UML-Based Specification of
State-Oriented Real-Time Properties

Dissertation

A thesis submitted to the
Faculty of Computer Science, Mathematics and Electrical Engineering
of the Universiat Paderborn in partial fulfillment
of the requirements for the degree of Dr. rer. nat.

by
Stephan Flake

Paderborn, December 2003

Supervisors:

1. Prof. Dr. rer. nat. Franz J. Rammig, UniveasiPaderborn
2. Prof. Dr. rer. nat. Gregor Engels, Unive&iPaderborn
3. Prof. Dr. rer. nat. Martin Gogolla, UniverattBremen

Date of public examination: December 19, 2003

Dedicated to my family

Abstract

In recent years, the Unified Modeling Language (UML) has received significant attention by
software designers to model object-oriented software systems. Complementary to UML dia-
grams, modelers can make use of the textual Object Constraint Language (OCL) to specify
additional constraints for their models. OCL is particularly used to formulate constraints over a
given UML model in form of class invariants and operation pre- and postconditions. However,
the semantics of OCL is still incomplete, even in the latest OCL 2.0 proposal that has recently
been adopted by the Object Management Group. While it is allowed to make use of states from
State Diagrams in OCL expressions to reason about their activations, there is currently no cor-
responding semantics defined in the adopted OCL 2.0 specification. As a first goal, this thesis
closes that gap and provides a formal notion of state configurations over UML State Diagrams
that is integrated into the formal semantics of the adopted OCL 2.0 specification.

The second major goal of this thesis is to extend OCL to support specification and analy-
sis of temporal state-oriented constraints for UML models of time-critical software-controlled
systems. In order to demonstrate the applicability of this extension, the thesis focuses on early
stages of the software development process and applies time-bounded state-oriented OCL con-
straints to specify requirements in the domain of modeling time-constrained manufacturing sys-
tems. For the structural modeling of manufacturing systems a restricted version of UML Class
Diagrams is employed, and for the behavioral modeling a timed UML State Diagram variant
with a corresponding time-related semantics is presented.

In addition, this thesis also provides a semantics for both the regarded kind of UML models
and the time-bounded state-oriented OCL extension by mappings to formal target languages,
i.e., time-annotated state-transition systems and temporal logics. This allows to perform auto-
mated formal analysis with existing verification tools. The motivation behind the mapping is
the idea to abstract from the rather cryptical input languages of verification tools, in particular
the temporal logics used in the formal verification technique called model checking.

Contents

1 Introduction
1.1 Research Goals and Contributions01}
1.2 Example: Manufacturing Case Study o
1.3 Outline e

2 Unified Modeling Language 15
2.1 UML Language Definition i.i15
2.2 Survey of UML Diagrams
2.3 Details of Selected Parts of UML i

231 UMLCIlassDiagrams
2.3.2 UMLStateDiagrams e
2.3.3 Object Constraint Language o
2.3.4 UML Extension Mechanisms
24 UMLandTime e
2.4.1 Time and Timing Constraints in Standard UML

2.4.2 Modeling Real-Time System Architectures with UML

2.4.3 Time-Annotated State Diagrams oo

2.5 Contributionsofthe Chapter

3 Formal Verification by
3.1 Automata-Based Modeling Approaches 56

3.2 Formal Specification
3.2.1 Temporal Logics
3.2.2 Property SpecificationPatterns

3.3 Symbolic Model Checking

3.4 Real-Time ModelChecking.

3.5 Selection of a Real-Time Model Checking Tool

3.6 RAVEN e
3.6.1 Interval Structures i
3.6.2 Clocked Computation TreeLogiCi.i
3.6.3 RAVEN InputLanguage (RIL)
3.6.4 Graphical User Interface

3.7 Contributionsofthe Chapter

ii CONTENTS

4 Extended Object Model 85
4.1 SYNAX . . o v e (.1 86
411 TYPES . o e i 87
4.1.2 Classes and their Characteristicsi% 88
4.1.3 Abstract Syntax of State Diagrams i 91

4.1.4 Associations
4.1.5 Generalization

4.2 SemantiCsS e
4.2.1 Objects
4.2.2 A Note about State Diagram Inheritance
4.2.3 State Configurationso
424 Links e
425 SystemState
4.2.6 Semantics of Operation oclinState(statename:OclState)
427 TraCesS o o e e e
4.3 DISCUSSION e e

4.4 Contributionsofthe Chapter i

5 ATimed UML State Diagram Variant
5.1 Syntactical Restrictions
5.2 Syntax
53 Semantics
5.4 Translation to I/O-Interval Structures

5.4.1 Generating I/O-Interval Structures
542 TransitonMapping
5.5 Contributions ofthe Chapter il

6 MFERT

6.1 MFERT Graphs

6.2 Formal MFERT Model

6.3 Dynamic Semanticsof MFERT
6.3.1 Production ProcessNodes
6.3.2 ProductionElementNodes
6.3.3 Message Passing
6.3.4 Conflict ResolutioninPENs
6.3.5 Simulation Implementation.

6.4 AUMLProfileforMFERT
6.4.1 MFERT Graphical Notation in Class Diagrams
6.4.2 \ValidationConstraints

6.4.3 Mapping to the Formal MFERT Model
6.5 Contributions of the Chapter

CONTENTS iii

7

Real-Time Properties with OCL
7.1 UML Profile for Real-Time ConstraintswithOCL
7.1.1 OCL Metamodel Extensions
7.1.2 Concrete SyntaxChanges
7.1.3 Standard Library Operations
7.1.4 Semantics of Temporal Expressions i
7.2 [Expressing SpecificationPatterns
7.3 Mapping to the Temporal LogicsCCTL
7.4 Temporal OCLQUErES i e e e e e
7.5 RelatedWork
7.6 Implementation
7.7 Contributionsofthe Chapter L.

Manufacturing Case Study :
8.1 TheMFERT Model
8.2 Real-Time OCL Constraints and CCTL Formulae

9 Conclusion 1195
9.1 Future WOrk e, i..A97

Literature 199

A Timed Finite State Machines for PPNs P21a

Al HelpFunctions ;
A.2 Operational Semantics
A.3 Consumption and Production Actions 213
A4 Restrictions

A.5 Mapping to I/O-Interval Structures

OCL Metalevel Operations for Classifiers 215

Structural Constraints for MFERT Models
C.1 ProductionDataType
C.2 ElementList e e i
C.3 MFERTNode
C.4 ProductionProcessNode
C.5 ProductionElementNode
C.6 ElementFlow

Property Specification Patterns with OCL 1223

CONTENTS

Chapter 1

Introduction

I’m writing a book.
| have the page numbers down...
| just have to fill in the rest.
— Steven Wright

Developing software systems is a difficult and error-prone task. Nowadays, software is still in
almost all cases developed in a rather pragmatic way. In the software design process, different
software development phases are usually identified. Basically, they can be separated into phases
like informal requirement gathering, analysis, specification, design, implementation, and test-
ing. These phases are not strictly sequential but rather overlapping, iterative, or carried out in
parallel for different parts of the system under development.

While some approaches focus on the implementation of a system already in early phases
of development (e.g., eXtreme programmiing.[Bec00]), others try to separate system modeling
from the actual task of implementation. Latter approaches mostly p&gfarm-independent
modelfor the complete design of an application. One of the most popular approaches in this
context is theModel-Driven Architectur§MDA) by the Object Management Grouf). [OMG]
that bases upon industrial modeling standards like the Unified Modeling Language (UML),
Meta Object Facility (MOF), and XML Metadata Interchange (XMI). From these standards,
UML provides means to build object-oriented models of a system under consideration in form
of a rich set of standardized graphical diagrams.

UML. UML unifies a number of different modeling languages and is still undergoing a de-
velopment under the control of the OMG consortium. At the time of writing this thesis, the
latest official version released by the OMG is UML 1.5, published in March 2003 JOMGO03d].
More recently, the OMG adopted a number of proposals to build a new version of UML, i.e.,
UML 2.0. These proposals are still undergoing a finalization process. In the context of this
of particular interest, while the proposals for a UML 2.0 Infrastructiiré [OM&03e] and a UML
2.0 Superstructuré [OMG3f] have less impact on this work.

5

6 CHAPTER 1. INTRODUCTION

UML defines a number of diagrams to model different aspects of the structure and behavior
of software systems. For example, Class Diagrams are used to describe the static structure of
a system, while UML State Diagrams model the (reactive) behavior of objects. In addition to
the set of diagrams, the textual Object Constraint Language (OCL) is an integral part of the
UML to specify restrictions on values of parts of UML models. Basically, OCL constraints are
invariants attached to classes or pre- and postconditions of operations. Significant parts of OCL

However, the formal semantics of OCL is still incomplete, as it currently lacks an integration
of UML State Diagrams, although it is already possible to formulate constraints that refer to
the states specified in UML State Diagrams. One aspect of this thesis is to extend the formal
semantics of OCL by a formal integration of UML State Diagrams and to provide the formal
semantics for state-related OCL operations.

UML has already been applied in different application domains, e.g., to niaulcritical
systems, correct time-constrained behavior is an essential requirement to meet, e.g., timing
bounds for message delays and progress of system execution. In this context, it is desirable to
be able to identify improper behavior w.r.t. thesming requirementslready in early phases
of development. Otherwise, overall goals like meeting project deadlines and adherence to es-
timated costs may fail due to the need of time-consuming and expensive re-designs at a later
stage of development.

The current version 1.5 of UML as well as the corresponding, recently adopted UML 2.0
proposals provide some basic means to specify timing requirements. In particular, timing anno-
tations can be applied in Sequence Diagrams to specify timing bounds for durations of message
transfers and replies to messages sent. However, UML does not have an inherent timing model,
as it is designed to be a general modeling language with a focus on software systems, such that
these means are not well integrated into the core concepts of UML.
cannot be expressed with standard UML means. Different approaches have already introduced
corresponding extensions, in particular, extensions of UML Sequence Diagrams to enhance
time-bounded specifications of communication flow among objects have been published in

,,,,,,,,,,,,,,,, FHDY99,iKMR02]. In contrast, this thesis introduces a consistent temporal extension
of the textual constraint language OCL and focuses on specification of time-bounded state-
oriented constraints to reason about the time-critical progress of system execution.

OCL constraints do not make sense without a given model to refer to. In order to have a
corresponding timed UML model to refer to, this thesis introduces a timed UML State Diagram
variant for behavioral modeling. This State Diagram variant supports a set of UML model
elements that have so far not been considered in related work on timed UML State Diagrams
(cf. [EWO0,:DM0% :KMR02]). In particular, the presented timed UML State Diagram variant
preserves UML model elements like interlevel transitions, synchronous and asynchronous event
communication, elapsed time events, and activities that have a notable duration.

MFERT. To validate the applicability of the temporal state-oriented OCL extension, the do-
main of modeling manufacturing systems is chosen. Manufacturing systems are time-critical

w.r.t. production flow, i.e., production progress is time-bounded and corresponding deadlines
have to be met.

