byRawEngines.ackGetEngine,
we immediately shift that item to the subsequent PEN. The activity to physically put an item
into the input sequence of the subsequent PENEnginesSupplied is assumed to be performed
in one time unit. The synchronous UML operation calls to the surrounding PENsRawEngines

andEnginesSupplied are mapped to request signals and corresponding reply signals in the
I/O-Interval Structure, as shown below.

MODULE SupplyingEngines
SIGNAL
state : { empty getting reloading unloading }

INPUT
ackGetEngine := RawEngines.ackGetEngine
ackPutEngine := EnginesSupplied.ackPutEngine

DEFINES
requestGetEngine := (state==getting)
requestPutEngine := (state==reloading)

INIT
(state==empty)

TRANS
|- (state==empty) -- --> state:=getting
|- (state==getting) -- ackGetEngine --> state:=reloading

!-> state:=getting
|- (state==reloading) -- ackPutEngine --> state:=unloading

!-> state:=reloading
|- (state==unloading) -- :1 --> state:=empty

END

PPNsMilling, Drilling, andWashing are modeled in a very similar way, such that the
resulting I/O-Interval Structures do not differ much from the one shown above. The main dif-
ference is an additional state calledworking. That additional state is equipped with an activity
to model the time to physically process (e.g., wash) the current item.

Transporting PPNs. A State Diagram for PPNTransportingToMill is shown in Figure
8.3. It basically consists of a chain of activities to perform – such a PPN is thus controlling the
time-dependent activities of an AGV object. The activities are initiated by operation calls and
refer to the occupied AGV, such asmove(), load(), andunload(). Recall that we allow to

8.1. THE MFERT MODEL 187

TransportingToMill

Requesting

do/ load()

MovingToLoad

Loading
MovingToUnload

Unloading

do/ unload()

do/ move()

do/ move()

Performing

do/ EnginesSupplied.requestGetEngine()

TransportingToMill

[10,20] unload()
[10,20] load()
[20,50] move()

Idle

do/ EnginesBeforeMill.requestPutEngine()

GettingAGV

do/ AGVs.getAGV()

Figure 8.3: PPN TransportingToMill and its State Diagram

associate (estimated) execution times to these operations (see the PPN on top of Figure 8.3 and
also consider Figure 5.1 on page 117). These timing specifications depend on the machines and
the physical topology of the manufacturing system, such as the speed of the machines/AGVs
to process/transport an item and the distances between the stations to deliver items. In the case
study example, activities initiated by operationsload() andunload() take between 10 and 20
time units, while the activity initiated bymove() take between 20 and 50 time units, depending
on the distances and the need of detours to avoid collisions.

According to the translation in Section 5.4, the composite substatePerforming is get-
ting an own I/O-Interval Structure and the interlevel transitions must be coordinated among
the two I/O-Interval Structures to be generated. For our mapping, lettr1 be the name of
the transition with source stateRequesting and target stateGettingAGV, and lettr2 denote
the transition with source stateUnloading and target stateIdle. The outermost state named
after its PPNTransportingToMill comprises the three direct substatesidle, requesting,
andperforming. When entering theperforming state, output signalexecuted tr1 is set
to indicate that the I/O-Interval Structure that models the substatePerforming has to be
‘activated’, i.e., the according internal variableactivated has to be set to true. In turn,
TransportingToMill leaves its stateperforming, when the input signalfire tr2 be-
comes true. That signal is initiated by the I/O-Interval Structure that models composite state
Performing.

188 CHAPTER 8. MANUFACTURING CASE STUDY

MODULE TransportingToMill
SIGNAL
state : { idle requesting performing }

INPUT
ackRequestGetEngine := EnginesSupplied.ackRequestGetEngine
ackRequestPutEngine := EnginesBeforeMill.emptyInputBuffer
fire_tr2 := TransportingToMill_performing.executed_tr2

DEFINES
executed_tr1 := (state==requesting) & ackRequestGetEngine
requestPutEngine := (state==idle)
requestGetEngine := (state==requesting)

INIT
(state==idle)

TRANS
|- (state==idle) -- ackRequestPutEngine --> state:=requesting

!-> state:=idle
|- (state==requesting) -- ackRequestGetEngine --> state:=performing

!-> state:=requesting
|- (state==performing) -- fire_tr2 --> state:=idle

!-> state:=performing
END

For the composite substatePerforming, we here list the resulting I/O-Interval Structure,
but we omit the transitions for the cases(state==loading) & (activated==true) and
(state==movingToUnload) & (activated==true), as they are very similar to the other
two cases with statesunloading andmovingToLoad. Note the non-deterministic transitions in
the following code, e.g., the ones with condition(count>=20) & (count<50). At any time
between the minimal and maximal time bound, the transition to the next state can be taken. This
reflects the timing intervals specified for the operations.

MODULE TransportingToMill_performing
SIGNAL
state : { gettingAGV loading unloading movingToLoad movingToUnload }
activated : BOOL
count : RANGE[0,50]
movingToLoad_finished : BOOL // additional variables to synchronize with
loading_finished : BOOL // PENs and the parent state
movingToUnload_finished : BOOL
unloading_finished : BOOL

INPUT
ackGetAGV := AGVs.ack_transportingToMill
fire_tr1 := TransportingToMill.executed_tr1

DEFINES
requestGetAgv := (state==gettingAGV) & (activated==true)
requestPutAgv := (unloading_finished) & (activated==true)
getEngine := (loading_finished) & (activated==true)
putEngine := (unloading_finished) & (activated==true)
executed_tr2 := (unloading_finished) & (activated==true)

INIT
(state==gettingAGV) & (activated==false) & (count==0)

8.1. THE MFERT MODEL 189

& (movingToLoad_finished==false) & (loading_finished==false)
& (movingToUnload_finished==false) & (unloading_finished==false)

TRANS
|- (activated==false) -- fire_tr1 --> state:=gettingAGV; activated:=true;

movingToUnload_finished:=false
!-> state:=state; activated:=false;

movingToUnload_finished:=false

|- (state==gettingAGV) & (activated==true)
-- ackGetAGV --> state:=movingToLoad; activated:=true; count:=0

!-> state:=gettingAGV; activated:=true

|- (state==movingToLoad) & (activated==true)
-- (count<20) --> state:=movingToLoad; count:=count+1
-- (count>=20) & (count<50) --> state:=movingToLoad; count:=count+1
-- (count>=20) & (count<50) --> state:=loading; count:=0;

movingToLoad_finished:=true
-- (count==50) --> state:=loading; count:=0;

movingToLoad_finished:=true
...
|- (state==unloading) & (activated==true)

-- (count<10) --> state:=unloading; count:=count+1;
movingToUnload_finished:=false

-- (count>=10) & (count<20) --> state:=unloading; count:=count+1
-- (count>=10) & (count<20) --> state:=unloading; activated:=false; count:=0;

unloading_finished:=true
-- (count==20) --> state:=unloading; activated:=false; count:=0;

unloading_finished:=true
END

PEN for Automated Guided Vehicles. The PENAGVs does not make a difference between
input and output sequence, as the specified shifting time is 1, such that the waiting time between
shifts is zero (determined bywait(1-1) according to the semantics of PENs). This means that
each AGV resource that is released can immediately be accessed for another transport in this
case. As a consequence, the most complex structure of this case study is built for the PENAGVs,
as shifting items might have to be performed at the same point of time as different inputs from
associated PPNs for transports occur.

The mapping of requests and actions for producing items or releasing resources (indicated
by prefixput in the code below) follows the following approach: Prior to actually putting an
item into a PENp, the preceding PPN checks whether there is space in the input sequence ofp.
Thus, no input buffer overflows should occur. However, to verify this formally, a correspond-
ing internal boolean variableerror is used as a monitor w.r.t. the size of the input sequence.
The variableerror becomes true when moreputs occur than there is space left in the input
sequence. It can easily be checked by a dedicated safety formula that no overflow occurs. For
example, the corresponding CTL safety constraint for PENAGVs is: AG !(AGVs.error).

When a PPN requests to put an item into the input sequence of a PEN and there is currently
no space in that sequence, the PPN is waiting until the input buffer has an available position.
In the corresponding I/O-Interval Structure, this synchronization is achieved by mapping the
synchronous UML operation call to repeated sendings of a signal until a positive reply signal is

190 CHAPTER 8. MANUFACTURING CASE STUDY

received.

Mapping of requests and actions to consume items or occupy resources is indicated by prefix
get in the code below and follows the same approach.

For PENAGVs, basically28 = 256 combinations for 8 potentially parallel input signals
(4 transporting PPNs, each with two kinds of requests) have to be considered over 0 up to 3
potentially available AGVs. Most of these combinations (to be precise, 806) are not valid, as
getting and putting an AGV by the same PPN at the same point of time is not allowed. There
remain 218 transitions to consider; we list only some typical examples in the code and the
omitted lines are indicated by dots.

MODULE AGVs
SIGNAL
count : RANGE[0,3] // at most 3 available AGVs
error : BOOL // internal error variable
ack_1 : BOOL ack_2 : BOOL // acknowledgement signals
ack_3 : BOOL ack_4 : BOOL

INPUT
// input signals to release AGVs after performing a transport:
putAgv_1 := TransportingToMill.putAgv
putAgv_2 := TransportingToDrill.putAgv
putAgv_3 := TransportingToWash.putAgv
putAgv_4 := TransportingToOutput.putAgv
// input signals to request AGVs for transports:
getAgv_1 := TransportingToMill.getAgv
...

DEFINES
ack_TransportingToMill := ack_1 // output signals that grant requests
ack_TransportingToDrill := ack_2
ack_TransportingToWash := ack_3
ack_TransportingToOutput := ack_4

INIT
// initially, 3 AGVs are available, all other signals are false:
(count == 3) & (error==false)
& (ack_1==false) & (ack_2==false) & (ack_3==false) & (ack_4==false)

TRANS
|- (count==0) & (error==false)

-- !putAgv_1 & !putAgv_2 & !putAgv_3 & !putAgv_4
& getAgv_1 & getAgv_2 & getAgv_3 & !getAgv_4

--> count:=count; ack_1:=false; ack_2:=false; ack_3:=false; ack_4:=false
-- !putAgv_1 & putAgv_2 & putAgv_3 & putAgv_4

& getAgv_1 & !getAgv_2 & !getAgv_3 & !getAgv_4
--> count:=count+2; ack_1:=true; ack_2:=false; ack_3:=false; ack_4:=false

...
|- (count==3) & (error==false)

-- !putAgv_1 & !putAgv_2 & !putAgv_3 & !putAgv_4
& !getAgv_1 & !getAgv_2 & getAgv_3 & getAgv_4

--> count:=count-2; ack_1:=false; ack_2:=false; ack_3:=true; ack_4:=true
...

END

8.2. REAL-TIME OCL CONSTRAINTS AND CCTL FORMULAE 191

8.2 Real-Time OCL Constraints and CCTL Formulae

In this subsection, we provide some typical time-bounded constraints that are applicable to
the MFERT model described in the previous section. Although we here focus on the PPN
TransportingToMill, several similar constraints are employed for other PPNs. Note that we
have not modeled concurrent State Diagrams in the case study and can therefore simply refer to
single states instead of complex set-based state configurations.

1. WhenTransportingToMill is in stateIdle, we require that it gets a grant to put an
engine into the subsequent PENEnginesBeforeMill within the next 100 time units.