This thesis builds upon an existing graphical notation for modeling manufacturing systems,
ie., MFER‘I’I MFERT is a general description scheme for modeling in the domain of manu-
facturing systems [DW93,.5¢chi96, DW97]. It has been successfully applied in different projects
with various industrial partners and is acknowledged by the German science award of logistics.
Similar to Petri Nets, the structure of an MFERT model is a bipartite graph of nodes that repre-
sent either production processes or storages for production elements. Directed edges between
nodes denote the flow of production elements.

Different variants of MFERT have already been investigated. Based on Schneider’s func-
framework of C++ functions[HgI99] and Quintanilla de Simsek presented a formal verification
approach for MFERT models JQuiD1]. However, Quintanilla de Simsek defined the graphical
notation to model system behavior from scratch and did not consider explicit time, whereas this
thesis builds upon UML concepts and employs a notion of time for MFERT models as well as
corresponding requirements. In particular, this theses defines the structural elements of MFERT
as stereotypes in a UML Profile and employs the timed UML State Diagram variant mentioned
above for behavioral modeling. Through this approach, OCL constraints can be directly applied
to MFERT models.

Concerning the evolution of time — especially w.r.t. the dynamic semantics of the timed vari-
ant of UML State Diagrams — a discrete underlying timing model is considered to be sufficient
for the chosen modeling approach, as a broad range of manufacturing system behavior can be
described based on message exchange by discrete events. For manufacturing processes (such
as milling or drilling), we assume a finite time duratioror finite duration intervalz, y|. The
basic discrete timing unit has to be chosen to be precise enough to represent the actual physical
time.

Formal Verification by Model Checking. Nowadays, simulation and testing is still fre-
guently applied to validate the correct behavior of time-dependent software systems. But due to
the increasing complexity of software systems, it is getting more and more difficult to identify
and examine all possible execution paths during the design process, e.g., by simulation, as the
state space grows exponentially with the number of inputs and internal states. On the other
hand, in recent years different formal verification methods, e.g., equivalence checking, model
checking, and SAT solving, have been successfully appliéortoally verifythe correctness of
hardware and software designs.

In particular, model checking has been successfully applied to formally verify digital circuits
and communication protocols. Model checking is due to the work by Clarke and Emerson
[CE8Z] and takes a set of finite state machines (the model) and a set of temporal logics formulae
(the properties to fulfill) as its input. Then —and this is the most remarkable advantage of model
checking — the task of verifying a model over the specified properties is fully automated, i.e.,
a model checking tool lists for each property whether it is true or false for the given model.
Moreover, a model checking tool typically generates a counter example in cases when the model

IMFERT is an acronym for "Modell der FERTigung” (German for: Model of Manufacturing).

8 CHAPTER 1. INTRODUCTION

does not satisfy a property. A counter example demonstrates an execution of the model that
leads to a situation which falsifies the property. This is very helpful for detailed error analysis.
One of the most popular model checking tools is SZiVMt that model checker does not support
explicit modeling of time. Nevertheless, there are also model checkers that allow models and
property specifications with explicit time, e.g., UPPARand RAVEN (Real-Time Analyzing

data analysis, i.e., not only requirements with yes/no answers can be checked, but also minimal
and maximal execution times or data values can be determined.

While formal verification by model checking is a helpful method to formally and automati-
cally verify a model over specified properties, widespread acceptance is still not achieved. One
reason is that model checking has to explore the complete state-space of the model, and the re-
sulting structure to investigate requires a lot of run-time computer memory (due to the so-called
state explosion problemAs a consequence, model checking tools have to build and use an ef-
ficient symbolic internal representation to cope with the huge overall state space, e.g., SMV and
RAVEN make use of a symbolic model representation by means of so-called Binary Decision

..............

and different reduction techniques are often applied to leave out and abstract from parts of the
model which are not needed to prove certain properties. However, automated support for these
reduction techniques is limited.

Moreover, it is often difficult for system designers, software engineers, and programmers
to formulate required properties in an unambiguous formal way, as they are usually not trained
in temporal logics. Thus, it is hard for them to read, understand, or even formulate temporal
formulae. Several approaches have already been regarded to overcome these problems. E.g., in
order to abstract from temporal logics for property specification, timing diagrams or structured

patterns, as practice has shown that the entire expressive power of temporal logics is not needed
[DACY84d]. Unfortunately, acceptance of these approaches lacks due to a missing modeling
standard to base upon. An important aspect of the temporal OCL extension introduced in this
thesis is that it has the expressive power to formulate all of those properties that are listed in the

Scope. This thesis introduces an approach to specify state-oriented real-time system prop-
erties based on concepts of the UML, especially its textual expression language OCL. With
an extension that is consistent with common OCL concepts, we abstract from temporal logics
formulae that are usually applied for property specifications.

For a concise, well-defined modeling language, we consider the domain of time-critical
manufacturing systems and define a restricted UML-based version of the graphical MFERT
notation. On the one hand, the structural elements of MFERT are embedded into the general
concepts of UML by means of a UML Profile and a timed variant of UML State Diagrams is em-
ployed. On the other hand, as UML provides a vast variety of additional modeling elements, the
set of regarded UML model elements is restricted by additional validation constraints. MFERT

2http://www-2.cs.cmu.edu/ modelcheck/smv.html
Shttp://www.uppaal.com

1.1. RESEARCH GOALS AND CONTRIBUTIONS 9

models that comply to these constraints are translated to the formal langub@eloferval
Structureghat constitutes the input language of the RAVEN model checker.

In order to develop a temporal state-oriented extension based upon standard OCL, the formal
semantics definition of OCL has first to be equipped with a notion of state configurations over
and a formal semantics for static and temporal state-related OCL operations is defined by means
of interpretation functions over this extended object model. Additionally, state-oriented real-
time OCL constraints are mapped to a time-annotated temporal logics €lléd (Clocked
Computation Tree Logic) that constitutes the property specification language of the RAVEN
model checker.

Thus, a formal semantics of state-oriented real-time OCL constraints over MFERT models
is established by the formal relation of temporal CCTL formulae and I/O-Interval Structures.
However, note that this thesis focuses on modeling and specification of time-related system
properties, such that it is not in the scope of this thesis to perform optimizations for verification
purposes, e.g., to overcome the state explosion problem. This topic is addressed in Zabel's
diploma thesis [Zah(3].

A case study in the domain of manufacturing systems with automated guided vehicles is
used as a running example throughout this thesis. The scenario description is given in Section
i1.2.

1.1 Research Goals and Contributions

The overall goal of this thesis is to develop a formalization of parts of UML together with a
constraint language to enable modelers to specify required system properties in a more practical
way compared to pure temporal logics formulae. A focus is put on time-critical manufacturing
systems and their time-bounded behavioral properties. In particular, this thesis addresses the
following issues:

¢ An underlying general formal model for a part of the UML, namely Class Diagrams and
State Diagrams, is defined. We denote this modekésnded object model

e Based upon the extended object model, the formal semantics of the OCL operation
oclInState () thatis part of the OCL Standard Library of operations is defined.

e Atimed UML State Diagram variant is presented and a formal semantics is given to that
notation by a translation to timed finite state machines, i.e., I/O-Interval Structures.

e A UML Profile for the structural elements of MFERT is introduced. Additional validation
constraints restrict the rich set of UML model elements that are considered for translation
into the formal language of 1/0-Interval Structures. In particular, the timed UML State
Diagram variant is employed for behavioral modeling of production processes.

e A temporal extension of OCL is presented that is consistent with existing OCL concepts
and enables modelers to specify state-oriented time-bounded properties. The semantics

10 CHAPTER 1. INTRODUCTION

of the temporal OCL extension is defined oveaces i.e., sequences of system states
over (instantiations of) the extended object model.

Temporal OCL expressions can also be directly mapped to time-annotated temporal log-
ics formulae in CCTL. This establishes a formal relationship between temporal OCL
constraints and the considered UML-based MFERT models, as CCTL formulae have a
formal semantics over I/O-Interval Structures.

¢ In conformance with the latest attempts to interpret OCL as a more general expression
and query language, an OCL extension towards specificatibmifg and data analysis
gueriesis introduced.

e A case study in the domain of manufacturing systems validates the applicability of the
approach.

The chapters are based upon publications of recent years. The overall approach has been

user-centered design was outlined. An informal description of the considered part of MFERT
and an outline of a mapping to the target language of I/O-Interval Structures was published in
[EMPROQ].

A formal semantics for state-oriented OCL operations was publishéd in.[EM03c]. In this

context, a redefinition of the OCL 2.0 Standard Library w.r.t. the representation of OCL types
Based on our experiences from property specifications in structured language by means of
patternsi[FIMR00], a more general approach in the style of a programming language — leading to

In [EM0Z2K], two UML Profiles were presented to demonstrate how the considered exten-
sions can be consistently applied to the UML metamodel. An extended version of this article
has recently been published in a special issue of the Journal of Software and Systems Modeling

(SoSyM) {EMO3b].

1.2 Example: Manufacturing Case Study

applied as a running example throughout the remainder of this thesis. It is composed of a set
of different manufacturing stations and a transport system as it is illustrated by the virtual 3D

.........

The different manufacturing stations transform items, e.g., by milling, drilling, or washing.
An input buffer at each station can keep up to 3 items before they are actually transformed.
Similarly, output buffers keep up to 3 items to be picked up by AGVs for further transport.

“4Details about this 3D Animation can be foundiin [BEMWOQ, EMO01].

1.2. EXAMPLE: MANUFACTURING CASE STUDY 11

Figure 1.1: 3D Model of the Manufacturing Scenario

The transport system consists of a set of automated guided vehicles (AGVSs), i.e., autonomous
vehicles that carry items between stations. Each AGV can take only one item at a time. For

input and output of items in the system we assume an input station and an output station. The
items to process in the considered manufacturing systems are of two different kinds:

¢ Items of typeenginehave to be carried from the input station to the station responsible
for milling, then to drilling, to washing, and finally to the output station.

¢ Items of typeshafthave to be carried from the input station to the station responsible for
drilling, then to washing, and finally to the output station.

Negotiation for transporting items is carried out by a station output buffer offering an item
to transport and AGVs proposing to actually perform the transport.

e An AGV g; is idle until it receives a request for delivery from a statipnThen, it

1. sends a bid in form of the distance from its current positio#), o

2. moves tos;, on notification of acceptance frosy,

3. takes the item from the output buffer@fand moves to the next destination station,
4. moves to a parking position and returns to Step 1.

For position management, we assume that the vehicles are equipped with sensors to mea-
sure the distance from obstacles and define some essential intermediate positions the ve-

.....

that figure shows, the positions are named by identifiers, egstands for the position
at theinput bufferof stationmill.

12

CHAPTER 1. INTRODUCTION

i %o Position Names
*pd *ad in : input storage
ou : output storage
ao : after output storage
pm : pre mill
*“m °q W o mi : mill input buffer
. mo : mill output buffer
- emo wi-e)§> am : after mill
= ° ° pd : pre-position drill
Z | i c2 o4 wo o 2| | | : drillinput buffer
aw do : drill output buffer
*om ° ° ad : after drill
c3 pw : pre-position wash
wi : wash input buffer
wo : wash output buffer
aw : after wash
. c1 : center position 1
o o0 oY c2 : center position 2
m ouT ¢3 : center position 3
c4 : center position 4

Figure 1.2: Managed Intermediate Positions for AGVs

e Once having located a completed workpiece at its output buffer, a station

1.

w

N o g k&

sends a request for delivery to the next destination station (more specifically, its
input buffer)inBu.f ferges:,

Is waiting for a notification fromin Bu f ferg..; for a specific time period,

returns to Step 1 ifnBuf ferq.s; does not reply or answers with a reject to the
request,

broadcasts a request for delivery to all AGVs,
is collecting bids with distances from idle AGVsa; for a specific time period,
returns to Step 4 if no AGV replies,

selects one AGV; from all received distances, notifies AGVa;, for its acceptance
and notifies the other AGVs for their rejection.

In addition to this scenario description of the manufacturing system, different requirements
concerning the time-bounded execution have to be met. Time-bounds are essential to be able to

determine

the performance and throughput of the system under consideration. For example, it

could be required that each transport by means of an AGV has to be completed within 300 time
units. Additionally, in order to guarantee production progress, it might be required that each
AGV is idle for at most 400 time units. Note that similar time-bounded requirements apply for
the stations as well. UML modelers will be able to express such kind of requirements with the
temporal OCL extension that is developed in this thesis.

1.3. OUTLINE 13

1.3 Outline

indicates a dependency, i.e., the chapter at the origin of an edge provides concepts for the chapter
to which the edge leads to. In chapters that have more than one incoming edge, concepts from
different sources are (formally) integrated.

. Unified Modeling Language (UML) Formal Verification by
Foundation Real-Time Model Checking
Chapter 2 Chapter 3
Y Y
Formalization of Formal Model of a
Extended Timed Variant of
Object Models UML State Diagramts
Chapter 4 Chapter 5
Formalization l/ \l
Y Y
State-Based
it Real-Time OCL Properties
Chapter 6 Chapter 7
y y
Application Formal Verification of Real-Time Properties over MFERT Models

Figure 1.3: Chapter Overview

In Chaptef 2, an overview of UML is given, putting an emphasis on those parts of UML that are
of particular relevance for this thesis, i.e., UML Class Diagrams, State Diagrams, and OCL.
Chaptei 3 provides an introduction to formal verification, especially for the method of model
checking under timing aspects (so-called real-time model checking).

Chaptef 4 presents an extension of object models, which are a formalization of Class Diagrams
introduced by Richters in [Ri¢01]. In that chapter, UML State Diagrams are formally integrated
into object models, and a general notion for sequences of system states is defined.

Chaptef 5 introduces a variant of UML State Diagrams. As the UML standard does not make
concrete assumptions about times for the execution of actions, activities, and transitions, we
define a specific semantics for a significant sublanguage of UML State Diagrams.

In Chaptet 6, the formal models developed in the previous two chapters are used to define a
formal model for MFERT. In particular, the structure of MFERT graphs is defined by a UML
Profile, and behavioral descriptions are based upon the timed State Diagram variant of Chapter
4,

In Chaptef 7, we extend the Object Constraint Language, such that it is possible to specify state-
oriented temporal properties over UML State Diagrams. A formal semantics of this extension
is given by a mapping to temporal logics formulae. Moreover, timing and data analysis queries
are introduced.

Chaptef 8 shows how the OCL extension can be applied to MFERT models by a case study with
a manufacturing system scenario.

Chaptef 9 concludes this thesis and gives an outlook on future research issues.

14

CHAPTER 1. INTRODUCTION

Chapter 2
Unified Modeling Language

"What do you think will be the biggest problem in computing in the 90’s?”
"There are only 17,000 three-letter acronyms”
— Paul Boutin, 1989

The Unified Modeling Language (UML) is a graphical language for specifying object systems,

in particular, object-oriented software systems. UML is a standard modeling language endorsed
by the Object Management Group JOMG] in 1997. The current version at time of writing this
thesis is UML 1.5, which was adopted in March 2003 TOMGO03d]. In this chapter, we focus
on thelanguage definitiorof parts of UML, while the actual application of UML diagrams to

build models is only treated by example based on the manufacturing case-study presented in the
previous section. For more detailed information about modeling with UML, interested readers

are referred to one of the numerous available textbooks, £.0.. [BRJJ9, FRBY FS99, HKO3].
Note that UML is intended to be modeling languagend leaves it to the responsibility of

the modeler what diagram suits best to represent a specific part of the software system under
development.

In this chapter, we first give some information on the approach taken by the OMG to define

.........
.........

.........

suitable modeling of real-time systems. They are separated into those that deal with modeling
architectures of real-time systems and those that consider time-related behavior modeling.

2.1 UML Language Definition

.........

one layer are defined by means of the constructs introduced in the superior layer. On the high-
est layer M3, the Meta Object Facility (MOF) specification defines a common framework for
representing metadafa [OMG02]. It is used to model the three kinds of building bloakefar
modelson layer M2, which are

15

16 CHAPTER 2. UNIFIED MODELING LANGUAGE

Table 2.1: UML Architecture

Modeling Layer Application

M3 | Meta Meta Model| Meta Object Facility (MOF): [OMG(2]

M2 | Meta Model UML Specification {OMGO3d] as well as other stan-
dards, e.g., the Common Warehouse Metadata Speci-
fication [OMGO1]

M1 | Models User-defined UML models

MO | Objects Instances of (parts of) user-defined UML models

e objects (described by MOF Classes),
e links that connect objects (described by MOF Associations), and
e data values.

The UML is one application of the MOF. To describe its semantics, the specification is
divided into several packages, e.g., for core concepts (padkage Foundation: :Core) Or
state machines (packa@®L: :BehavioralElements: :StateMachines). Each package is
described by four sections:

1. Abstract Syntax. The abstract syntax of a package is defined by means of MOF com-
pliant Class Diagrams. They present the metaclasses that define the UML language con-
gives a sample MOF Class Diagram that shows the backbone part of paikage
Foundation: :Core, taken out offQOMG03d, Section 2.5.2]. That diagram is extended
by some metaclasses that are particularly relevant in the remainder.

In the diagram, rectangle boxes represent general language concepts, e.g., the box named
Class is a concept for descriptors on level M1 that represent a set of objects with sim-
ilar structure, behavior, and relationships. Within these rectangle boxes, additional at-
tributes may be inscribed to specify inherent characteristics of a concept, e.g., instances
of Class can be passive or active (with an own thread of control). The basic metaclass

is ModelElement, representing a named entity in a model. It is the base for all modeling
metaclasses in the UML.

Note that UML uses the termropertyto generally refer to values attached to a model
element, e.g., attributes, associations, and tagged values, fehilgesare properties
encapsulated in classifiers, i.e., operations, methods and attributes. However, in this thesis
we will use the ternpropertyin the sense o& non-functional specification of required
dynamic behaviar

.........

nience, we may speak of, e.g.,Caass’ instead of 'an instance of metacla@kass’.

2.1. UML LANGUAGE DEFINITION 17

Boxes with names in italic font are abstract concepts that cannot be instantiated on level
M1, e.g.,Classifier. These abstract concepts are usually part of (transitive) inheritance
relationships. Inheritance relationships are indicated by connecting lines with a triangle
on the inheriting concept side. ThuSlassifier inherits all characteristics (i.e., at-
tributes and relationships) frofeneralizableElement, andClass in turn inherits

from Classifier.

Diamonds indicate aggregation relationships, i.e., whole-part relationships. Eegya
ture is part of aClassifier. More precisely, a¥eature and Classifier are ab-
stract concepts, eadhittribute, Operation, OrMethod is part of aClass, Interface,

or DataType. As such features must not exist without the classifier they belong to, the
aggregation relationship is in this case marked witiied diamond this is also referred

to as a composition relationship.

We will see in the next paragraph that such relationships have to be restricted by additional
rules. E.g., it does not make sense to allow attributémiraTypes, as elements of data
types are immutable values like integer values or strings.

ModelElement

name : Name

ElementOwnership

visibility : VisibilityKind | _ _ _ _ _ _ _ _____ +°W”edE'eme"A
isSpecification : Boolean

+namespace] 0..1

Feature N pace GeneralizableEl t Parameter Relationship

defaultValue : Expression

ownerScope : ScopeKind
kind: ParameterDirectionKind

visibility : VisibilityKind isRoot: Boolean

isLeaf : Boolean

. isAbstract : Boolean « | +typedP ¢ . "
f 5 +eature ypedParameter | +parameter
+owner Classifier 1
{ordered} 0..1
+type
) +type
Class Interface DataType
+typedFeature
isActive : Boolean
StructuralFeature * BehavioralFeature
multiplicity: Multiplicity isQuery : Boolean {ordered}
changeability : ChangeableKind ‘ 01
targetScope : ScopeKind -
ordering : OrderingKind
Operation Method
Attribute concurrency : CallConcurrencyKind . .
isRoot : Boolean 1 body : ProcedureExpression
initialValue : Expression isLeaf : Boolean
isAbstract : Boolean +specification
specification : String

18 CHAPTER 2. UNIFIED MODELING LANGUAGE

2. Well-Formedness RulesWell-formedness rules are necessary to restrict the static struc-
ture of the concepts defined by MOF compliant Class Diagrams. These rules form the
static semanticef UML, i.e., they define how an instance of a construct may be con-
nected to other instances to be meaningful.

These restrictions are usually expressed by precise invariants formulated in OCL in the

.............

further informal explanations.

To give an example, we consider metaclassaType. While aClass may have at-
tributes, operations, and methodspa@taType may only have operations that do not
change any data (i.e., query operations). As an OCL invariant, this is expressed by

context DataType inv:
self.allFeatures()->forAll(f:Feature |
f.oclIsKindOf (Operation) and f.oclAsType(Operation).isQuery())

This OCL expression specifies that for each (user-definedyType on level M1, all
(transitively inherited) features must be of a kind of query operation, i.e., operations with-
out side effects. In such well-formedness rules in the context of UML metaclasses, some
additional operations appear that are not defined directly by the metamodel or by the stan-
dard OCL library. E.g., operatioail lIFeatures () subsumes all features of a data type

tional operations defined for metacladsssifier that are relevant for the remainder.

3. Semantics. The actual meaning of the language constructs is defined using natural lan-
guage. In the official UML 1.5 specification, this section is alsriamic semanticsf
UML concepts. In terms of UMLdynamic semantics define the meaning of a well-formed
construcfOMG03d, Section 2.3.1].

Only for concrete metaclasses a semantic description is provided, as only these meta-
classes have an actual meaning in the language.

4. Standard Elements. Additional predefined elements of metaclasses are listed with an
sically, a stereotype represents a sub-category of a metamodel element with the same
attributes and relationships, but for a distinct usage. Sample predefined stereotypes
for Class are <metaclass>, <powertype> (i.e., a user-defined classifier whose in-
stances are classifiers which are children of a given parent on levekidd)atype>, or
«interface>.