// time-bounded state-oriented OCL constraint:
context TransportingToMill inv:
self.oclInState(TransportingToMill::Idle)
implies
self@post(1,100)->forAll(p:Sequence(OclState) |

p->includes(TransportingToMill::Requesting))

// CCTL formula:
AG ((TransportingToMill.state==TransportingToMill.idle)

-> AF[1,100](TransportingToMill.state==TransportingToMill.requesting))

A corresponding constraint can also be formulated to require a transition from state
Requesting to Performing.

2. A performed transport – once started after the acknowledgements have been received –
has to be completed within 300 time units.

// time-bounded state-oriented OCL constraint:
context TransportingToMill inv:
self.oclInState(TransportingToMill::Performing)
implies
self@post(1,300)->forAll(p:Sequence(OclState) |

p->exists(s:OclState |
s = TransportingToMill::Idle))

// CCTL formula:
AG ((TransportingToMill.state==TransportingToMill.performing)

-> AF[1,300](TransportingToMill.state<>TransportingToMill.performing))

3. An acknowledgement for an available AGV within composite stateTransportingTo-

Mill::Performing must be received within 150 time units.

// time-bounded state-oriented OCL constraint:
context TransportingToMill inv:
self.oclInState(TransportingToMill::Performing::GettingAGV)
implies
self@post(1,150)->forAll(p:Sequence(OclState) |

192 CHAPTER 8. MANUFACTURING CASE STUDY

p->exists(s:OclState |
s <> TransportingToMill::Performing::GettingAGV))

// CCTL formula:
AG (((TransportingToMill_performing.state==

TransportingToMill_performing.gettingAGV)
& (TransportingToMill_performing.activated==true))

-> AF[1,150]((TransportingToMill_performing.state==
TransportingToMill_performing.movingToLoad)

& TransportingToMill_performing.activated
)

)

Note here that the activation of composite substatePerforming has to be considered
explicitly in the CCTL formula, as it is explained in Section 7.3.

4. Production progress is ensured by requiring that a transport to station mill can always
again be performed, i.e., at each point of time, statePerforming will eventually be en-
tered, and at each point of time, stateIdle will eventually be entered. (The latter condi-
tion guarantees that statePerforming is also eventually left again.)

// temporal state-oriented OCL constraint:
context TransportingToMill inv:
self@post()->forAll(p:Sequence(OclState) |

p->includes(TransportingToMill::Performing))
and
self@post()->forAll(p:Sequence(OclState) |

p->includes(TransportingToMill::Idle))

// (C)CTL formula:
AG AF (TransportingToMill.state==TransportingToMill.performing)
&
AG AF (TransportingToMill.state==TransportingToMill.idle)

State-oriented OCL Specifications over Concurrent State Diagrams. For more complex
situations, such as the concurrent State Diagram shown in Figure 2.4 on page 28, we can also
make use of the newly introduced operationoclInConf() (cf. Section 7.1.3).

We want to specify that an AGV must never be in an accepting state in the negotia-
tion part while it is performing a transport. This can be expressed by excluding that states
WaitingForAcknowledgement and certain substates ofTransport are both active at the same
time.

// state-oriented OCL constraint:
context AGV inv:
not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,

Transport::MovingToLoad})
and
not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,

Transport::MovingToLoad})

8.2. REAL-TIME OCL CONSTRAINTS AND CCTL FORMULAE 193

and
not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,

Transport::MovingToLoad})
and
not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,

Transport::MovingToLoad})

// CCTL formula:
AG !(((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)

&(AGV_transport.state==AGV_transport.movingToLoad))
|((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)

&(AGV_transport.state==AGV_transport.loading))
|((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)

&(AGV_transport.state==AGV_transport.movingToUnload))
|((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)

&(AGV_transport.state==AGV_transport.unloading))
)

To ensure production progress, we require that an AGV object is not idle for too long, e.g.,
after at most 400 time units it has to again load an item. Note here that it is not sufficient to
specify that stateIdle will eventually be left within 400 time units, as leaving stateIdle may
also be due to a movement to vacate a position. Thus, a corresponding OCL constraint is, e.g.,

context AGV inv:
self@post(1,400)->forAll(trace:Sequence(Set(OclState)) |

trace->exists(conf:Set(OclState) |
conf->includes(AGV::Transport::Loading)))

Further examples of time-bounded state-oriented OCL constraints in the context of other
UML and MFERT models can be found in [FM02a, FM02d, BFG+03]. Also the property
specification patterns listed in Appendix D show how to express certain constraints with the
state-oriented OCL extension.

194 CHAPTER 8. MANUFACTURING CASE STUDY

Chapter 9

Conclusion

A book is never finished, it is only published.
– Derick Wood

This thesis presented a state-oriented real-time extension of the Object Constraint Language
OCL and its application in the area of modeling manufacturing systems with a UML-based
variant of MFERT. Some preliminaries were necessary to be able to define a formal semantics
of this OCL extension. This mainly concerns an existing formal model for parts of OCL and
the introduction of a notion of time to UML State Diagrams. The results of this thesis can be
summarized as follows.

Extended Object Models. Currently, there is no official formal semantics of OCL in UML,
but the adopted OCL 2.0 specification [OMG03b] has included and extended the set-theoretic
OCL semantics developed by Richters in [Ric01]. In both documents, a metamodel for OCL is
defined and a semantics is given by a formal description of Class Diagrams in form of anobject
modeland a meaning function that maps OCL expressions to a semantic domain, i.e., objects
and basic data values. Nevertheless, there are still deficiencies w.r.t. the integration of UML
State Diagrams. Although there is a standard operation calledoclInState(s:OclState), no
corresponding semantics has been defined yet, i.e., the formal object model lacks of a State
Diagram description with states and active state configurations. We therefore first formally in-
tegrated relevant UML State Diagram concepts into OCL. We extended the formalobject model
by a notion of state configurations, such that a formal relationship of UML State Diagrams and
state-oriented OCL constraints is well-defined.

Timed UML State Diagrams. OCL constraints do not make sense without a given user model
to refer to. When time-bounded constraints are specified, the behavioral description of the cor-
responding user model must be equipped a notion of time as well. We therefore introduced a
timed variant of UML State Diagrams for behavioral modeling with explicit timing assump-
tions of activities. We identified which of the UML State Diagram concepts can be omitted
and applied further restrictions that are appropriate for the regarded domain of this thesis, i.e.,
modeling of manufacturing systems. A formal semantics with discrete time has been defined

195

196 CHAPTER 9. CONCLUSION

by a mapping of the chosen State Diagram concepts to RIL, which is the input language of the
RAVEN model checker and corresponds to the formal language of I/O-Interval Structures.

Modeling of Manufacturing Systems. The chosen application domain in this thesis is the
modeling of manufacturing systems. In this context, we employed the graphical MFERT nota-
tion and defined UML stereotypes for the structural elements of MFERT graphs, i.e., Production
Process Nodes, Production Element Nodes, and links between them that represent production
element flow. Moreover, the presented timed UML State Diagram variant is used to model the
behavior of MFERT nodes. UML-based MFERT models that comply to a number of identified
structural validation constraints can be mapped to RIL (or I/O-Interval Structures, respectively).
This is indicated in Figure 9.1 by the mapping calledMMFERT . This UML Profile is the basis
that enables modelers to directly apply OCL constraints to MFERT models.

Class Diagrams and
timed State Diagram Variant

Semantic Domain
Source Domain UML|dom

(Informal) Semantics:

of I/O-Interval Structures
and

over CCTL formulae

Execution runs

satisfaction relation

Natural Language Descriptions

(Formal) Semantics:

Clocked Computation Tree Logic (CCTL)

MMFERT

MRTOCLState-Oriented
Real-Time OCL Extension

RIL (i.e., I/O-Interval Structures)

Figure 9.1: Semantic Domain Mapping

State-Oriented Real-Time OCL Extension. Independently, a number of extensions of OCL
have already been proposed to enable modelers to specify temporal properties, e.g., concerning
occurrences of events and their timing properties such as deadlines, delay times, and response
times [CK02, RvTdR01]. However, state-related temporal properties have not yet been consid-
ered in the context of UML and OCL. The state-oriented real-time extension of OCL presented
in this thesis enables modelers to express time-bounded properties w.r.t. progress of system ex-
ecution by means of sequences of state configurations. The extension is introduced by means of
a UML Profile and is compliant with common OCL syntax and concepts. We have shown that
our state-oriented OCL extension has the expressive power to express the property specification
patterns identified by Dwyer et al. [DAC98a].

Based on the formal definition of execution traces of timed UML State Diagrams (i.e., runs
of I/O-Interval Structures), newly introduced OCL operations allow to extract possible future
execution paths of our timed UML State Diagram variant. Then, already existing OCL opera-
tions for sequences and sets can be applied to access and manipulate these traces.

The mapping of temporal OCL constraints to the temporal logics CCTL establishes a for-
mal relationship of UML-based MFERT models and state-oriented real-time OCL constraints.
This is indicated by the mapping calledMRTOCL in Figure 9.1. A formal semantics of the
combination of UML-based MFERT notation and state-oriented real-time OCL constraints is

9.1. FUTURE WORK 197

then automatically derived, as the two formal target languages, i.e., I/O-Interval Structures and
CCTL, already have a well-defined formal relationship by the notion of runs and a satisfaction
relation.

As a next step, the real-time model checker RAVEN can be applied to verify whether a
model (given as a set of RIL modules or I/O-Interval Structures, respectively) satisfies properties
specified as CCTL formulae. However, note that the mappingMMFERT presented in this thesis
is not designed to build an efficient model representation for the model checker. Besides the
explicit times, especially the support of composite states with interlevel transitions leads to a
number of additional internal variables in the target language RIL that even expands the state
space. An approach to overcome this problem is mentioned in the outlook on future work below.

Formalizations of UML to perform model checking is also addressed by other authors, but
most of these approaches do not consider explicit time, e.g., [LMM99a, LP99]. In [DMY02],
a mapping of a dense-time UML State Diagram variant to hierarchical timed automata, i.e.,
the input language of the real-time model checker UPPAAL, is presented. However, this ap-
proach only considers the UPPAAL specification language for property specifications, which is
a restricted form of Timed Computation Tree Logic (TCTL) dedicated to perform reachability
analysis over models with dense time. As a consequence, the property specification patterns of
Dwyer et al. [DAC98a] are not completely supported. This and other approaches that investigate
model checking of UML designs can benefit from the state-oriented real-time OCL extension
presented in this thesis, as it allows to abstract from temporal logic formulae, yet has sufficient
expressive power, and builds upon already existing concepts of standard UML.

9.1 Future Work

The work presented in this thesis directly leads to issues that can be investigated in future work.
We here give a list of ideas how to continue this work, without claiming that this list is complete.

• The formal semantics of OCL have to be completed. Extended object models still lack
of a formalization of tuples, ordered sets and the concept of OCL messages. As a first
step, the formal semantics of OCL messages has recently been published in [FM04].
That work enhances the extended object model and corresponding system states with
appropriate additional components, in particular to keep track of the history of messages
sent during operation execution.

• Applying the OCL extension to other timed variants of Statecharts or UML State Dia-
grams should be possible without too much effort. However, the semantics likely have to
be adjusted in each case.

• The mapping of our timed State Diagrams variant to I/O-Interval Structures can be en-
hanced. For example, additional modeling elements such as history states can be in-
cluded.

• The UML-based MFERT models presented in this thesis were translated by hand to I/O-
Interval Structures. It should be investigated whether we can build upon the implemen-

198 CHAPTER 9. CONCLUSION

tation in [Zab03] to support automated translations of our timed UML State Diagram
variant to I/O-Interval Structures.

• To cope with the state-explosion problem in model checking, additional techniques such
as decomposition or abstraction are necessary to efficiently perform model checking on
models of bigger size. In this context, the approach presented in [Zab03] already applies
profiling to find optimal orderings of BDDs to perform model checking more efficiently.