2.2 Survey of UML Diagrams

UML defines twelve different types of diagrams.[OMG03d, Section 3] that can be divided into
three categories. Four diagram types are for modeling the static system structure; five are for
modeling different aspects of dynamic behavior; and three others are for system organization

.........

2.2. SURVEY OF UML DIAGRAMS 19

Table 2.2: Different UML Diagrams

Type UML Diagram

Class Diagram, Object Diagram,

Structural Diagrams . :
g Component Diagram, Deployment Diagram

Use Case Diagram, Sequence Diagram,
Behavioral Diagrams Activity Diagram, Collaboration Diagram,
State Diagram

Model Management| Package Diagram, Subsystem Diagram,

Diagrams Model Diagram

The following gives a brief overview of the twelve different diagram types available in
UML. A more detailed classification based on views supported by each of the diagram types

Use Case DiagramsThe functionality of a system w.r.t. the users is modeled as a set of
use cases. A use case represents an interaction of a user (or: actor) and the system under
consideration. Basically, all what is modeled by Use Case Diagram is to list actors and
the use cases they participate in.

Class Diagrams. Classes are a core concept of object-oriented software development.
Classes, their features (attributes, operations and methods), and their relationships are

Object Diagrams. An Object diagram shows a possible situation a system may be in at

a particular point of execution. Object Diagrams appear to be similar to Class Diagrams,
as objects are connected by links in the same manner as classes are connected by associ-
ations. In Object Diagrams, object attributes may have specific values. It is important to
note that the actual diagram is a model on level M1, while it represents a situation that
occurs on level MO.

Sequence DiagramsPossible messages sent between objects in a system can be modeled
with Sequence Diagrams. Objects are placed horizontally, each of which is provided with
a verticallife line. Horizontal directed arcs between these life lines represent messages
sent from one object to another. Each arc is annotated with a label to indicate the kind of
message. The vertical order of arcs denotes the order of messages in time.

Collaboration Diagrams. While Sequence Diagrams are ordered according to elapsing
time, Collaboration Diagrams emphasis on structural aspects. Basically, a Collaboration
Diagram is an extension of an Object Diagram, but in addition to links between objects,
Collaboration Diagrams show messages the objects send each other. Like in Sequence

20

CHAPTER 2. UNIFIED MODELING LANGUAGE

Diagrams, messages among objects are represented by directed arcs that point to the
receiving object. The order of messages is determined by explicitly numbering each
directed arc. Note that Collaboration Diagrams can be translated into Sequence Diagrams
and vice versa.

State Diagrams. Reactive behavior of an object is modeled by State Diagrams. They

...........

.............

Activity Diagrams. Activity Diagrams focus on flows driven by internal processing vs.
external events. A column format (referred tosagmlaney may be used to explicitly

show activities according to their belonging objects. Object names are put on top of
each column, and vertical bars separate the columns. Activity Diagrams are a variant of
State Diagrams, in which a state represents an ongoing activity (e.g., an operation) and a
transition automatically fires when the source state completes its activity.

Component Diagrams. A Component Diagram describes the organization of the phys-
ical building blocks (or: software units, components) in a system. They are shown as
rectangle boxes with tabs in the Diagram. Dependencies among components are shown
by dashed arrows between the rectangle boxes.

Deployment Diagrams. In Deployment Diagrams, nodes represent physical resources
that execute component instances. A Deployment Diagram shows which component in-
stances are placed on which processing nodes.

Package Diagrams. A Package Diagram shows how classes and other packages are
grouped into packages.

Subsystem Diagrams A Subsystem Diagram shows how logically related sets of com-
ponents form subsystems. While a Package Diagram is used to organize model elements
into groups, a subsystem represents a behavioral unit of the model. A subsystem may
have interfaces and operations and is divided into specification and realization elements.

Model Diagrams. A Model Diagram includes all of the other diagrams to show how

the complete system is structured and functions. Note that different Model Diagrams
can be defined for the same physical system. Each Model Diagram represents a view
of the physical system, depending on its purpose and level of abstraction. E.g., in a
system development process, we may have an analysis model, a design model, and an
implementation model for the same physical system.

In this thesis, we focus on Class Diagrams for modeling the static system structure and on

State Diagrams for modeling dynamic behavior of objects. Additionally, restrictions on UML
models are expressed in OCL. These parts of UML are more detailly described in the following
section.

2.3. DETAILS OF SELECTED PARTS OF UML 21

2.3 Detalils of Selected Parts of UML

2.3.1 UML Class Diagrams

UML Class Diagrams are used to describe the static structure of a system. As an example,

FactoryUnit Item
«interface» | name : Strin 1 4 is-at-unit id : Integer
NegotiationParticipant-Transport e a 9' ring * § ‘g
7 pos : Position currentUnit _ currentitems status : ItemStatus
«signal» requestTransport(i:ltem) - - kind: ItemKind
«signal» acceptBid(i:Item) 5;?\',(; S;Igssssf;;rof notify() {ordered}
«signal» rejectBid(i:Item) the Manufacturing nextDest() : Station
i i System
] \. |
AGY ifft’o". | Buffer
order: Boolean processeditems : Integer storedltems : Integer
dest: Station .
bid: Integer transporters stations
/ currentltem : Item * .
- * load(i:Item)
Ioad(ultgm) unload(i:ltem)
unload(i:ltem) transporters buffers
move(s:Station)
getDistance(f:FactoryUnit): Integer * *
getParkPos() : Position
getinputPos(s:Station) : Position
vacate(p:Position)
computeBid(s:Station): Integer
i i
1 «invariant» -
! AGV.alllnstances()->size <= 5 _ dnterface»
H NegotiationParticipant-Destination
«invariant» «signal» cfpNewltem(i:Item)
self.currentltems->size() <= 1
| | | /N
InputStorage OutputStorage Machine |
kind: MachineKind 1 < s-inoutBuffer-of InputBuffer OutputBuffer
P acceptStatus : AcceptState
1 | loaderStatus : LoaderState
load(i:ltem) unload(i:ltem) load(i:ltem) >—— announced : Boolean
unload(i:ltem) nnounceOrder(i:ltem)
work() 1 acceptOrder() announcetrder(i:ite
rejectOrder()
<<enumeration>> <<enumeration>> <<enumeration>>
Position AcceptState MachineKind] T
. 1
in ad WaitingForOrders Mill {is-outputBuffer-of !
ou pw Accepting Drill
ao wi Rejecting Wash
pm wo «interface»
mi aw <<enumeration>> NegotiationManager
mo c1 <<enumeration>> <<enumeration>> ItemStatus — —
am c2 LoaderState ItemKind initiateNegociation()
pd c3 - Raw «signal» rejectRequest(i:ltem)
di c4 Idle . Engine inProcess «signal» bidding(i:ltem,n:Integer)
do Waltl_ngForDellvery Shaft Final «signal» acceptProposal(i:ltem)
Loading Failure «signaly rejectProposal(i:ltem)

Figure 2.2: Case Study Class Diagram (M1 Level)

2.3.1.1 Classes

Classes are given by rectangular boxes separated into horizontal sections. In the uppermost
compulsory section, a class name and optionally a stereotype and class properties are given;

22 CHAPTER 2. UNIFIED MODELING LANGUAGE

the other sections are optional and are used to specify attributes and operations. As abstract
classes are frequently used, for abbreviation purposes italic font is applied instead of explicitly

.........

annotations for attributes can be applied that concern — among others — scope (whole class
or instances), visibility (public, package, protected, private), multiplicities, and initial values.
Similarly, operations can be annotated with scope and visibility, and additionally with typed
parameters (with kinds in, out, and inout) , a return type, and other propertiegoaery} for
operations without side effects.

2.3.1.2 Associations

Edges between rectangles represent static relationships among class instances and are called
associations. Most frequentlyinary associations, i.e., associations connecting two classes, are
applied in practice, but there are certain kinds of associations that need to be investigated in
more detall, i.e., aggregation and composition.

In order to improve expressiveness, associations can be annotated by different means:

e An association can be named, e.g., associatirat-unit betweenltem andFacto-

.........

e Association ends can optionally be named witlenames Such an annotation represents
the role a class plays in the association, egrrentUnit in associationis-at-unit.
If no role name is given, the class name with a lower case first letter is used to navigate
along an association in the Class Diagram.

e Multiplicity restrictions attached to an association end are used to specify the number
of objects a given object on the opposite association end(s) can be associated with, e.g.,
in associationis-at-unit, eachItem object is associated with exactly one factory unit
object — nevertheless, that factory unit may change during run-time, as the association
end is not marked witkfrozen}. A star ¥’ indicates an arbitrary number of objects, i.e.,

0. .x* or simply* means that an object may be associated with any number of objects on
the opposite association end.

e Associated objects can be ordered as it is specified for items at factory units which are
ordered by the time of arrival in the corresponding factory unit.

e Arrowheads at association ends are used to explicitly specify the direction in which it
is possible to navigate from one object via an association to associated object(s). Nev-
ertheless, in practice undirected edges (i.e., no arrowheads at the association ends) are
interpreted as navigable in all directions, though this is not the standard!

Aggregation and Composition. Aggregation is often classified gmart-whole-relationship

and is represented by a hollow diamond at the association end which plays the rolesbbtae

Note that aggregation does not add any semantics to the association, because the participating
objects are still independent of each other, i.e., the existence of an object is not restricted by
establishing an aggregation relationship. This is differemmoimpositios, a stricter variant of

2.3. DETAILS OF SELECTED PARTS OF UML 23

whole-part-relationshighat is denoted by a filled diamond at one association end. In compo-
sitions,partsmay belong to at most onghole e.g., in associations-buffer-of, a buffer in

the case study belongs to (or: is part of) exactly one station, and is only existing in the system
as long as the corresponding station is in the system.

Though the concept of aggregation and composition seems to be quite clear, a couple of
semantic issues arise, as one can distinguish betdeggendencandexclusivenesm part-of-
relationships. A dependent component object in this context refers to its existence in accordance
to its belonging whole. An exclusive component object refers to whether the part belongs to
one whole or more than one whole. It turns out ttheppendent, not exclusigcemponent objects
cannot directly be modeled with UML concepis [HKO3].

2.3.1.3 Generalization

Generalization is a relationship between a more specialized subclass and a more general parent
class (or: base class). Subclasses inherit characteristics like attributes, operations, and associ-
ations from parent classes. Generalizations are indicated by edges with a hollow triangle at-
the notation with one superclass and several subclasses (EscfosryUnit) is equivalent to

a corresponding number of simple binary generalizations, as, e.g., for supéictaes and

its subclassegnputBuffer and OQutputBuffer. In UML, the concept of generalization is

not clearly separated from the classical concepts known for generalization. Classically, three
different conceptual kinds of generalization are distinguished [FIK03, pages 48-51]:

1. Specification Inheritance. This concept basically complies to the substitutability prin-
ciple. One main aspect is contra variance: re-defined operations in subclasses may only
have a weakened pre-condition (or: larger definition set) and restricted post-condition (or:
restricted value set).