Additional domain-specific assumptions might allow for a decomposition to be able to
perform model checking on submodels. A similar approach was taken in the domain of
modeling shuttle convoys as part of a railway system [BFG+03].

Bibliography

[AB01] David H. Akehurst and Behzad Bordbar. On Querying UML Data Models with OCL. In Gogolla and
Kobryn [GK01], pages 91–103.

[ABB+00] Wolfgang Ahrendt, Thomas Baar, Bernd Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle,
Wolfram Menzel, and Peter H. Schmitt. The KeY Approach: Integrating Object Oriented Design and
Formal Verification. In M. Ojeda-Aciego, I.P. de Guzmán, G. Brewka, and L.M. Pereira, editors,8th
European Workshop on Logics in AI (JELIA), Malaga, Spain, October 2000, volume 1919 ofLecture
Notes in Computer Science, pages 21–36. Springer, 2000.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model Checking for Real-Time Systems. In5th
Annual Symposium on Logic in Computer Science, Philadelphia, PA, USA, June 1990, pages 414–425.
IEEE Computer Society Press, 1990.

[AdSSL+01] Ludovic Apvrille, Pierre de Saqui-Sannes, Christophe Lohr, Patrick Sénac, and Jean-Pierre Couriat.
A new UML Profile for Real-Time System Formal Design and Validation. In Gogolla and Kobryn
[GK01], pages 287–301.

[Bal03] Hermann Balsters. Modelling Database Views with Derived Classes in the UML/OCL-Framework.
In Stevens et al. [SWB03], pages 295–309.

[BCM+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L.J. Hwang. Symbolic
Model Checking:1020 States and Beyond. In5th Annual Symposium on Logic in Computer Science,
Philadelphia, PA, USA, June 1990, pages 1–33. IEEE Computer Society Press, 1990.

[BCR00] Egon B̈orger, Alessandra Cavarra, and Elvinia Riccobene. Modeling the Dynamics of UML State
Machines. In Y. Gurevich, P.W. Kutter, M. Odersky, and L. Thiele, editors,Abstract State Machines,
Theory and Applications (ASM 2000), Monte Verità, Switzerland, March 2000, volume 1912 ofLec-
ture Notes in Computer Science, pages 223–241. Springer, 2000.

[Bec00] Kent Beck.Extreme Programming Explained : Embrace Change. Addison-Wesley, 2000.

[Bee94] Michael von der Beeck. A Comparison of Statechart Variants. In H. Langmaack, W.-P. de Roever, and
J. Vytopil, editors,Joint Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
Lübeck, Germany, September 1994, volume 863 ofLecture Notes in Computer Science, pages 128–
148. Springer, 1994.

[Bee01] Michael von der Beeck. Formalization of UML-Statecharts. In Gogolla and Kobryn [GK01], pages
406–421.

[Bee02] Michael von der Beeck. A structured operational semantics for UML-Statecharts.Software and
Systems Modeling (SoSyM), Springer, 1(2):130–141, December 2002.

[Ber89] Gérard Berry. Real Time Programming: Special Purpose or General Purpose Languages. In G. Rit-
ter, editor,Information Processing 89, Proceedings of the IFIP 11th World Computer Congress, San
Francisco, CA, USA, August/September 1989, pages 11–17. North-Holland/IFIP, 1989.

199

200 BIBLIOGRAPHY

[BFG+03] Sven Burmester, Stephan Flake, Holger Giese, Wilhelm Schäfer, and Matthias Tichy. Towards the
Compositional Verification of Real-Time UML Designs. In P. Inverardi and J. Paakki, editors,Joint
9th European Software Engineering Conference (ESEC) and 11th ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (FSE-11), Helsinki, Finland, September 2003,
pages 38–47. ACM Press, 2003.

[BFMW00] Arnulf Braatz, Stephan Flake, Wolfgang Müller, and Engelbert Westkämper. Prototyping einer
Fahrzeugsteuerung in virtueller 3D-Umgebung. In T. Schulze, P. Lorenz, and V. Hinz, editors,Sim-
ulation und Visualisierung 2000, Magdeburg, Germany, March 2000, pages 319–332. SCS Europe
BVBA, Ghent, Belgium, 2000. (in German).

[BH00] Thomas Baar and Reiner Hähnle. An Integrated Metamodel for OCL Types. In R. France, B. Rumpe,
J.-M. Bruel, A. Moreira, J. Whittle, and I. Ober, editors,OOPSLA’2000 Workshop Refactoring the
UML: In Search of the Core, Minneapolis, MN, USA, 2000.

[BKPPT00] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. Consistency Check-
ing and Visualization of OCL Constraints. In Evans et al. [EKS00], pages 294–308.

[BKPPT01] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. A Visualization of
OCL Using Collaborations. In Gogolla and Kobryn [GK01], pages 257–271.

[BKS02] Julian C. Bradfield, Juliana K̈uster Filipe, and Perdita Stevens. Enriching OCL Using Observational
Mu-Calculus. In R.-D. Kutsche and H. Weber, editors,5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002). Part of the Joint European Conferences on Theory
and Practice of Software (ETAPS 2002), Grenoble, France, April 2002, volume 2306 ofLecture Notes
in Computer Science, pages 203–217. Springer, 2002.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions on
Computers, C-35(8):677–691, 1986.

[Bur02] Sven Burmester. Generierung von Java Real-Time Code für zeitbehaftete UML Modelle. Master’s
thesis, University of Paderborn, Paderborn, Germany, September 2002. (in German).

[BW02] Achim D. Brucker and Burkhart Wolff. HOL-OCL: Experiences, Consequences and Design Choices.
In Jéźequel et al. [JHC02], pages 196–211.

[CAB+98] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno, David Notkin,
and Jon D. Reese. Model checking large software specifications.IEEE Transactions on Software
Engineering, 24(7):498–520, July 1998.

[CCM97] Śergio V.A. Campos, Edmund M. Clarke, and Marius Minea. The Verus Tool: A Quantitative Ap-
proach to the Formal Verification of Real-Time Systems. In O. Grumberg, editor,9th International
Conference on Computer Aided Verification (CAV’97), Haifa, Israel, June 1997, volume 1254 ofLec-
ture Notes in Computer Science, pages 452–455. Springer, 1997.

[CD94] Steve Cook and John Daniels.Designing Object Systems: Object-oriented Modelling with Syntropy.
Prentice-Hall, 1994.

[CE81] Edmund M. Clarke and E. Allan Emerson. Design and Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic. InLogic of Programs: Workshop, Yorktown Heights, NY, USA, May
1981, volume 131 ofLecture Notes in Computer Science, pages 52–71. Springer, 1981.

[CES86] Edmund M. Clarke, E. Allan Emerson, and Aravinda Prasad Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications.ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. MIT Press, 1999.

BIBLIOGRAPHY 201

[CHR91] Zhou Chaochen, C.A.R. Hoare, and Anders P. Ravn. A calculus of duration.Information Processing
Letter, 40(5):269–276, 1991.

[CK01] Maŕıa V. Cengarle and Alexander Knapp. A Formal Semantics for OCL 1.4. In Gogolla and Kobryn
[GK01], pages 118–133.

[CK02] Maŕıa V. Cengarle and Alexander Knapp. Towards OCL/RT. In L.-H. Eriksson and P.A. Lindsay,
editors,11th International Symposium of Formal Methods Europe (FME 2002), Formal Methods:
Getting IT Right, Copenhagen, Denmark, July 2002, volume 2391 ofLecture Notes in Computer
Science, pages 389–408. Springer, 2002.

[CKM+99] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer, and Alan Wills. The
Amsterdam Manifesto on OCL. Technical Report TUM-I9925, Technische Universität München,
Munich, Germany, December 1999.

[CKM+02] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer, and Alan Wills. The
Amsterdam Manifesto on OCL. In Clark and Warmer [CW02], pages 115–149.

[CT00] Stefan Conrad and Klaus Turowski. Vereinheitlichung der Spezifikation von Fachkomponenten
auf der Basis eines Notationsstandards. In J. Ebert and U. Frank, editors,Modelle und Model-
lierungssprachen in Informatik und Wirtschaftsinformatik (Beiträge des Workshops Modellierung
2000), St. Goar, Germany, April 2000, pages 179–194. Koblenzer Schriften zur Informatik, Band
15, F̈olbach-Verlag, Koblenz, Germany, 2000. (in German).

[CT01] Stefan Conrad and Klaus Turowski. Temporal OCL: Meeting Specifications Demands for Business
Components. In K. Siau and T. Halpin, editors,Unified Modeling Language: Systems Analysis,
Design, and Development Issues, pages 151–165. IDEA Group Publishing, 2001.

[CW02] Tony Clark and Jos Warmer, editors.Object Modeling with the OCL. The Rationale behind the Object
Constraint Language, volume 2263 ofLecture Notes in Computer Science. Springer, 2002.

[DAC98a] Matthiew B. Dwyer, George S. Avrunin, and James C. Corbett. A System of Specification Patterns,
1998. http://www.cis.ksu.edu/santos/spec-patterns (last visited on December 11th, 2003).

[DAC98b] Matthiew B. Dwyer, George S. Avrunin, and James C. Corbett. Property Specification Patterns for
Finite-State Verification. In M. Ardis, editor,Second ACM Workshop on Formal Methods in Software
Practice, Clearwater Beach, FL, USA, March 1998, pages 7–15. ACM Press, 1998.

[DAC99] Matthiew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property Specifications for
Finite-State Verification. In21st International Conference on Software Engineering (ICSE 99), Los
Angeles, CA, USA, May 1999, pages 411–420. ACM Press, 1999.

[DDF+02] Wilhelm Dangelmaier, Carsten Darnedde, Stephan Flake, Wolfgang Müller, Ulrich Pape, and Hen-
ning Zabel. Graphische Spezifikation und Echtzeitverifikation von Produktionsautomatisierungssys-
temen. In4. Paderborner Fr̈uhlingstagung, April 2002, ALB-HNI-Verlagsschriftenreihe, Paderborn,
Germany, 2002. (in German).

[Dee03] S.M. Deen, editor.Agent-Based Manufacturing. Advances in the Holonic Approach. Springer, 2003.

[DJHP98] Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli. A Compositional Real-Time Seman-
tics of STATEMATE Designs. In W.-P. de Roever, H. Langmaack, and A. Pnueli, editors,Compo-
sitionality: The Significant Difference, International Symposium (COMPOS’97), Malente, Germany,
September 1997, volume 1536 ofLecture Notes in Computer Science, pages 186–238. Springer, 1998.

[DK01] Werner Damm and Jochen Klose. Verification of a radio-based signaling system using the STATE-
MATE verification environment.Formal Methods in System Design, 19(2):121–141, 2001.

[DKM +94] Laura K. Dillon, George Kutty, Louise E. Moser, P. Michael Melliar-Smith, and Y.S. Ramakrish-
na. A graphical interval logic for specifying concurrent systems.ACM Transactions on Software
Engineering and Methodology, 3(2):131–165, 1994.

202 BIBLIOGRAPHY

[DKR00] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. On a Temporal Logic for Object-Based
Systems. In S.F. Smith and C.L. Talcott, editors,IFIP TC6/WG6.1 Fourth International Conference
on Formal Methods for Open Object-Based Distributed Systems (FMOODS 2000), Stanford, CA,
USA, September 2000, pages 305–326. Kluwer Academic Publishers, 2000.

[DLM02] Vieri Del Bianco, Luigi Lavazza, and Marco Mauri. A Formalization of UML Statecharts for Real-
Time Software Modeling. In H. Ehrig, B.J. Krämer, and A. Ertas, editors,6th Biennial World Con-
ference on Integrated Design Process Technology (IDPT 2002), Session ”Towards a rigorous UML”,
Pasadena, CA, USA, June 2002. Society for Design and Process Science, 2002.

[DM01] Alexandre David and M. Oliver M̈oller. From HUPPAAL to UPPAAL. A Translation from Hierar-
chical Timed Automata to Flat Timed Automata. Technical Report RS-01-11, BRICS, Department of
Computer Science, University of Aarhus, Aarhus, Denmark, March 2001.

[DMY02] Alexandre David, M. Oliver M̈oller, and Wang Yi. Formal Verification of UML Statecharts with
Real-Time Extensions. In R.-D. Kutsche and H. Weber, editors,5th International Conference on Fun-
damental Approaches to Software Engineering (FASE 2002). Part of the Joint European Conferences
on Theory and Practice of Software (ETAPS 2002), Grenoble, France, April 2002, volume 2306 of
Lecture Notes in Computer Science, pages 218–232. Springer, 2002.

[Dou00] Bruce P. Douglass.Doing Hard Time: Developing Real Time Systems with UML, Objects, Frame-
works, and Patterns. Addison-Wesley, 2000.

[DW93] Wilhelm Dangelmaier and Harald Wiedenmann.Modell der Fertigungssteuerung. Beuth Verlag
GmbH, Berlin, Wien, Z̈urich, 1st edition, 1993.

[DW97] Wilhelm Dangelmaier and Hans-Jürgen Warnecke.Fertigungslenkung: Planung und Steuerung des
Ablaufs der diskreten Fertigung. Springer, 1997.

[EC80] E. Allan Emerson and Edmund M. Clarke. Characterizing Correctness Properties of Parallel Programs
using Fixpoints. In J.W. de Bakker and J. van Leeuwen, editors,Automata, Languages, and Program-
ming. 7th Colloquium. Noordweijkerhout, The Netherlands, July 1980, volume 85 ofLecture Notes in
Computer Science, pages 169–181. Springer, 1980.

[EE94] J̈urgen Ebert and Gregor Engels. Observable or Invocable Behaviour: You have to Choose. Technical
report, Universiẗat Koblenz, Koblenz, Germany, 1994.

[EKS00] Andy Evans, Stuart Kent, and Bran Selic, editors.UML 2000 – The Unified Modeling Language.
Advancing the Standard. Third International Conference. York, UK, October 2000, volume 1939 of
Lecture Notes in Computer Science. Springer, 2000.

[EMSS92] E. Allan Emerson, Aloysius K. Mok, Aravinda Prasad Sistla, and Jai Srinivasan. Quantitative temporal
reasoning.Journal of Real-Time Systems, 4(4):331–352, 1992.

[EN00] Ramez Elmasri and Shamkant B. Navathe.Fundamentals of Database Systems. Addison-Wesley, 3rd
edition, 2000.

[EW00] Rik Eshuis and Roel Wieringa. Requirements-Level Semantics for UML Statecharts. In S.F. Smith and
C.L. Talcott, editors,IFIP TC6/WG6.1 Fourth International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2000), Stanford, CA, USA, September 2000, pages 121–
140. Kluwer Academic Publishers, 2000.

[EW01] Rik Eshuis and Roel Wieringa. A Real-Time Execution Semantics for UML Activity Diagrams. In
H. Hußmann, editor,4th International Conference on Fundamental Approaches to Software Engineer-
ing (FASE 2001). Part of the Joint European Conferences on Theory and Practice of Software (ETAPS
2001), April 2001, Genova, Italy, volume 2029 ofLecture Notes in Computer Science, pages 76–90.
Springer, 2001.

[FGK96] J̈urgen Froessl, Joachim Gerlach, and Thomas Kropf. An Efficient Algorithm for Real-Time Symbolic
Model Checking. InEuropean Design and Test Conference and Exhibition (EDTC’96), Paris, France,
March 1996, pages 15–21. IEEE Computer Society Press, 1996.

BIBLIOGRAPHY 203

[FGM+01] Stephan Flake, Christian Geiger, Wolfgang Müller, Volker Paelke, Waldemar Rosenbach, and Jürgen
Ruf. Customer-Oriented Systems Design through Virtual Prototypes. In10th International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’01), Cambridge,
MA, USA, June 2001, pages 263–268. IEEE Computer Society Press, 2001.

[FHD+99] Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke, and Ursula Goltz. Timed Se-
quence Diagrams and Tool-Based Analysis – A Case Study. In France and Rumpe [FR99], pages
645–660.

[Fla03a] Stephan Flake. Modeling and Verification of Manufacturing Systems: A Domain-Specific Formaliza-
tion of UML. In M.H. Hamza, editor,7th IASTED International Conference on Software Engineering
and Applications (SEA 2003), Los Angeles, CA, USA, November 2003, pages 580–586. ACTA Press,
Calgary, Canada, 2003.

[Fla03b] Stephan Flake. Temporal OCL Extensions for Specification of Real-Time Constraints. In S. Graf,
O. Haugen, I. Ober, and B. Selic, editors,UML 2003 Workshop ”Specification and Validation of
UML models for Real Time and Embedded Systems” (SVERTS’03), San Francisco, CA, USA, Oc-
tober 2003, 2003. http://www-verimag.imag.fr/EVENTS/2003/SVERTS/PAPERS-WEB/12-Flake-
temporalOclExtensions.pdf (last visited on December 11th, 2003).

[Fla04] Stephan Flake. OclType – A Type or Metatype? In T. Baar, T. Clark, R. France, R. Hähnle, H. Huß-
mann, and P.H. Schmitt, editors,UML 2003 Workshop ”OCL 2.0 – Industry Standard or Scientific
Playground?”, San Francisco, CA, USA, October 2003, Electronic Notes in Theoretical Computer
Science. Elsevier, Amsterdam, The Netherlands, 2004.

[FM01] Stephan Flake and Wolfgang M̈uller. Schnittstellendefinition zur 3D-Animation eines holonischen
Fertigungssystems. Technical Report 09/2001, C-LAB, Paderborn, Germany, August 2001. (in Ger-
man).

[FM02a] Stephan Flake and Wolfgang Müller. A UML Profile for MFERT. Technical Report 04/2002, C-LAB,
Paderborn, Germany, March 2002.

[FM02b] Stephan Flake and Wolfgang Müller. A UML Profile for Real-Time Constraints with the OCL. In
Jéźequel et al. [JHC02], pages 179–195.

[FM02c] Stephan Flake and Wolfgang Müller. An OCL Extension for Real-Time Constraints. In Clark and
Warmer [CW02], pages 150–171.

[FM02d] Stephan Flake and Wolfgang Müller. Specification of Real-Time Properties for UML Models. In
R.H. Sprague, Jr., editor,35th Hawaii International Conference on System Sciences (HICSS-35), Big
Island, HI, USA, January 2002. IEEE Computer Society Press, 2002.

[FM02e] Stephan Flake and Wolfgang Müller. Temporale Erweiterungen der OCL –Überblick und Aussichten.
In 2. Workshop ”Ablaufmodellierung in ingenieurwissenschaftlichen Anwendungen”, Halle(Saale),
Germany, April 2002. (in German).

[FM03a] Stephan Flake and Wolfgang Müller. Expressing Property Specification Patterns with OCL. InThe
2003 International Conference on Software Engineering Research and Practice (SERP’03), Las Ve-
gas, NV, USA, June 2003, pages 595–601. CSREA Press, Las Vegas, NV, USA, 2003.

[FM03b] Stephan Flake and Wolfgang Müller. Formal semantics of static and temporal state-oriented OCL
constraints.Software and Systems Modeling (SoSyM), Springer, 2(3):164–186, October 2003.

[FM03c] Stephan Flake and Wolfgang Müller. Semantics of State-Oriented Expressions in the Object Con-
straint Language. In15th International Conference on Software Engineering and Knowledge Engi-
neering (SEKE 2003), San Francisco Bay, CA, USA, July 2003, pages 142–149. Knowledge Systems
Institute, Skokie, IL, USA, 2003.

[FM04] Stephan Flake and Wolfgang M̈uller. Formal Semantics of OCL Messages. InUML 2003 Workshop
”OCL 2.0 – Industry Standard or Scientific Playground?”, San Francisco, CA, USA, October 2003,
Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam, The Netherlands, 2004.

204 BIBLIOGRAPHY

[FMPR00] Stephan Flake, Wolfgang M̈uller, Ulrich Pape, and J̈urgen Ruf. Modellpr̈ufung für den Entwurf von
Fertigungssteuerungssystemen. In H. Schmidt, editor,Modellierung betrieblicher Informationssys-
teme, Proceedings der MobIS-Fachtagung 2000, Siegen, Germany, October 2000, Rundbrief der GI-
Fachgruppe 5.10, 7. Jahrgang, Heft 1, pages 251–262, 2000. (in German).

[FMPR01] Stephan Flake, Wolfgang M̈uller, U. Pape, and Jürgen Ruf. Analyzing Timing Constraints in Flexible
Manufacturing Systems. InInternational NAISO Symposium on Information Science Innovations in
Intelligent Automated Manufacturing (IAM’2001), Dubai, United Arab Emirates, pages 1036–1042.
ICSC Academic Press, March 2001.

[FMR00] Stephan Flake, Wolfgang M̈uller, and J̈urgen Ruf. Structured English for Model Checking Specifi-
cation. In K. Waldschmidt and C. Grimm, editors,Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen, Frankfurt/M., Germany, February 2000,
pages 251–262. VDE Verlag, Berlin, Germany, 2000.

[FR99] Robert France and Bernhard Rumpe, editors.UML’99 – The Unified Modeling Language. Beyond
the Standard. Fort Collins, CO, USA, volume 1723 ofLecture Notes in Computer Science. Springer,
1999.

[FS99] Martin Fowler and Kendall Scott.UML Distilled : A Brief Guide to the Standard Object Modeling
Language. Object Technology Series. Addison-Wesley, 1999.

[Gaj97] Daniel D. Gajski.Principles of Digital Design. Prentice Hall, 1997.

[GHK99] Joseph Gil, John Howse, and Stuart Kent. Constraint Diagrams: A Step Beyond UML. InTechnology
of Object-Oriented Languages and Systems. Delivering Quality Software (TOOLS USA’99), Santa
Barbara, CA, USA, August 1999, pages 453–463. IEEE Computer Society Press, 1999.

[GK01] Martin Gogolla and Chris Kobryn, editors.UML 2001 – The Unified Modeling Language. Model-
ing Languages, Concepts, and Tools. 4th International Conference. Toronto, Canada. October 2001,
volume 2185 ofLecture Notes in Computer Science. Springer, 2001.

[GKC99] Dimitra Giannakopoulou, Jeff Kramer, and Shing-Chi Cheung. Behaviour analysis of distributed
systems using the Tracta approach.Journal of Automated Software Engineering, special issue on
Automated Analysis of Software, 6(1):7–35, January 1999.

[GR99] Martin Gogolla and Mark Richters. Transformation Rules for UML Class Diagrams. In J. Bézivin
and P.-A. Muller, editors,The Unified Modeling Language, UML’98 – Beyond the Notation. First
International Workshop, Mulhouse, France, June 1998, Selected Papers, volume 1618 ofLecture
Notes in Computer Science, pages 92–106. Springer, 1999.

[Har87] David Harel. Statecharts: A visual formalism for complex systems.Science of Computer Program-
ming, 8(3):231–274, June 1987.