2. Specialization Inheritance. This is also calleds-a+relationship and can be best distin-
guished from specification inheritance by an example: Consider the twoRgpesand
Integer. Each integers-areal value, so we have a specialization inheritance. Neverthe-
less, re-definition of commaReal-operations usually require different inputs in subclass
Integer, e.g., the add-operation. Thus, the concept of contra variance mentioned above
for specification inheritance is violated, as the operation pre-condition is strengthened.

3. Implementation Inheritance. This kind of inheritance is mainly applied to re-use ex-
isting code and is usually established in late phases of development. A semantic relation
does not need to exist. Nowadays, it is refrained from implementation inheritance in
favor of aggregation. In UML, explicit annotation of generalization{hy-a} denotes
implementation inheritance.

Generalization in UML is heavily identified with the concept of substitutability, i.e., an instance
of a class may be used whenever an instance of a superclass is expected. Substitutability, how-
ever, is a particular characteristic of only one of the classical generalization semantics.

24 CHAPTER 2. UNIFIED MODELING LANGUAGE

2.3.1.4 Other Concepts

User-defined (finite) data types can be modelecgkbymerations The elements of enumera-

.........

.........

.........

In UML, aninterfaceis is denoted by a rectangular box labelled witimterface> in front
of its name compartment. With interfaces, a particular set of operations is modeled. Classes
can realize interfaces, i.e., they provide the operations defined for an interface, when staying in
a realization relationship, indicated by a dotted line and a triangle at the interface end. E.g., in
tions among execution of transports, i.e., an output buffer object can In contrast, aypsiL
in the sense of an abstract data type defines a value set for objects together with appropriate
operations, but in this case it is not intented to actually implement objects of the type.

Often, classes are needed that are mainly responsible to keep data (i.e., container classes) of
a certain type. In static modeling languages (like UML), this means that for each container class
that has a different data type to manage, a different class needs to be modeled. To overcome
this problem, parameters can be attached to classes. Notationally, this is indicated by a dashed
rectangle positioned over the upper right corner ofgheameterized clasdnside the dashed
rectangle, the parameters are listed. For an example of a parameterized class, consider the OCL

..................

There are several more concepts available in UML Class Diagrams, which are not of rele-
vance for the rest of this thesis and therefore not covered in detail, e.g., qualified associations,
dependencies, and roles. The reader is referred to the official specifiéation JOMGO03d] or the

2.3.2 UML State Diagrams

For modeling (reactive) behavior of objects and operations in the context of UML, State Dia-
Generally, State Diagrams are graphs in which nodes represent (composite) states and directed
arcs represent transitions between states. Transitions are usually triggered on (external) stimuli,
i.e., perceived and dispatched events. In this section, we give an informal introduction on the
main concepts of UML 1.5 State Diagrams, so that it is possible to understand the formalizations
in Chapters 4 and 5.

Besides suclbehavioral state machingthe UML 2.0 Superstructure Proposal introduces
protocol state machinethat are employed to model usage protocols [OM&03f, Section 15].
The corresponding graphical notation is especially tailored to define the lifecycle of objects
and the required order of operation invocations. In this conteté¢rfacesandports are new
language concepts introduced in UML 2.0. However, we focus on behavioral state machines in
this thesis and therefore mainly refer to the UML 1.5 specification.

The official UML 1.5 specification informally defines State Diagram states and transitions

2.3. DETAILS OF SELECTED PARTS OF UML 25

as follows {OMG03d, Section 2.12.2.10].

A state [...] models a situation during which some (usually implicit) invariant
condition holds. The invariant may represent a static situation such as an object
waiting for some external event to occur. However, it can also model dynamic con-
ditions such as the process of performing some activity; that is, the model element
under consideration enters the state when the activity commences and leaves it as
soon as the activity is completed.

Conceptually, an object remains in a state for an interval of time and then changes to another
state without consuming time. Itis commonly assumed that transitions take no time, conforming
to Harel Statechart$ [Har87]. But generally, UML State Diagram semantics allow modeling
Section 3.75.1]). However, there is currently no standard notation provided to explicitly specify
transition times.

Actions, Events, and Activities. At this point, it must first be clarified what UML considers

as amctionand as aractivity. In UML, an action is a specification of an executable statement.
Basically, an action can refer to sending a synchronous or asynchronous message (call action or
send action) to an object, creating or destructing an object, modifying a link or an attribute value,
or returning from a previously called operation. Execution of a call or send action generates an
eventthat is perceived by the addressed receiving object. Generally, the kinds of known events
are

¢ signal events (generated by asynchronous send actions),
e call events (generated by synchronous call actions),

e change events of formhen (booleanExpr), used to continuously observe the boolean
condition to become true,

e time events, specified byfter (timeSpec) and used to denote a time at which the
transition has to be fired after entering the current state,

e (implicit) completion events raised after finishing an actions and activity within a state.

In contrast to actions that are conceptually seen to be atomic without consuming time, an
activityis interpreted as ongoing and time-consuming, though there are only rudimentary speci-
fication means to explicitly model the time or timing interval, in which an activity is completed.
Activities are specified either by computational expressions within a particular section of a state
specification ('do/-activity’) or by explicitly providing another State Diagram to describe the
corresponding behavior (e.g., as a nested state or as a stand-alone State Diagram associated
with the operation representing the activity).

26 CHAPTER 2. UNIFIED MODELING LANGUAGE

States and Transitions. States are represented as boxes with a name and an optional com-
partment for specification of actions and activities. An entry/-action is executed when the state
is entered (or: activated), then — during activation of the state — an activity may be performed
until the state is exited (or: deactivated). Just before exiting, an exit/-action may be performed.
There are several more advanced concepts for states, e.g., internal transitions, deferred events,
as well as so-calledseudostatesn particular, initial states (denoted as black circles), shallow
and deep history states (denoted by an H or H* in a circle), final states (denoted by a ‘bull’s
eye’), static and dynamic choice states, and synchronization states. For more details on these,
the reader is referred to the previously recommended UML textbooks.

Transitions have a source and a destination state and can be annotated by an event specifi-
cationevt, a guard conditiorlgrd], and actions to execuiact. Perceived events matching
the event specificatioavt enable the transition to be taken, provided that the transition source
state is activated and that the transition gubgeld] evaluates to true. If there is no transition
event specified, the transition is fired after the activity of the source state has finished.

Composite States. State Diagrams can be hierarchically refined using OR-states and AND-
states. An OR-state is a composite state, in which at each time exactly one of its substates is
activated, when the OR-state is activated. In this context, the previously mentioned history states
can be applied. Entering an OR-state via a transition to a (shallow) history state re-activates the
substate that was the latest active one before the OR-state was previously left. By deep history
states, re-activation takes place on all subsequent hierarchy levels.

With AND-states, concurrent activated substates are modeled: dhésgonal regionsre
graphically separated by dashed horizontal lines. This notion of refined states leads to a prece-
dence rule for transition selection that is different from former Statechart semantics; in UML,
transitions on lower levels take precedence over transitions of upper levels. More precisely,
for each pair of transitions with the same specified triggering event and valid guards, the rule
requests that if the transitions are ancestrally related (i.e., they do not only affect orthogonal
regions), the transition with the source state on the lower level is selected to be taken. Never-
theless, transitions that are not ancestrally related can be taken in parallel.

It is allowed to draw transitions among several state levels by crossing state boundaries
(i.e., interlevel transitions). For complex transitions that enter or leave AND-states, so-called
fork and join transitions can be applied, especially when other than the default initial states
should be activated in the entered orthogonal regions. However, in practice this notation is
more common in activity diagrams.

Dynamic Semantics. Execution of UML State Diagrams is controlled by (a) erent dis-
patcherthat subsequently selects events from an impée#nt queuand (b) arevent proces-

sor that performgun-to-completion stepdRTC-steps). In an RTC-step, first the set of fireable
transitions is determined based on the previously dispatched event and additional transition
conditions, i.e., the set of transitions that can potentially be taken. UML does not make as-
sumptions about the general functionality of the event dispatching mechanism, e.g., a first-in
first-out queue or based upon priority schemes for events. Nevertheless, some basic processing
rules are given, e.g., internally generated completion events take priority over external events.
It can happen that the set of fireable transitions for a dispatched event is empty; in this case

2.3. DETAILS OF SELECTED PARTS OF UML 27

the event is ‘consumed’ without any effect on the State Diagram. If the event is specified as
deferrable in the currently activated state(s), the event is re-entered into the event queue, or
otherwise just dropped. It can also happen that fireable transitions compete with each other, as
it is not allowed to fire them in parallel. In such cases, UML provides some rules (e.g., inner
transitions have higher priority) to help to determine the maximum consistent set of transitions
from the set of fireable transitions. Though, this does not prevent from situations in which non-
deterministic choices still have to be made. Having a set of consistent (or: enabled) transitions,
these transitions are then fired, subsequently executing the exit actions of the state(s) to leave,
the actions specified for the chosen transition(s), and the entry-actions and activities specified
for the entered state(s).

The official UML specification currently provides only an informal dynamic semantics of
UML State Diagrams by natural languageiin [OMGD3d, Section 2.12.4], leaving open a couple
of semantic variation points, e.g., for event dispatching or storing deferred events. Different
approaches have captured the dynamic semantics of UML State Diagrams in a formal way, e.g.,

Active State Configuration. When a State Diagram is modeled with composite states, more
than one state can be activated at a certain point of time, and it can get confusing to speak
aboutthe current stateof a State Diagram. For dealing with such situations, the notion of an
active state configuratiors used in UML JOMGO3¢, Section 2.12.4.3]. Unfortunately, that
informal definition is not concise, as final states are not considered to be part of the active state
configuration, although a UML State Diagram may reside in a final state for a notable period

.........

s |
IIIIiIIII
®— x = ¥y = z =@

List of States: List of Active State Configurations:
R {R}
S {S, S::A, S::B, S::A::M, S::B::X}
S::A {S, S::A, S::B, S::A::M, S::B::Y}
S::B {S, S::A, S::B, S::A::M, S::B::Z}
S::A::M {S, S::A, S::B, S::A::M, S::B::FinalState}
S::A::N {S, S::A, S::B, S::A::N, S::B::X}
S::A::FinalState {S, S::A, S::B, S::A::N, S::B::Y}
S::B::X {S, S::A, S::B, S::A::N, S::B::Z}
S::B::Y {S, S::A, S::B, S::A::N, S::B::FinalState}
S::B::Z {S, S::A, S::B, S::A::FinalState, S::B::X}
S::B::FinalState {S, S::A, S::B, S::A::FinalState, S::B::Y}
T {S, S::A, S::B, S::A::FinalState, S::B::Z}

(T}

Figure 2.3: Active State Configurations

The State Diagram can be in the situation that OR-staté has reached its final state, but
S::Bis still in stateZ. ThusS: : A resides in stat8: :A: :FinalState until S: :B also reaches

28 CHAPTER 2. UNIFIED MODELING LANGUAGE

its final state. At that point of time, a completion event is implicitly generated and in the next
RTC-step, the transition to states fired. As this (conceptually) happens without consuming
time, there is no active state configuration in which both substate reside in their final states.