[HK03] Martin Hitz and Gerti Kappel. UML@Work: Von der Analyse zur Realisierung. dpunkt-Verlag,
Heidelberg, Germany, 2nd edition, 2003. (in German).

[HN96] David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts.ACM Transactions on
Software Engineering and Methodology, 5(4):292–333, 1996.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.Communications of the ACM,
12(10):576–583, 1969.

[Hoa78] C.A.R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666–677,
1978.

[Hol99] Ralf Holtkamp. Ein Rahmenwerk für die Fertigungslenkung. PhD thesis, Heinz Nixdorf Institute,
HNI-Verlagsschriftenreihe, Band 51, Paderborn, Germany, 1999. (in German).

[HPSS87] David Harel, Amir Pnueli, Jeanette P. Schmidt, and Rivi Sherman. On the Formal Semantics of
Statecharts. InSecond IEEE Symposium on Logic in Computer Science, Ithaca, NY, USA, June 1987,
pages 54–64. IEEE Computer Society Press, 1987.

BIBLIOGRAPHY 205

[HR00] Michael R.A. Huth and Mark D. Ryan.Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2000.

[IEE87] IEEE, The Institute of Electrical and Electronics Engineers. Software Engineering Standards, 1987.

[IHJ+03] Anders Ivner, Jonas Ḧogstr̈om, Simon Johnston, David Knox, and Pete Rivett. Response to the
UML2.0 OCL RfP, Version 1.6 (Submitters: Boldsoft, Rational, IONA, Adaptive Ltd., et al.). OMG
Document ad/03-01-07, January 2003. ftp://ftp.omg.org/pub/docs/ad/03-01-07.pdf (last visited on
December 11th, 2003).

[ISO96] ISO International Standards Organization. Information Technology – Programming Languages, their
Environments and System Software Interfaces – Vienna Development Method – Specification Lan-
guage – Part 1: Base language. International Standard ISO/IEC 13817-1, December 1996.

[ISO02] ISO International Standards Organization. Information Technology – Z Formal Specification Notation
– Syntax, Type System and Semantics. International Standard ISO/IEC 13568, July 2002.

[JEJ02] Yan Jin, Robert Esser, and Jörn W. Janneck. Describing the Syntax and Semantics of UML Statecharts
in a Heterogeneous Modelling Environment. In M. Hegarty, B. Meyer, and N.H. Narayanan, editors,
Diagrams 2002 – Second International Conference on Theory and Application of Diagrams, April
2002, Callaway Gardens, GA, USA, volume 2317 ofLecture Notes in Computer Science, pages 320–
334. Springer, 2002.

[Jen91] Kurt Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis. In
K. Jensen and G. Rozenberg, editors,High-level Petri Nets, Theory and Application, pages 44–119.
Springer, 1991.

[JHC02] Jean-Marc J́eźequel, Heinrich Hußmann, and Stephen Cook, editors.UML 2002 – The Unified Mod-
eling Language. Model Engineering, Languages, Concepts, and Tools. 5th International Conference.
Dresden, Germany, September/October 2002, volume 2460 ofLecture Notes in Computer Science.
Springer, 2002.

[JMM+99] Wil Janssen, Radu Mateescu, Sjouke Mauw, Peter Fennema, and Petra van der Stappen. Model Check-
ing for Managers. In D. Dams, R. Gerth, S. Leue, and M. Massink, editors,Theoretical and Practical
Aspects of SPIN Model Checking, 5th and 6th International SPIN Workshops, Trento, Italy, July 1999,
and Toulouse, France, September 1999, volume 1680 ofLecture Notes in Computer Science, pages
92–107. Springer, 1999.

[JRB99] Ivar Jacobson, James Rumbaugh, and Grady Booch.The Unified Software Development Process.
Object Technology Series. Addison-Wesley, 1999.

[KH02] Stuart Kent and John Howse. Constraint Trees. In Clark and Warmer [CW02], pages 228–249.

[KMR02] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking Timed UML State Ma-
chines and Collaborations. In W. Damm and E.-R. Olderog, editors,7th International Symposium on
Formal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT 2002), Oldenburg, September
2002, volume 2469 ofLecture Notes in Computer Science, pages 395–416. Springer, 2002.

[Koe67] Arthur Koestler.The Ghost in the Machine. PAN Books, London, UK, 1967.

[KP92] Yonit Kesten and Amir Pnueli. Timed and Hybrid Statecharts and their Textual Representation. In
J. Vytopil, editor,Second International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT 1992), Nijmegen, The Netherlands, January 1992, volume 571 ofLecture
Notes in Computer Science, pages 591–619. Springer, 1992.

[KTW02] Christiane Kiesner, Gabriele Taentzer, and Jessica Winkelmann. VisualOCL: A Visual Notation of the
Object Constraint Language. Technical Report 23, Computer Science Department of the Technical
University of Berlin, Berlin, Germany, 2002.

[Kus01] Sabine Kuske. A Formal Semantics of UML State Machines Based on Structured Graph Transforma-
tion. In Gogolla and Kobryn [GK01], pages 241–256.

206 BIBLIOGRAPHY

[KW00] Anneke Kleppe and Jos Warmer. Extending OCL to Include Actions. In Evans et al. [EKS00], pages
440–450.

[KW01] Anneke Kleppe and Jos Warmer. Unification of Static and Dynamic Semantics of UML: a Study
in Redefining the Semantics of the UML Using the pUML OO Meta Modelling Approach, 2001.
http://www.klasse.nl/english/uml/uml-semantics.html (last visited on December 11th, 2003).

[KW02] Anneke Kleppe and Jos Warmer. The Semantics of the OCL Action Clause. In Clark and Warmer
[CW02], pages 213–227.

[Kwo00] Gihwon Kwon. Rewrite Rules and Operational Semantics for Model Checking UML Statecharts. In
Evans et al. [EKS00], pages 528–540.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.IEEE Transactions on Software
Engineering, 3(2):125–143, March 1977.

[Lam94] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming Languages and
Systems, 16(3):872–923, May 1994.

[Lam00] Axel van Lamsweerde. Formal Specification: a Roadmap. In A. Finkelstein, editor,22nd International
Conference on Software Engineering (ICSE 2000), Future of Software Engineering Track, June 2000,
Limerick, Ireland, pages 147–159. ACM Press, 2000.

[LC96] Karl R.P.H. Leung and Daniel K.C. Chan. Extending Statecharts with Duration. In20th Annual
International Computer Software and Application Conference (COMPSAC’96), Seoul, South Korea,
August 1996, pages 246–251. IEEE Computer Society Press, 1996.

[Lev97] Francesca Levi.Verification of Temporal and Real-Time Properties of Statecharts. PhD thesis, Dipar-
timento di Informatica, Universita di Pisa, Pisa, Italy, 1997.

[LMM99a] Diego Latella, Istv́an Majzik, and Mieke Massink. Automatic verification of a behavioural subset of
UML Statechart Diagrams using the SPIN model-checker.Formal Aspects of Computing, 11(6):637–
664, 1999.

[LMM99b] Diego Latella, Istv́an Majzik, and Mieke Massink. Towards a Formal Operational Semantics of
UML Statechart Diagrams. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors,IFIP TC6/WG6.1
Third International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’99), Florence, Italy, February 1999, pages 331–347. Kluwer Academic Publishers, 1999.

[LP99] Johan Lilius and Ivan Paltor. Formalising UML State Machines for Model Checking. In France and
Rumpe [FR99], pages 430–445.

[LQV01] Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Combining UML and Formal Notations
for Modelling Real-Time Systems. In V. Gruhn, editor,Joint 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE-9), Vienna, Austria, September 2001, pages 196–206. ACM Press, 2001.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.IEEE Transactions on Software
Engineering, 7(4):417–426, 1981.

[MC99] Luis Mandel and Maŕıa V. Cengarle. On the Expressive Power of OCL. In J.M. Wing, J. Woodcock,
and J. Davies, editors,FM’99 – Formal Methods. World Congress on Formal Methods in the Devel-
opment of Computing Systems, Toulouse, France, September 1999, volume 1708 ofLecture Notes in
Computer Science, pages 854–874. Springer, 1999.

[Mey97] Bertrand Meyer.Object-oriented Software Construction. Prentice-Hall International Editions, 2nd
edition, 1997.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in Computer
Science. Springer, 1980.

BIBLIOGRAPHY 207

[MP90] Zohar Manna and Amir Pnueli. A Hierarchy of Temporal Properties. In9th Annual ACM Symposium
on Principles of Distributed Computing, Quebec City, Quebec, Canada, August 1990, pages 377–410.
ACM Press, 1990.

[MP92] Zohar Manna and Amir Pnueli.The Temporal Logic of Reactive and Concurrent Systems. Specifica-
tion. Springer, 1992.

[MP95] Zohar Manna and Amir Pnueli.Temporal Verification of Reactive Systems. Safety. Springer, 1995.

[MSP96] Andrea Maggiolo-Schettini and Adriano Peron. Retiming Techniques for Statecharts. In B. Jonsson
and J. Parrow, editors,Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’96),
4th International Symposium, Uppsala, Sweden, September 1996, volume 1135 ofLecture Notes in
Computer Science, pages 55–71. Springer, 1996.

[Mül96] Wolfgang M̈uller. Executable Graphics for VHDL-Based Systems Design. PhD thesis, Department of
Mathematics and Computer Science, Universität-GH Paderborn, Paderborn, Germany, 1996.

[OMG] OMG, Object Management Group. http://www.omg.org.

[OMG99] OMG Analysis and Design Platform Task Force. White Paper on the Profile Mechanism, Version 1.0.
OMG Document ad/99-04-07, April 1999. ftp://ftp.omg.org/pub/docs/ad/99-04-07.pdf (last visited on
December 11th, 2003).

[OMG00a] OMG, Object Management Group. UML 2.0 OCL Request For Proposal. OMG Document ad/00-
09-03, September 2000. ftp://ftp.omg.org/pub/docs/ad/00-09-03.pdf (last visited on December 11th,
2003).

[OMG00b] OMG, Object Management Group. UML Profile for CORBA Specification. OMG Document ptc/00-
10-01, October 2000. ftp://ftp.omg.org/pub/docs/ptc/00-10-01.pdf (last visited on December 11th,
2003).

[OMG01] OMG, Object Management Group. Common Warehouse Metamodel (CWM) Specification. OMG
Documents formal/01-10-01 (main specification) and formal/01-10-27 (extensions), October 2001.
ftp://ftp.omg.org/pub/docs/formal/01-10-01.pdf (last visited on December 11th, 2003).

[OMG02] OMG, Object Management Group. Meta Object Facility Specification. OMG Doucument formal/02-
04-03, April 2002. ftp://ftp.omg.org/pub/docs/formal/02-04-03.pdf (last visited on December 11th,
2003).

[OMG03a] OMG Analysis and Design Platform Task Force. UML 2.0 OCL RFP – Recommendation Vote Sta-
tus, May 2003. http://www.omg.org/techprocess/meetings/schedule/UML2.0 OCL RFP.html (last
visited on December 11th, 2003).

[OMG03b] OMG, Object Management Group. UML 2.0 OCL Final Adopted Specification. OMG Document
ptc/03-10-14, October 2003. ftp://ftp.omg.org/pub/docs/ptc/03-10-14.pdf (last visited on December
11th, 2003).

[OMG03c] OMG, Object Management Group. UML Profile for Schedulability, Performance, and Time Specifi-
cation. OMG Document ptc/03-03-02, April 2003. ftp://ftp.omg.org/pub/docs/ptc/03-03-02.pdf (last
visited on December 11th, 2003).