AGV

Negotiator

s1.*requestTransport(i) [order = true] / send s1.rejectRequest(i)
‘ \L s2.*acceptBid(i) [s2 = s1 and i = currentltem] /order := true
o WaitingForOrder D s2. rejectBid(i) [s2 = s1 and i = currentltem]
s1.~requestTransport(i) [order = false]
/dest := getlnputPos(s1)

‘ ComputingBid ‘

entry/ currentltem :=i
do/ bid := computeBid(dest)

i/send s1.bidding(currentltem, bid)

[WaitingForAcknowIedgement ‘

T]

s2.requestTransport(i) / send s2.rejectRequest(i)

Transport

MovingTolLoad \

when (order = true)
Idle ‘ do/ move(dest)
exit/ pos := dest

agv.vacate(p) [p = self.pos] \L
/ dest := getParkPos() Loading
| |
(MovingToVacate ‘ do/ load(currentltem) ‘

exit/ dest := currentltem.nextDest()

‘ do/ move(dest) ‘
exit/ pos := dest.pos

(MovingToUnload

‘ do/ move(dest)
exit/ pos := dest.pos

)
)

!

Unloading)}

do/ unload(currentltem
exit/ order := false

Figure 2.4: State Diagram: Automated Guided Vehicle

the internal behavior of an AGV by two orthogonal regions. The upper one is for negoti-
ating orders w.r.t. transporting items. By default, the AGV waits for incoming requests to
perform a transport in staléaitingForOrder. After a request from a station to execute a
transportrequestTransport (i), the AGV computes the estimated costs to get to the re-
guesting statiors1 in stateComputeBid and sends a message with a bid (i.e., the distance
to move) tos1. After bidding, the AGV is waiting for an acknowledgement or rejection of

2.3. DETAILS OF SELECTED PARTS OF UML 29

the bid in stateWaitingForAcknowledgement. We assume that an AGV can only take part

in one negotiation at a time, thus all other requests have to be rejected while being in state
WaitingForAcknowledgement. Similarly, if the AGV is in statéWaitingForOrder, but a
transport is still currently performed, i.earder = true, an AGV will reject any request for
transporting items.

The lower orthogonal region callétransport is for actually executing a transport by ac-
tivities like moving to the station for loading, loading an item, moving to the destination station,
and unloading the item. In addition, when the AGV is standing at a position that needs to be
used by a different AGV, it can be required to vacate that position. Note here that the transition
from stateIdle to stateMovingToLoad is triggered by a change evertien (order=true).
Conceptually, it is permanently checked for this event to become true whileIstatds ac-
tivated, and the transition is taken as soon as the condiitdar = true becomes true. The
stateMovingToLoad, Loading, MovingToUnload, andUnloading are left as soon as the as-
sociated activities and actions are finished, as their outgoing transitions are not annotated by a
triggering event.

2.3.3 Object Constraint Language

The Object Constraint Language (OCL) is a language to express restrictions in object-oriented
models. Originally calledbusiness modeling languag@®CL was developed at IBM as part

of an object-oriented modeling method callggintropy[{CD94]. In UML version 1.3, OCL
became part of the official UML specification. OCL expressions are either directly applied
by textual annotations within different UML diagram types or by separately listing them with

an additional explicit specification of their context. One remarkable application of OCL is its
use to formulate well-formedness rules for UML diagrams on the UML metamodel level (M2).
Precise OCL expressions have thus replaced informal and ambiguous semantical descriptions
that were given in English language in earlier versions of UML.

constraints are callealssertionswhich are used to formulate pre- and postconditions for oper-
ations as well as invariants. These concepts became an integral part of the Eiffel programming
language already in the 1980s. Formulation of pre- and postconditions for operations is also
referred to as the principle afesign by contracti.e., an agreement on correct execution of a
service between a client and a supplier. Both parties have obligations and rights: Concerning
the execution of the service (i.e., the operation) the client (i.e., the operation caller) is obliged to
meet the precondition, while the supplier (i.e., the operation callee) has the right to assume that
the precondition holds. The client can then expect that the supplier delivers the corresponding
result promised in the postcondition, and it is the obligation of the supplier to give that promised
result. James Rumbaugh, one of the co-founders of UML, classified constrairifaragtianal

stricts the potential values of model entities. Influenced by this work, Jos Warmer, the main
developer of OCL, similarly defines a constraint as follows [WKO03, Section 1.5.1].

A constraint is a restriction on one or more values of (part of) an object-oriented
model or system.

30 CHAPTER 2. UNIFIED MODELING LANGUAGE

Naturally, it does not make sense to formulate constraints without a model to refer to. In the
context of OCL constraints, we will call the corresponding UML modelréferred UML user
model Each Classmérdeflned within the referred UML user model represents a distinct OCL
type and is implicitly included in the OCL Standard Library as a subtypibdiny.

In the context of UML models, a constraint written in OCL can be one of the following.

¢ An invariantdefined for a class, type, interface, stereotype, or state,
e apre-or postconditiomattached to an operation,

e aguard conditionattached to a transition (in State and Activity Diagrams) or a message
(in Sequence and Collaboration Diagrams),

o awell-formedness rulen the UML metamodel, given as an invariant over a metaclass.

Besides the official OCL language description as part of the official UML specification
[OMGO03d, Chapter 6], available literature on OCL is limited to two textbooks with several ex-
amples'[WKQ'g"'WKO3] abook onrecent research efforts w.r.t. OCL semantics and applications

OCL has a simple non-symbolic syntax defined by a context-free grammar. It claims to
be precise and unambiguous, but still easy understandable by designers in the area of object-
oriented technology, as OCL expressions are syntactically held in the style of a programming-
language notatiorl [WKQ(3]. OCL has a number of core concepts, e.g., it is declarative without
side-effects and has a set of predefined types dedicated to deal with object collections. Though
OCL is by now an official part of UML, it is currently only loosely coupled to the rest of UML,
as OCL is still missing a metamodel definition. Currently, there is just a context-free grammar
and an informal specification of the language concepts and its standard operations provided in
UML 1.5 [OMG03d, Chapter 6]. To overcome this deficiencyJBIL 2.0 OCL Request for
Proposalshas been issued by the OMG“[OM'G’OOa] An extensive answer to that call developed
adopted by the OMG in October 2003 [OMGO3b]. At the t|me of writing this thesis, the latter
document is still being finalized.

In the next two sections, we study the concepts and semantics of OCL based upon the
adopted version of the OCL 2.0 specification. [OMGO3b]. In Section 2:3.3.3, we will then
discuss open issues of the OCL specification.

2.3.3.1 Concepts

In terms of OCL, we generally speak of constraintstigresinstead of using the UML terms
classifier, classes, interfaces, and data types.

More precisely, one has to speak of ‘each instance of metatypesifier’, but we here adopt the terms
used in the UML specifications.
2A list can be found online at http://www.db.informatik.uni-bremen.de/umlbib

2.3. DETAILS OF SELECTED PARTS OF UML 31

Invariants. Invariants are restrictions on values of objects that have to hold ‘all the time’.
Invariants are defined in the context of classes, types, interfaces, and stereotypes. UML 1.5
also definestate invariantsi.e., a special form of invariant for active classes. An invariant
must hold for every object of the specified contextual type. Within Class Diagrams, invariants
are notated in a comment box stereotyped<nyariant-. An invariant is associated with a

invariant that restricts the number of items carried to be less or equal to 1:

self.currentItems->size() <= 1

whereself is an object of typaGV. The keywordself refers to the object from where we start
to evaluate an OCL expression.

OCL invariants can also be specified in a separate document. In this case, the type of the
contextual instance is explicitly specified in a context clause as illustrated in the following
example.

context AGV inv: self.currentItems->size() <= 1

The context clause starts with the keywartchtext and is followed by the type. The labitv
indicates that the constraint is an invariant. If the particular context is cleasgflifekeyword
can be omitted. As an alternative fes1f, an arbitrary name can be declared and used instead:

context vehicle:AGV inv: vehicle.currentItems—>size() <= 1

Optionally, a name can be given to the constraint after the keyworde.g.,

context vehicle:AGV inv maxNumberOfTransportedItems:
vehicle.currentItems->size() <= 1

In the UML metamodel, that name is an attribute of the metadlasstraint.

We now briefly explain how to interpret an OCL expression. The dot ‘.’ is used to access
objectfeatures i.e., attributes, opposite association ends (identified by their role names), and
operations and signals defined for the class of an object. In the examples above, the dot-notation
is used to navigate within the Class Diagram and yield those objects associated to the AGV
objectvehicle on the left via the association namerrentItems on the right. In this case,
we get the set of all instances of cldssm that are currently associated to a particwletiicle
object. An arrow-> indicates that the expression to its left represents a collection of objects.
OCL distinguishes between three kinds of collections: sets, multisets (or bags), and sequences.
The operation to the right of the arrow is applied to this collection. In our example, operation
size () returns the number of elements of the previously determined set of items.

To uniquely interpret the dot-notation used in OCL, some additional syntactical restrictions
apply to Class Diagrams. As the OCL dot-notation is used for both navigation by role names
(e.g., self.currentItems) and accessing attributes (e.gglf.order), all navigable role
names and attribute names of a classifier must be pairwise distinct. Similarly, operation and
signal names (in combination with their parameters) of a classifier must be pairwise distinct.
Though these restrictions do not explicitly appear in the abstract syntax definition of Class
Diagrams, they are generally advisable to prevent misinterpretations. We therefore assume in

.............

will present corresponding formal definitions and restrictions.

32 CHAPTER 2. UNIFIED MODELING LANGUAGE

Pre- and Postconditions. As already mentioned, specification of pre- and postconditions can

be seen as a contract between an operation caller and the operation callee. Semantically, a
precondition has to be true at the beginning of execution of an operation, and a postcondition
has to be true right after the operation has ended. Similarly to invariants, pre- and postconditions
can be directly applied within Class Diagrams in comment boxes attached by a dotted line to an
Diagrams. In this case, a precondition is attached to operatiotDest () of classItem. In

the considered operation, the next factory unit for an item has to be determined. The operation
determines the next destination when a transport by an AGV is required, i.e., when an item
currently is at the input storage or at one of the output buffers. The corresponding precondition
is shown in the figure.

Item
id : Integer

status : ltemStatus
o % kind: ltemKind
«precondition»

{ not self.currentUnit.oclIsUndefined()}

—————— +nextDest() : FactoryUnit

Figure 2.5: Pre- and Postcondition Notation

To show another form of representation, we now formulate the postcondition separately and
therefore have to explicitly specify the contextual operation as follows.

context Item::nextDest() : Station
post: let f = self.currentUnit in
if self.kind = ItemKind::Engine then
if f.o0clIsTypeOf (InputStorage) then
result = Machine.allInstances()->
any(m:Machine | m.kind = MachineKind::Mill).inputBuffer
else
—-- in this case it holds: i.currentUnit.oclIsTypeOf (OutputBuffer)
if f.oclAsType(OutputBuffer).machine.kind = MachineKind::Mill then
result = Machine.allInstances()->
any(m:Machine | m..kind = MachineKind::Drill) .inputBuffer
else if f.oclAsType(OutputBuffer).machine.kind = MachineKind::Drill then
result = Machine.allInstances()->
any(m:Machine | m.kind = MachineKind::Wash) .inputBuffer
else
-- in this case the machine kind must be Wash
result = OutputStorage.alllnstances()->any(true)

endif
endif
endif
else —- in this case the item kind is ItemKind::Shaft;
[...] -- as this case is very similar, it is omitted in this example

endif

A postcondition is particularly used to specify the result of an operation. In the example
postcondition, only the case for item kiBdgine is shown, while the other case for item kind
Shaft is omitted here, as it is very similar and does not show any new aspects. Recall that in

2.3. DETAILS OF SELECTED PARTS OF UML 33

our case study, items of kinthgine have to be subsequently transported to machines Mill,
Drill, and Wash, and then finally to the output storage.

Thelet-statement defines a local varialileeferencing to the factory unit the item currently
belongs to. The type df is eitherInputStorage or OutputBuffer, as we can expect that the
precondition is met.

Assume now thaf is an instance oflutputBuffer, i.e., f.oclIsType0f (OutputBuf-
fer) evaluates to true. In order to be type consistent, we have to perform a type cast
f.oclAsType(OutputBuffer) to be able to refer to the features @itputBuffer objects.

Then we can navigate to the machine object théklongs to, using the default association
namemachine, i.e., the class name ofachine written with a first lower case letter. From
there, we can access attribuiend that has one of the enumeration valgd1, Drill, or

Wash. Based on that kind of machine, the next destination can be determined. The correspond-
ing destination input buffer is assigned to the predefined variadslelt, indicating that this is

the value to be returned.

In a concrete system, there will be several machine objects, i.e., instances tclatse.
ExpressionMachine.allInstances() then results in the set of currently existiMgchine
objects. We can manipulate that set by different operations, one of whigly (xpr). That
operation selects one arbitrary element that complies to the parameter expesssioi hus,
if there were 2 machine objects of kibdi11, one of these is arbitrarily chosen. An implemen-
tation may consider additional information which machine is actually to be selected (e.g., the
current load of the machines, their reliability, their age), but this is not in the scope of the OCL
constraint at this stage of modeling. Finally, in order to extract the actual input buffer object,
we navigate fromtachine to association engéinputBuffer.

OCL Types. OCL is a typed language, i.e., each OCL expression has a type that is either
explicitly declared or can be statically derived. Generally, an OCL expression can be built out
of subsequent basic expressions, separated from each other by dots and arrows. Evaluation of
a left hand expression part determines the domain of possible result values which is called a
typein terms of OCL. In turn, that type constitutes how the expression can be extended on
the right hand side, i.e., it must be one of the features (attributes, operations, association ends)
defined for the type determined by the left hand side expression. In order to reason about typed
expressions, we have to haveaype systenas a basis that takes user-defined types (classes,
interfaces, etc.) as well as fundamental and generic types into account. The latter ones form
a core of predefined OCL types on the M1 level and are provided as a standard library in the

.........

For a tight integration of OCL into the common UML language definition, a corresponding
metamodel for OCL types and expressions is needed that is still missing in the official UML

.............

adopted OCL 2.0 specification.

The basic OCL metaclass@3assifier, taken from the UML core metamodel. Note that
all subclasses dflassifier, in particularClass, Interface, andDataType, are implicitly
included. The new metaclasses introduced for OCL are shown in grey bux&8Type is

34 CHAPTER 2. UNIFIED MODELING LANGUAGE

|
OclAny OclMessage =77~ Collection ==~

| | —L—7

‘ Real ‘ Bag "7

‘ Boolean

‘ OclType

‘OclState ‘ String ‘ Set —— - SequenceL""

>

OclVoid

Figure 2.6: Predefined Standard OCL Types (Level M1)[OMG&03b, Section 11.2, Figure 28]

the metaclass for the predefined OCL standard 0gi&/oid on level M1. TupleType is the
metaclass for (parameterized) user-defined tuple types. Mathematical tuples together with the
usual operations for manipulation (e.g., projection and product) are a hew concept in OCL

..................

OclModelElementType represents those types that are needed to reference names of user-
defined model elements, in particular, class names of Class Diagrams and states of State Di-
agrams. Instances @kt1ModelElementType are predefined enumerations on level M1, such
as0clType and0OclState. The definition of metaclas3ollectionType and its subclasses

for sets, ordered sets, bags (or: multisets), and sequences is of particular interest and deserves
a separate section. The same holdsitaMessageType that is the metatype of the new OCL

2.0 concept of OCL messages.

..................

Collections in OCL. Collections have a specified element type. All collection elements are
of that type. Note that not all possible collection types are actually instantiated, as that would
result in an infinite number of types when nested collections are taken in account. Though all
these types conceptually exist, particular collection types are only instantiated when actually
needed in an OCL expression.

Nested collections are not considered in the current UML 1.5 standard, i.e., when a
nested collection would appear as the result type of an OCL expression, it is always im-
plicitly flattened. E.g., assume that we have threehine objectsobj1, obj2, andobj3,

i.e. expressioMachine.allInstances(), is of OCL typeSet(Machine) and results in
Set{objl,0bj2,0bj3}. Extending that OCL expression by navigating along associations to
classednputBuffer andItem, the OCL expression

Machine.allInstances() .inputBuffer.currentItems

2.3. DETAILS OF SELECTED PARTS OF UML 35

StructuralFeature +type Classifier +elementType
(from Core) on 1 (from Core) 1
Signal +referredSignal
(from Common Behavior) 0.1
OclMessageType DataType
(from Core)
Operation 0..1
(from Core) +referredOperation L%
| | | | | o
‘ VoidType TupleType Enumeration Primitive CollectionType -
(from Core) (from Core) +collectionTypes

% \ \ \

OclModelElementType ‘ SetType ‘ ‘ SequenceType ‘ BagType ‘

OrderedSetType

Figure 2.7: OCL Metaclasses (Level M2) JOMG03b, Section 8.2, Figure 5]

results in a set of set of items currently associated with the machine input buffers, i.e., the
expected result type of that expressiosés (Set (Item)). Butin the current OCL version as
defined in UML 1.5, this nested set is implicitly flattened to tPag (Item), i.e., a flat multiset
of items (note that in this particular example, the bag is of course a set, as items cannot be at
two input buffers at the same time).

In contrast, OCL 2.0 now allows nested collections and introduces a new operation called
flatten() to explicitly flatten nested collections if necessary. With the latter approach, we
have to write

Machine.allInstances() .inputBuffer.currentItems->flatten()

to get a simple set of items, i.eSet(Item) as a result type. As nested collections are a
reasonable concept that is also suitable for our intended OCL extension, we assume for the rest
of this thesis that OCL collections are not automatically flattened.

OCL Messages. Finally, the concept of OCL messages has been newly introduced to OCL 2.0
to specify behavioral constraints over messages sent by objects. The notion of OCL messages
message refers to a signal sent or a (synchronous or asynchronous) operation called. While
signals sent are asynchronous by nature and the calling object simply continues its execution,
synchronous operation calls make the invoking operation wait for a return value. In contrast,
an asynchronous operation call is like sending a signal, such that a potential return value is
simply discarded. For more details about messaging actions, see the action semantics of UML
1.5 [OMG03d, Section 2.24]. Note here that the UML action semantics also detindcast
signal actionswhile a corresponding kind of OCL message is not yet defined.

The concept of OCL messages enables modelers to specify postconditions that require that
specific signals must have been sent, operations must have been called, or operations must have
been completely executed and returned.

36 CHAPTER 2. UNIFIED MODELING LANGUAGE

Table 2.3: OCL Standard Library Types and their Metaclasses

Metaclass M1 Level Type Description
Classifier OclAny OclAny is the supertype of all types of the UML model
and the predefined types of the standard library.
0clType For eachClassifier in a UML model there is a corre-
sponding instance in (power)type1Type.
VoidType OclVoid OclVoid is a type that conforms to all other types. The

only instance of OclVoid is OclUndefined.

OclModelElementType | OclState For eaclstate in a UML model there is a corresponding
enumeration literal in typ8clState.

Primitive Real, Integer Common data types for numbers, boolean
Boolean, String | values, and strings.

CollectionType Collection(T) Parameterized abstract type as a supertype for sets, bags,
and sequences. The template parametsrsubstituted
by a concrete type, e.dlnteger or Item.

SetType Set (T) Parameterized type to manage sets of objects of aTtype

BagType Bag(T) Parameterized type to manage bags of objects of Type
i.e, objects may appear more than once in a bag.

SequenceType Sequence(T) Parameterized type to manage sequences of objects of
type T, i.e, objects may appear more than once and|are
indexed by numbers.

TupleType Tuple(T) Parameterized type to define and reason about mathemat-
ical tuples. Actually, the template parametedenotes
thesequence of typdlsat represent the tuple components.

OclMessageType OclMessage(T) Parameterized type to capture messages sent fram a
source object to a target object. Template parameter
denotes a signal or operation.

OCL messages are obtained by the message operatthrat is attached to target ob-
ject For example, the OCL expressioghicle” "move (aStation) results in the sequence of
messagesove (aStation) that have been sent to the object determinedrddyicle during
execution of the considered operation — recall that the considered expression must have been
specified in an operation postcondition. Each element of the resulting sequence is an instance of
typeOclMessage(T). For example, the type of OCL expressioshicle” "move (aStation)
iS Sequence (Oc1Message (move (s:Station)).

One can make use of so-calladspecified valuet® indicate that an actual parameter does
not need to have a specific value. Unspecified values are denoted by question marks, e.g.,
vehicle”"move(?7:Station). Parameter types can be omitted in OCL message expressions,
but note that they might be necessary in order to refer to the correct operation when the operation
is specified more than once with different parameter types.

For example, assume that operatimmounceOrder (i:Item) of anInput Buffer should

2.3. DETAILS OF SELECTED PARTS OF UML 37

send a request for transport to all known AGVs. The following postcondition uses a navigation
to the station (here: machine) to which the input buffer belongs in order to obtain all AGVs.

context InputBuffer::announceOrder(i:Item)
post: machine.transporters@pre->forAll(vehicle:AGV |
vehicle”"requestTransport(i:Item)->size() = 1)

By machine.transporters@pre, all AGVs known at the start of operation execu-
tion are obtained, i.e., the expression representetaof AGV objectghat were known
when the operation started. The postcondition then requires that exactly one message
requestTransport (i:Item) must have been sent to each AGV.

To check whether a message has been sentidh8ent operator can be used, e.g., the
expressiorvehicle " move (aStation) results in true iff a messag®ve (aStation) has been
sent (at least once) teehicle during execution of the considered operation. However, this
operator cannot be used to restrict the number of times this message has been sent. More
examples can be found i) [OMG03b, Section 7.7.3].