[OMG03d] OMG, Object Management Group. Unified Modeling Language 1.5 Specification. OMG Document
formal/03-03-01, March 2003. ftp://ftp.omg.org/pub/docs/formal/03-03-01.pdf (last visited on De-
cember 11th, 2003).

[OMG03e] OMG, Object Management Group. Unified Modeling Language: Infrastructure, Version 2.0. Adopted
Specification, OMG Document ad/03-03-01, July 2003. ftp://ftp.omg.org/pub/docs/ad/03-03-01.pdf
(last visited on December 11th, 2003).

[OMG03f] OMG, Object Management Group. Unified Modeling Language: Superstructure, Version 2.0. Final
Adopted Specification, OMG Document ptc/03-08-02, August 2003. ftp://ftp.omg.org/pub/docs/ptc/-
03-08-02.pdf (last visited on December 11th, 2003).

208 BIBLIOGRAPHY

[Pad00] Peter Padawitz. Swinging UML – How to Make Class Diagrams and State Machines Amenable to
Constraint Solving and Proving. In Evans et al. [EKS00], pages 162–177.

[Par95] David L. Parnas. Teaching Programming as Engineering. In J.P. Bowen and M.G. Hinchey, editors,
The Z Formal Specification Notation, 9th International Conference of Z Users (ZUM’95), Limerick,
Ireland, September 1995, volume 967 ofLecture Notes in Computer Science, pages 471–481. Sprin-
ger, 1995.

[Pnu80] Amir Pnueli. A temporal logic of concurrent programs.Theoretical Computer Science, 13:45–60,
1980.

[PS91] Amir Pnueli and Michal Shalev. What is in a Step: On the Semantics of Statecharts. In T. Ito and A.R.
Meyer, editors,Theoretical Aspects of Computer Software, volume 526 ofLecture Notes in Computer
Science, pages 244–264. Springer, 1991.

[PS97] Jan Philipps and Peter Scholz. Compositional Specification of Embedded Systems with Statecharts.
In M. Bidoit and M. Dauchet, editors,TAPSOFT’97: Theory and Practice of Software Development.
7th International Joint Conference CAAP/FASE, Lille, France, April 1997, volume 1214 ofLecture
Notes in Computer Science, pages 637–651. Springer, 1997.

[PU97] Carsta Petersohn and Luis Urbina. A Timed Semantics for the STATEMATE Implementation of
Statecharts. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors,4th International Symposium of For-
mal Methods Europe (FME’97): Industrial Applications and Strengthened Foundations of Formal
Methods, Graz, Austria, September 1997, volume 1313 ofLecture Notes in Computer Science, pages
553–572. Springer, 1997.

[Qui01] Julia Quintanilla de Simsek.Ein Verifikationsansatz für eine netzbasierte Modellierungsmethode für
Fertigungssysteme. PhD thesis, Heinz Nixdorf Institute, HNI-Verlagsschriftenreihe, Band 87, Pader-
born, Germany, 2001. (in German).

[RACH00] Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich Hußmann. Analysing UML Active
Classes and Associated State Machines – A Lightweight Formal Approach. In T. Maibaum, editor,
Third International Conference on Fundamental Approaches to Software Engineering (FASE 2000).
Part of the European Joint Conferences on the Theory and Practice of Software (ETAPS 2000), Berlin,
Germany, March 2000, volume 1783 ofLecture Notes in Computer Science. Springer, 2000.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall International Editions, 1991.

[RG98] Mark Richters and Martin Gogolla. On Formalizing the UML Object Constraint Language OCL. In
T.W. Ling, S. Ram, and M.L. Lee, editors,17th International Conference on Conceptual Modeling
(ER’98), Singapore, November 1998, volume 1507 ofLecture Notes in Computer Science, pages 449–
464. Springer, 1998.

[RG99] Mark Richters and Martin Gogolla. A Metamodel for OCL. In France and Rumpe [FR99], pages
156–171.

[Ric01] Mark Richters.A Precise Approach to Validating UML Models and OCL Constraints. PhD thesis,
Universiẗat Bremen, Bremen, Germany, 2001.

[RJB98] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

[RK97] Jürgen Ruf and Thomas Kropf. Symbolic Model Checking for a Discrete Clocked Temporal Logic
with Intervals. In E. Cerny and D.K. Probst, editors,Correct Hardware Design and Verification Meth-
ods (CHARME’97), 9th IFIP WG 10.5 Advanced Research Working Conference, Montreal, Canada,
October 1997, pages 146–166. Chapman and Hall, 1997.

BIBLIOGRAPHY 209

[RK99] Jürgen Ruf and Thomas Kropf. Modeling and Checking Networks of Communicating Real-Time
Systems. In L. Pierre and T. Kropf, editors,Correct Hardware Design and Verification Methods
(CHARME’99), 10th IFIP WG 10.5 Advanced Research Working Conference, Bad Herrenalb, Ger-
many, September 1999, pages 265–279. Springer, 1999.

[RM99] Sita Ramakrishnan and John McGregor. Extending OCL to Support Temporal Operators. In21st
International Conference on Software Engineering (ICSE 99), Workshop on Testing Distributed
Component-Based Systems, Los Angeles, CA, USA, May 1999.

[RM00] Sita Ramakrishnan and John McGregor. Modelling and Testing OO Distributed Systems with Tem-
poral Logic Formalisms. In M.H. Hamza, editor,18th IASTED International Conference on Applied
Informatics (AI’2000), Innsbruck, Austria, February 2000. ACTA Press, Calgary, Canada, 2000.

[RS01] Bernhard Rumpe and Robert Sandner. UML – Unified Modeling Language im Einsatz. Teil 3. UML-
RT für echtzeitkritische und eingebettete Systeme.at – Automatisierungstechnik, Reihe Theorie für
den Anwender, 11/2001, 2001. (in German).

[RT01] Ella E. Roubtsova and W.J. Toetenel. Specification of Real-Time Properties in UML. In22nd IEEE
Real-Time Systems Symposium (RTSS), Work-In-Progress Section, London, UK, December 2001.

[Ruf00] J̈urgen Ruf.Techniken zur Modellierung und Verifikation von Echtzeitsystemen. PhD thesis, Univer-
sität Karlsruhe, Karlsruhe, Germany, March 2000. (in German).

[Ruf01] J̈urgen Ruf. RAVEN: Real-Time Analyzing and Verification Environment.Journal on Universal
Computer Science (J.UCS), Springer, 7(1):89–104, February 2001.

[Ruf02] J̈urgen Ruf. Formal Verification of Timing Properties of a Holonic Material Transport System. Techni-
cal Report WSI-2002-03, Wilhelm-Schickard Institute, University of Tübingen, T̈ubingen, Germany,
2002.

[RvTdR01] Ella E. Roubtsova, Jan van Katwijk, W.J. Toetenel, and Ruud C.M. de Rooij. Real-Time Systems:
Specification of Properties in UML. In7th Annual Conference of the Advanced School for Computing
and Imaging (ASCI 2001), Het Heijderbos, Heijen, The Netherlands, May/June 2001, pages 188–195,
2001.

[Sch96] Uta Schneider.Ein formales Modell und eine Klassifikation für die Fertigungssteuerung – Ein
Beitrag zur Systematisierung der Fertigungssteuerung. PhD thesis, Heinz Nixdorf Institute, HNI-
Verlagsschriftenreihe, Band 16, Paderborn, Germany, 1996. (in German).

[Sel99] Bran Selic. Turning clockwise: Using UML in the real-time domain.Communications of the ACM,
42(10):46–54, October 1999.

[SF99] Neelam Soundarajan and Stephen Fridella. Modeling Exceptional Behavior. In France and Rumpe
[FR99], pages 691–705.

[Sim00] Anthony J.H. Simons. On the Compositional Properties of UML Statechart Diagrams. InElectronic
Workshops in Computing: Rigorous Object-Oriented Methods 2000. British Computer Society, 2000.

[SKM01] Timm Scḧafer, Alexander Knapp, and Stephan Merz. Model Checking UML State Machines and
Collaborations. In S.D. Stoller and W. Visser, editors,Electronic Notes in Theoretical Computer
Science, volume 55. Elsevier, Amsterdam, The Netherlands, 2001.

[SR98] Bran Selic and James Rumbaugh. Using UML for Modeling Complex Real-Time Systems. White
Paper, 1998. http://www.rational.com/media/whitepapers/umlrt.pdf (last visited on December 11th,
2003).

[SS00] Markus Stumptner and Michael Schrefl. Behavior Consistent Inheritance in UML. In A.H.F. Laender
et al., editors,19th International Conference on Conceptual Modeling (ER 2000), Salt Lake City, UT,
USA, October 2000, volume 1920 ofLecture Notes in Computer Science, pages 527–542. Springer,
2000.

210 BIBLIOGRAPHY

[SS01] Shane Sendall and Alfred Strohmeier. Specifying Concurrent System Behavior and Timing Con-
straints Using OCL and UML. In Gogolla and Kobryn [GK01], pages 391–405.

[SS02a] Michael Schrefl and Markus Stumptner. Behavior consistent specialization of object life cycles.ACM
Transactions of Software Engineering and Methodology (ACM TOSEM), 11(1):92–148, January 2002.

[SS02b] Shane Sendall and Alfred Strohmeier. Using OCL and UML to Specify System Behavior. In Clark
and Warmer [CW02], pages 250–279.

[SWB03] Perdita Stevens, Jon Whittle, and Grady Booch, editors.UML 2003 – The Unified Modeling Language.
Modeling Languages and Applications. 6th International Conference. San Francisco, CA, USA. Oc-
tober 2003, volume 2863 ofLecture Notes in Computer Science. Springer, 2003.

[War97] Jos Warmer. OCL Parser, Version 0.3, 1997. http://www-4.ibm.com/software/ad/library/standards/-
ocl-download.html (last visited on December 11th, 2003).

[WHS94] Engelbert Westk̈amper, Michael Ḧopf, and Christoph Schaeffer. Holonic Manufacturing Systems
(HMS) – Test Case 5. InProceedings of Holonic Manufacturing Systems, Lake Tahoe, CA, USA,
February 1994.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press,
1993.

[Wit99] Gunnar Wittich. Ein problemorientierter Ansatz zum Nachweis von Realzeiteigenschaften eingebet-
teter Systeme. PhD thesis, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany, 1999. (in
German).

[WK99] Jos Warmer and Anneke Kleppe.The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley, 1999.

[WK03] Jos Warmer and Anneke Kleppe.The Object Constraint Language – Getting Your Models Ready for
MDA. Object Technology Series. Addison-Wesley, 2nd edition, 2003.

[Zab03] Henning Zabel. Verfahren zur Codegenerierung für eine laufzeitoptimierte Analyse von Fertigungs-
planungsmodellen durch Modelchecking. Master’s thesis, Universität Paderborn, Paderborn, Ger-
many, September 2003. (in German).

[ZG02] Paul Ziemann and Martin Gogolla. An Extension of OCL with Temporal Logic. In J. Jürjens, M.V.
Cengarle, E.B. Fernandez, B. Rumpe, and R. Sandner, editors,Critical Systems Development with
UML – Proceedings of the UML’02 Workshop, pages 53–62. Technische Universität München, Institut
für Informatik, Munich, Germany, 2002.

[ZG03] Paul Ziemann and Martin Gogolla. An OCL Extension for Formulating Temporal Constraints. Tech-
nical Report 1/03, Fachbereich Mathematik und Informatik, University of Bremen, Bremen, Germany,
July 2003.

Appendix A

Timed Finite State Machines for PPNs

A timed finite state machinefsm in the context of our formal MFERT definition is a tuple

〈P, S, Tr, SLab, GE,AE, TrLab, s0〉
where

• P is a set of atomic propositions.

• S is a set of states.

• Tr ⊆ S × S is a state transition relation, such that every state has a successor state:
∀s ∈ S : ∃d ∈ S : (s, d) ∈ Tr.

• SLab : S → P(P) is a state labeling function.

• GE is a set of guard expressions. We here assume that a languageLGE exists with well-
defined syntax and semantics for the elements ofGE and that for allg ∈ GE : Type(g) =
Bool.

• AE is a set of action expressions. We here assume that a languageLAE exists with a
well-defined syntax and semantics for the elements ofAE.

• TrLab : Tr → P(GE) × P(N) × P(AE) is a transition labeling function that defines a
set of condition expressions, a set of delay times, and a set of action expressions for each
transitiontr ∈ Tr.

• s0 ∈ S is the initial state of the finite state machine.

A.1 Help Functions

For technical reasons, we additionally define partial mappings of the transition labeling function
TrLab by the help functions listed in Table A.1.1 Annotations of the formTrLab|(+,−,−) are
projections on tuple elements. A tuple element is taken iff a ‘+’ is specified at its corresponding
index position.

1ConsAE andProdAE are defined in Subsection ”Consumption and Production Actions” below.

211

212 APPENDIX A. TIMED FINITE STATE MACHINES FOR PPNS

Table A.1: Help Functions for Transitionst ∈ Tr

Conditions(t)
def
= TrLab(t)|(+,−,−) ⊆ P(GE)

Delay(t)
def
= TrLab(t)|(−,+,−) ⊆ N

Actions(t)
def
= TrLab(t)|(−,−,+) ⊆ P(AE)

NextState(t)
def
= t|(−,+) ∈ S

ConsumeActions(t)
def
= {ae ∈ AE | ae ∈ Actions(t)∩ConsAE}

ProduceActions(t)
def
= {ae ∈ AE | ae ∈ Actions(t)∩ProdAE}

Count : AE → N0 ∀ae ∈ AE : Count(ae) is the number of
production elements that are consumed or
produced when executingae.

A.2 Operational Semantics

The operational semantics of finite state machines and their timed variants is usually defined by
runs, i.e., sequences of states over time, based on some given rules when transitions are applica-
ble and may fire. Sequence elements of these runs are usually specified with respect to elapsed
time and condition evaluation. But note thatwe do not provide a particular execution semantics
for timed FSMshere and simply assume that such a well-defined operational semantics exists
for the FSM defined above. We just assume that the following properties hold:

1. LGE defines, among others, guard expressions that query the current status of PENs with-
out side effects.

2. LAE defines expressions to reserve production elements in preceding PENs for later con-
sumption as well as expressions to reserve sufficient space for production elements to be
placed in succeeding PENs.

3. Evaluation of guard expressions may only affect local variables or adjacent PENs.

4. Execution of action expressions may only manipulate local variables or adjacent PENs.

5. Reserving production elements for consumption in a preceding PEN (or space for pro-
duction in a succeeding PEN, respectively) by evaluation of a guard expression and the
actual consumption (production) by means of execution of an action expression must not
be interfered, i.e., once a reservation is acknowledged by a PEN, the requesting PPN
immediately has to execute an action that consumes (produces) the corresponding pro-
duction elements.

A.3. CONSUMPTION AND PRODUCTION ACTIONS 213

A.3 Consumption and Production Actions

We are particularly interested in production element flow and often need to talk about manipula-
tions of PPNs with respect to their adjacent PENs, i.e., consumption and production of elements
in PENs. We define the following sets:

• Let ConsAE ⊆ AE be the set of action expressions that represent consumption of pro-
duction elements, i.e., actions that eliminate production elements from preceding PENs.

• Let ProdAE ⊆ AE be the set of action expressions that represent production of new
elements, i.e., actions that add production elements to succeeding PENs.

A.4 Restrictions

Note that the following restrictions on variable types must hold for guard and action expressions.

• Free variables of guard expressions must be of a type that is defined in an adjacent PEN.

Type(V ar(g)) ⊆ {C(pe) ∈ DT | ∃pe ∈ PE : (pe, pp) ∈ E ∨ (pp, pe) ∈ E,with pp =
MFSM

−1(fsm)}.

• Data Types of consumption actions must be defined in preceding PENs.

∀ca ∈ ConsAE : Type(ca) = void ∧ Type(V ar(ca)) ⊆ {C(pe) | ∃pe ∈ PE :
(pe, pp) ∈ E, pp = MFSM

−1(fsm)}.

• Data Types of production actions must be defined in succeeding PENs.

∀pa ∈ ProdAE : Type(pa) = void ∧ Type(V ar(pa)) ⊆ {C(pe) | ∃pe ∈ PE :
(pp, pe) ∈ E, pp = MFSM

−1(fsm)}.

• We further restrict the actions that may appear in transitionst ∈ Tr. We do not allow
both consumption and production actions in the same transition.

∀t ∈ Tr : ¬(ConsumeActions(t) 6= ∅ and ProduceActions(t) 6= ∅)

A.5 Mapping to I/O-Interval Structures

A mapping of timed FSMs to I/O-Interval Structures can be easily performed for the compo-
nentsP , S, Tr, TrLab, SLab, ands0. As we only make some basic assumptions about the
languagesLGE andLAE for guard and action expressions, a mapping of the componentsGE
andAE cannot be given here. Instead, we make use of the mapping of Timed State Diagrams
(see Section 2.4.3) to I/O-Interval Structures, in particular for transition annotations (events,
guards, actions, and timing information) and synchronous event communication.

214 APPENDIX A. TIMED FINITE STATE MACHINES FOR PPNS

Appendix B

OCL Metalevel Operations for Classifiers

In this appendix, a list of some sample additional operations defined for the metaclass
Classifier is provided, taken from [OMG03d, Section 2.5.3.8]. Note that some OCL ex-
pressions are adjusted to be compliant to the adopted OCL 2.0 specification [OMG03b].

• The operationallFeatures() results in a set containing all features of the classifier
itself and all its inherited features.

allFeatures() : Set(Feature) =
self.feature
->union(self.parent.oclAsType(Classifier).allFeatures())

• The operationallOperations() results in a set containing all operations of the classifier
itself and all its inherited operations.

allOperations() : Set(Operation) =
self.allFeatures()
->select(f:Feature | f.oclIsKindOf(Operation))

• The operationallAttributes() results in a set containing all attributes of the classifier
itself and all its inherited attributes.

allAttributes() : Set(Attribute) =
self.allFeatures()->select(f:Feature | f.oclIsKindOf(Attribute))

• The operationassociations() results in a set containing all associations of the classifier
itself.

associations() : Set(Association) =
self.association.association->asSet()

• The operationallAssociations() results in a set containing all associations of the
classifier itself and all its inherited associations.

215

216 APPENDIX B. OCL METALEVEL OPERATIONS FOR CLASSIFIERS

allAssociations() : Set(Association) =
self.associations()
->union(self.parent.oclAsType(Classifier).allAssociations())

• The operationoppositeAssociationEnds() results in a set of all association ends that
are opposite to the classifier.

oppositeAssociationEnds() : Set(AssociationEnd) =
self.associations()
->select(a:Association |

a.connection->select(ae:AssociationEnd |
ae.participant = self).size() = 1)

->collect(a:Association |
a.connection->select(ae:AssociationEnd |

ae.participant <> self))
->union(self.associations()

->select(a:Association |
a.connection->select(ae:AssociationEnd |

ae.participant = self).size() > 1)
->collect(a:Association | a.connection))

• The operationallOppositeAssociationEnds() results in a set of all association ends
opposite to the classifier, including the inherited ones.

allOppositeAssociationEnds() : Set(AssociationEnd) =
self.oppositeAssociationEnds()
->union(self.parent.allOppositeAssociationEnds())

Appendix C

Structural Constraints for MFERT Models

Similar to an approach that uses a UML Profile to restrict real-time system designs with UML
Class Diagrams for validation [AdSSL+01], we here restrict UML Class Diagrams for valida-
tion of MFERT as follows.

C.1 ProductionDataType

A Production Data Type defines a tuple1 of data types. The constraints forProductionData-
Type are:

1. All attributes must be of a kind of data type.

self.allAttributes()->forAll(attr:Attribute |
attr.type.oclIsKindOf(DataType))

2. Only query operations are allowed for Production Data Types. Constructor operations,
i. e., operations that have a name that is equal to the type name, are excluded.

self.allOperations()->forAll(op:Operation |
op.name <> self.name implies op.isQuery = true)

3. Production Data Types are passive classes.

self.isActive = false

4. Production Data Types may only inherit from other Production Data Types.

self.allParents()->forAll(g:GeneralizableElement |
g.stereotype.name->includes(’ProductionDataType’))

5. A Production Data Type may not have an association among itself.

1Note that the package UML::Foundation::Core declares attributes of classes as ordered.

217

218 APPENDIX C. STRUCTURAL CONSTRAINTS FOR MFERT MODELS

self.associations()
->select(a:Association |

a.connection->select(ae:AssociationEnd |
ae.participant = self)

->size() > 1)
->isEmpty()

6. A Production Data Type may only aggregate or be composed of data types or Production
Data Types.

self.associations()
->select(a:Association |

a.connection->includes(ae:AssociationEnd |
(ae.aggregation = AggregationKind::aggregate or
ae.aggregation = AggregationKind::composite)
and ae.participant = self))

-- now get all AssociationEnds from selected Associations
->collect(a:Association | a.connection)
->forAll(ae:AssociationEnd |

ae.participant.stereotype.name->includes(’ProductionDataType’)
or ae.participant.oclIsKindOf(DataType))

C.2 ElementList

TheElementList stereotype represents a parameterized interface that provides certain opera-
tions dedicated to manage lists with elements of a certain Production Data Type. The elements
of such lists must all be of the same type which is given as a parameter toElementList and
restricted to be a Production Data Type. The constraints ofElementList are:

1. This constraint specifies the operations that must at least be provided by classes that are
compliant to theElementList interface. We implicitly assume that additional appro-
priate constructors are available and that the usual FIFO semantics are defined for the
operations.

let operationNames : Set(Name) =
Set{’getElementType’,’addElement’,’getElement’,’deleteElement’}
in
self.allOperations().name->includesAll(operationNames)

2. The parameter must be a Production Data Type.

self.typedParameter->size() = 1 and
self.typedParameter.stereotype.name->includes(’ProductionDataType’)

3. Each Element List belongs to at most oneProductionElementNode.

context ProductionElementNode inv:
ProductionElementNode.allInstances
->forAll(x,y:ProductionElementNode |

(x <> y implies x.inputSequence <> y.inputSequence) and
(x <> y implies x.outputSequence <> y.outputSequence))

C.3. MFERTNODE 219

C.3 MFERTNode

MFERTNode is the abstract superclass ofProductionProcessNode andProductionElement-
Node. The constraints ofMFERTNode are:

1. MFERT nodes are abstract.

self.isAbstract = true

2. MFERT nodes may only inherit from other MFERT nodes.

self.allParents()->forAll(g:GeneralizableElement |
g.stereotype.name->includesAll(self.stereotype.name)

3. Associations between two MFERT nodes are necessarily modeled usingElementFlow

associations.

MFERTNode.allInstances->forAll(m,n : MFERTNode |
m <> n implies
m.associationEnds()
->intersection(n.oppositeAssociationEnds())
->collect(ae:AssociationEnd | ae.association)
->forAll(a:Association |

a.stereotype.name->includes(’ElementFlow’))

4. There is at most one relationship between each pair of MFERT nodes. It might be a gener-
alization or an association. The latter case is already partially handled. If the relationship
is a generalization, the participating MFERT nodes must be of the same subclass, i. e.
either Production Process Nodes or Production Element Nodes.

MFERTNode.allInstances->forAll(m,n : MFERTNode |
m <> n implies
(
(m.associationEnds()
->intersection(n.oppositeAssociationEnds())->size() <= 1
and m.allParents()->excludes(n)
and n.allParents()->excludes(m)

)
xor
(
(m.allParents()->includes(n) or n.allParents()->includes(m))
and m.type = n.type
and m.associationEnds()

->intersection(n.oppositeAssociationEnds())->isEmpty()
)

)

5. An MFERT node may not have an association among itself.

220 APPENDIX C. STRUCTURAL CONSTRAINTS FOR MFERT MODELS

self.associations()
->select(a:Association |

a.connection->select(ae:AssociationEnd |
ae.participant = self)->size() > 1)

->isEmpty()

6. In MFERT designs, we do not allow aggregation and composition of MFERT nodes.

self.associations()
->select(a:Association |

a.connection->includes(ae:AssociationEnd |
(ae.aggregation = AggregationKind::aggregate
or ae.aggregation = AggregationKind::composite)
and ae.participant = self))

->isEmpty()

C.4 ProductionProcessNode

Production Process Nodes are subclasses of MFERTNodes. They consume from and send pro-
duction elements to Production Element Nodes. The constraints ofProductionProcessNode

are:

1. Each Production Process Node has its own thread of control.

self.isActive = true

C.5 ProductionElementNode

Production Element Nodes are subclasses of MFERT nodes. They store production elements for
further processing by subsequent Production Process Nodes. The tagged valueelementType

determines the Production Data Type of the production elements that can be stored. Two
lists with production elements are managed by a Production Element Node (one is for in-
coming, the other for outgoing production elements). The tagged valuetime is used to
specify a cyclic interval for shifting of elements between the two lists. The tagged values
inputCapacity andoutputCapacity specify the maximal capacity of the lists. The con-
straints ofProductionElementNode are:

1. Production Element Nodes are passive.

self.isActive = false

2. The two Element Lists are storing instances of the type that is specified by the tagged
valueelementType:

C.6. ELEMENTFLOW 221

self.inputList.getElementType().oclIsTypeOf(self.elementType)) and
self.outputList.getElementType().oclIsTypeOf(self.elementType))

3. The value of the tagged valuestime, inputCapacity, andoutputCapacity must be
non-negative.

self.time > 0 and self.inputCapacity > 0 and self.outputCapacity > 0

C.6 ElementFlow

ElementFlow represents a restricted association between MFERT nodes. For brevity rea-
sons, the tagged value source is set to the classifier that is identified via the participant as-
sociation of the first element in the ordered list of association ends (determined by metaclass
AssociationEnd. The tagged value target is set to the classifier that is identified via the partic-
ipant association of the second element in the ordered list of association ends. The tagged value
type identifies a Production Data Type. Only instances of this data type may be transferred
between the connected MFERT nodes from the source towards the target end. The constraints
of ElementFlow are:

1. Element Flow associations are only allowed between two concrete MFERT nodes:

self.connection->size() = 2 and
self.connection.participant
->forAll(c:Classifier | c.stereotype.name

->includes(’ProductionProcessNode’)
or c.stereotype.name

->includes(’ProductionElementNode’))

2. The two tagged valuessource andtarget are equal to the two classifiers that are deter-
mined by the two association ends of the Element Flow:

self.source = self.connection->at(1).participant and
self.target = self.connection->at(2).participant

3. ElementFlow associations are only allowed between concrete subclasses of MFERT
nodes of different types, i. e., between Production Process Nodes and Production Ele-
ment Nodes:

(self.source.stereotype.name->includes(’ProductionElementNode’)
and
self.target.stereotype.name->includes(’ProductionProcessNode’))

xor
(self.source.stereotype.name->includes(’ProductionProcessNode’)
and
self.target.stereotype.name->includes(’ProductionElementNode’))

222 APPENDIX C. STRUCTURAL CONSTRAINTS FOR MFERT MODELS

4. Navigation alongElementFlow associations is always possible in both directions, i. e., at-
tributeisNavigable is true, but only for directly involved classifiers, i. e.,visibility

is protected. We restrict multiplicity of association ends to 1, as anElementFlow as-
sociation shall indicate a relationship between two instances of MFERT nodes. The
targetScope is the instance level (this is the default and does not need to be fixed), and
anordering does not need to be specified, as only one target end exists.ElementFlow

associations neither specify aggregation nor composition relationships, soaggregation

is ‘none’. Qualifying attributes are not considered for Element Flows. The following
OCL formula summarizes these restrictions:

self.connection->forAll(ae:AssociationEnd |
ae.isNavigable = true

and ae.multiplicity = 1
and ae.visibility = VisibilityKind::protected
and ae.aggregation = AggregationKind::none
and ae.qualifier->isEmpty())

5. EachElementFlow association is associated with a Production Data Type which is rep-
resented by the tagged valuetype. That tagged value must reference to the same type as
specified by the participating Production Element Node:

(self.source.stereotype.name
->includes(’ProductionElementNode’)

implies self.type = self.source.elementType)
and
(self.target.stereotype.name

->includes(’ProductionElementNode’)
implies self.type = self.target.elementType)

Appendix D

Property Specification Patterns with OCL

Table D.1: OCL Expressions for Existence Pattern (Assumptions as in Table 3.2)

P becomes true. . .

. . . globally init: self@post()->forAll(g | g->includes(P))

. . . beforeR init: self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

. . . afterQ inv: self.oclInConf(Q) implies self@post()->forAll(g | g->includes(P))

. . . betweenQ andR
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

. . . afterQ until R
inv: oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

Table D.2: OCL Expressions for Universality Pattern (Assumptions as in Table 3.2)

P is true. . .

. . . globally inv: self.oclInConf(P)

. . . beforeR init: self@post()->forAll(g | g->startsWith(Sequence{P, R}))

. . . afterQ
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->forAll(conf | conf = P))

. . . betweenQ andR
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{P, R}))

. . . afterQ until R
inv: self.oclInConf(Q) implies

not self@post()->exists(g |

g->startsWith(Sequence{not R, not P and not R}))

223

224 APPENDIX D. PROPERTY SPECIFICATION PATTERNS WITH OCL

Table D.3: OCL Expressions for Precedence Pattern (Assumptions as in Table 3.2)

S precedesP . . .

. . . globally init: not self@post()->exists(g | g->startsWith(Sequence{not S, P}))

. . . beforeR init: self@post()->forAll(g | g->startsWith(Sequence{not P, S or P}))

. . . afterQ
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{Q, not P, S}))

. . . betweenQ andR
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{not P, S or R}))

. . . afterQ until R
inv: self.oclInConf(Q) implies

not self@post()->exists(g | g->startsWith(Sequence{not S and not R, P}))

Table D.4: OCL Expressions for Response Pattern (Assumptions as in Table 3.2)

S responds toP . . .

. . . globally inv: self.oclInConf(P) implies self@post()->forAll(g | g->includes(S))

. . . beforeR
inv: self.oclInConf(P) implies

self@post()->forAll(g | g->startsWith(Sequence{not R, S}))

. . . afterQ
inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->includes(Sequence{P, true[0,’inf’], S})

. . . betweenQ andR
inv: self.oclInConf(Q) implies self@post()->forAll(g |

g->includes(Sequence{P, not R [0,’inf’], S, not R [0,’inf’], R}))

. . . afterQ until R
inv: self.oclInConf(Q) implies self@post()->forAll(g |

g->startsWith(Sequence{not R, P, not R[0,’inf’], S}))

	1 Introduction
	1.1 Research Goals and Contributions
	1.2 Example: Manufacturing Case Study
	1.3 Outline

	2 Unified Modeling Language
	2.1 UML Language Definition
	2.2 Survey of UML Diagrams
	2.3 Details of Selected Parts of UML
	2.3.1 UML Class Diagrams
	2.3.2 UML State Diagrams
	2.3.3 Object Constraint Language
	2.3.4 UML Extension Mechanisms

	2.4 UML and Time
	2.4.1 Time and Timing Constraints in Standard UML
	2.4.2 Modeling Real-Time System Architectures with UML
	2.4.3 Time-Annotated State Diagrams

	2.5 Contributions of the Chapter

	3 Formal Verification
	3.1 Automata-Based Modeling Approaches
	3.2 Formal Specification
	3.2.1 Temporal Logics
	3.2.2 Property Specification Patterns

	3.3 Symbolic Model Checking
	3.4 Real-Time Model Checking
	3.5 Selection of a Real-Time Model Checking Tool
	3.6 RAVEN
	3.6.1 Interval Structures
	3.6.2 Clocked Computation Tree Logic
	3.6.3 RAVEN Input Language (RIL)
	3.6.4 Graphical User Interface

	3.7 Contributions of the Chapter

	4 Extended Object Model
	4.1 Syntax
	4.1.1 Types
	4.1.2 Classes and their Characteristics
	4.1.3 Abstract Syntax of State Diagrams
	4.1.4 Associations
	4.1.5 Generalization

	4.2 Semantics
	4.2.1 Objects
	4.2.2 A Note about State Diagram Inheritance
	4.2.3 State Configurations
	4.2.4 Links
	4.2.5 System State
	4.2.6 Semantics of Operation oclInState(statename:OclState)
	4.2.7 Traces

	4.3 Discussion
	4.4 Contributions of the Chapter

	5 A Timed UML State Diagram Variant
	5.1 Syntactical Restrictions
	5.2 Syntax
	5.3 Semantics
	5.4 Translation to I/O-Interval Structures
	5.4.1 Generating I/O-Interval Structures
	5.4.2 Transition Mapping

	5.5 Contributions of the Chapter

	6 MFERT
	6.1 MFERT Graphs
	6.2 Formal MFERT Model
	6.3 Dynamic Semantics of MFERT
	6.3.1 Production Process Nodes
	6.3.2 Production Element Nodes
	6.3.3 Message Passing
	6.3.4 Conflict Resolution in PENs
	6.3.5 Simulation Implementation

	6.4 A UML Profile for MFERT
	6.4.1 MFERT Graphical Notation in Class Diagrams
	6.4.2 Validation Constraints
	6.4.3 Mapping to the Formal MFERT Model

	6.5 Contributions of the Chapter

	7 Real-Time Properties with OCL
	7.1 UML Profile for Real-Time Constraints with OCL
	7.1.1 OCL Metamodel Extensions
	7.1.2 Concrete Syntax Changes
	7.1.3 Standard Library Operations
	7.1.4 Semantics of Temporal Expressions

	7.2 Expressing Specification Patterns
	7.3 Mapping to the Temporal Logics CCTL
	7.4 Temporal OCL Queries
	7.5 Related Work
	7.6 Implementation
	7.7 Contributions of the Chapter

	8 Manufacturing Case Study
	8.1 The MFERT Model
	8.2 Real-Time OCL Constraints and CCTL Formulae

	9 Conclusion
	9.1 Future Work

	Literature
	A Timed Finite State Machines for PPNs
	A.1 Help Functions
	A.2 Operational Semantics
	A.3 Consumption and Production Actions
	A.4 Restrictions
	A.5 Mapping to I/O-Interval Structures

	B OCL Metalevel Operations for Classifiers
	C Structural Constraints for MFERT Models
	C.1 ProductionDataType
	C.2 ElementList
	C.3 MFERTNode
	C.4 ProductionProcessNode
	C.5 ProductionElementNode
	C.6 ElementFlow

	D Property Specification Patterns with OCL