A formalization of OCL messages is not covered in the formal semantics of the adopted

Predefined Operations. For each of the standard library types, a number of operations is de-
fined to access and compare objects and values. Some were already introduced in the examples
discussed above, and we here only briefly summarize the predefined operatioasAioy in
as for typesReal or Integer are defined in a straight forward way and do not need further
explanations.

For all kinds of collections, operations likgze (), count (), includes (), andisEmpty ()
are available. For more specific collection kinds, additional operations are defined. E.g., on sets
of objects, operations likenion() or intersection() as well as type castssBag() and
asSequence () are available.

For example, we require that each AGV object is associated with (at least) one input storage
and one output storage (note the two equivalent notations to express this property) and that it
knows all buffers in the system (as each AGV needs to access the positions of buffers).

-- each AGV object knows an input and an output storage and the
-- buffers of all stations
context AGV inv:
self.stations->select(s:Station | s.oclIsTypeOf (InputStorage))->notEmpty ()
and
self.stations->select(s:Station | s.oclIsTypeOf (OutputStorage))->size() > 0
and
self .buffers->size() = Machine.alllInstances().inputBuffers->size()
+ Machine.allInstances() .outputBuffers->size()

Theiterate operatiomneeds a special explanation. Starting from a collection of elements,
each element is subject to evaluation of an expression that results in accumulation by means
of an (implicit) result variable. For instance, if we wanted to sum up the overall number of
transformations on items, we can write

38 CHAPTER 2. UNIFIED MODELING LANGUAGE

Table 2.4: Operations of OclAny

Operation Return Type Description

obj = (obj2:0clAny) Boolean Checks for equality of two objects. Operation = can also
be used with inline notation, i.eobj = obj2.

obj <> (obj2:0clAny) Boolean Dual to operation =, inline notation is also allowed, i.e.,
obj <> obj2.

obj.oclAsType(t:0clType) t Performs a type cast for objesbj.

obj.oclIsTypeOf (t:0c1lType) | Boolean Checks whethesbj is an instance of type.

obj.oclIsKindOf (t:0c1Type) | Boolean Checks whethesbj is of typet or one of its supertypes.

obj.oclIsNew() Boolean Used in postconditions to check whether an object has
been newly created when executing the corresponding
operation.

obj.oclInState(s:0clState) | Boolean Checks whethebsbj currently is in states, which is a

state of one of the State Diagrams attachesbtis class.

obj.oclIsUndefined() Boolean Evaluates to true ibbj is not defined. Used in postcor
ditions to check whether an object has been destroyed.

o7

Machine.allInstances()->
iterate(processedItems:Integer; res:Integer=0 | res + processedItems)

There are several predefined useful operations that are directly derivable from operation
iterate(), e.g.,forA11(), exists(), select(), reject(), any(), andsum(). The pre-
vious example can thus also be formulated by

Machine.allInstances()->collect(processedItems)->sum()

As there is a shorthand notation fasllect () defined in OCL, we might even write

Machine.allInstances() .processedItems->sum()

To give another example of a frequently applied kind of constraint, we require that item
objects must have different identifiers to uniquely distinguish them. The corresponding invariant
makes use of operatidiorA11 () and two iterator variablestem1 anditem?.

context Item inv:
Item.allInstances()—>
forAll(iteml : Item | Item->allInstances()->
forAll(item2 : Item |
iteml <> item2 implies iteml.id <> item2.id))

Alternatively, a shorthand notation is allowed that replaces the two nested iteration operations
forAl1(Q):

2.3. DETAILS OF SELECTED PARTS OF UML 39

context Item inv:
Item.allInstances()—>
forAll(iteml, item2 : Item |
iteml <> item2 implies iteml.id <> item2.id)

In the latest OCL version, operatiagUnique () was introduced to express this property in
a more compact form by:

context Item inv:
Item.allInstances()->isUnique(i:Item | i.id)

Undefined Expressions. It can happen that an OCL expression evaluates to an undefined
value. The following examples are all invalid OCL expressions.

-- ()
42 + ’drill’
-- (b)
3.14 and true
-= ()
AGV.allInstances()->collect(a:AGV | a.oclAsType(Station))

The first example applies a parameter of the wrong type (i.e., a string) to an Integer value
operation. The second example tries to apply a logical operation to a Real value, which is
not defined. And the third expression is undefined, as subexpressiobAsType (Station)
evaluates to undefined, as that kind of type cast is not possible in our model. In all cases, the
result is referred t@clUndefined, i.e., the only instance of typ@&1Void.

Expressions Metamodel. We have seen various examples with more or less complex OCL
expressions. These are formed based upon a concrete syntax given by an attributed context-
free grammar. In order to give a more general definition of OCL expressions on the level of
an abstract syntax, an additio@CL expressions metamodslbuilt that shows the general
structure an OCL expression may have. An overview of the expression types in that part of the

metaclasses and common UML metaclasses (e.g., Classifier, Operation, Attribute) then define
the general structure of OCL expressions.

We do not go into more details of the expressions metamodel here and refer to the adopted
OCL 2.0 specification for further readings.[OMG03b, Section 8.3]. We are rather concentrating
on the concrete OCL syntax in the following.

Concrete Syntax: Attributed Grammar. The metamodel-based approach of the OCL 2.0
specification achieves a separation between concrete and abstract OCL syntax. Basically, one
can now define an own notation (e.g., a 'visual OCL) and map this notation to the abstract
OCL syntax. However, the adopted OCL 2.0 specification suggests a concrete syntax that is
compliant with the current OCL standaid JOMG®3b, Chapter 9]. This concrete syntax is defined
by an attributed grammar that provides a mapping onto the abstract syntax. The motivation for

40 CHAPTER 2. UNIFIED MODELING LANGUAGE

ModelElement
(from Core)

AN

CollectionLiteralPart VariableDeclaration OclExpression UnspecifiedValueExp «enumeration»
CollectionKind
[\ \ \ \
Collectionltem CollectionRange LiteralExp LetExp IfExp PropertyCallExp VariableExp
[\ \
CollectionLiteralExp PrimitiveLiteralExp EnumlLiteralExp ModelPropertyCallExp LoopExp
[\ \ FZELT
BooleanLiteralExp NumericLiteralExp StringLiteralExp IteratorExp IterateExp
rlg\% [\ \
NavigationCallExp OperationCallExp AttributeCallExp
RealLiteralExp IntegerLiteralExp

Figure 2.8: Types of the OCL Expressions Metamodel| [OM&03b, Section 8.3.10, Figure 12]

taking amattributedgrammar isthe easiness of the construction and the clarity of this mapping’
[ONMGO3R, Section 9.1].

The attributed grammer comes with production rules in EBNF that are annotated with syn-
thesised and inherited attributes as well as disambiguating rules. The attributes are necessary
to provide rules for the purpose of well-formedness, in particular type checkihgrited at-
tributesare defined for elements on the right hand side of production rules. Their values are
derived from attributes defined for the left hand side of the corresponding production rule. For
instance, each production rule has an inherited attribuig short for ‘environment’) that rep-
resents the rule’s namespac®ynthesised attributesre used to keep results from evaluating
the right hand sides of production rules. For instance, each production rule has a synthesised
attributeast (short for ‘abstract syntax tree’) that constitutes the formal mapping from concrete
to abstract syntaxDisambiguating rulesllow to uniquely determine a production rule if there
are syntactically ambiguous production rules to choose from.

As an example, we consider some of those production rules in the attributed grammar
that are defined for different kinds of operation calls in OCL. A production rule name is ap-
pended byCs to distinguish between concrete syntax element and its corresponding metaclass
OperationCallExp.

-- Production rules for OperationCallExpCS:
[A] OperationCallExpCS ::= OclExpressionCS[1]
simpleNameCS OclExpressionCS[2]

[C] OperationCallExpCS ::= OclExpressionCS ’.°

simpleNameCS ’(’ argumentsCS? ’)’

[H] OperationCallExpCS ::= simpleNameCS OclExpressionCS

2.3. DETAILS OF SELECTED PARTS OF UML 41

Option [A] is used for infix operations (e.g4, + 2), option [H] is for unary prefix ex-
pressions (e.g., unary operatiant applied to boolean expressions), while option [C] is the
rule for a common operation call. All other options are omitted in this example. By provid-
ing additional disambiguating rules, it is guaranteed to be able to uniquely determine one of
the possible optional production rules. In option [C], the context classifier is given by the re-
sult gained from applying production rullExpressionCs, i.e., afterOclExpressionCS
on the right-hand side is deduced, we know its type (on level M1) and may refer to it by
OclExpression.ast.type. Furthermore, a ‘simple’ name of tymxring is gained from
applying production ruleimpleNameCS, and a list of arguments in form of a sequence of clas-
sifier instances is gained from production ralegumentsCS. In order to be able to correctly
deduce the non-trivial non-terminals on the right-hand side, we provide them the current list
of names that are visible from the current expression position. This information is kept in the
inherited attribute callednv of a special type calleBnvironment with corresponding manip-
ulation operations. In our example it is just necessary to forward the environment information:

[C] OclExpressionCS.env = OperationCallExpCS.env
[C] argumentsCS.env = OperationCallExpCS.env

A mapping from the concrete to the abstract syntax is defined by re-typing synthesized
attributeast in each production rule to the corresponding expression metaclass. In the case of
OperationCallExpCS, we therefore define

OperationCallExpCS.ast : OperationCallExp

In order to store the information gained from applying a rule (e.g., option [C]), the abstract
syntax tree variable has to be updated. This is done by applying values from evaluating the
subexpressions of the right-hand side to features of the abstract syntax tree astabiethe
case of operation calls, model elements of level M1 have to be searched and stored, i.e., a source
classifier instance, an instance of an operation, and a sequence of argument classifier instances.
For the source and the arguments, we simply pass the abstract syntax 0€expkessionCS
andargumentsCS to the featuresource andarguments of OperationCallExpCS.ast, as
shown below.

[C] OperationCallExpCS.ast.source = OclExpressionCS.ast
OperationCallExpCS.ast.arguments = argumentsCS.ast
OperationCallExpCS.ast.referredOperation =

OclExpressionCS.ast.type.lookupOperation(simpleNameCS.ast,
if argumentsCS->notEmpty() then
arguments.ast->collect(type)
else Sequence{}
endif)

For the operation name (that is of typering due to applying rulesimpleNameCS), we have
to determine a corresponding operation instance (on level M1). We here make use of operation

lookupOperation(name:String, paramTypes:Sequence(Classifier)) : Operation

42 CHAPTER 2. UNIFIED MODELING LANGUAGE

This operation is one of the metalevel operations that are additionally defined for metaclass
Classifier in the context of OCL. On a given instanc®f metaclas€lassifier, operation
lookupOperation(name,paramTypes) returns an operation object (of level M1), if there is an
operation defined fot with matching name and parameter types. If there is no such operation,
OclUndefined is returned.

It is remarkable that there is a direct correspondence between the proposed concrete syntax
by means of an attributed grammar and the abstract syntax defined for OCL types and expres-
sions. The mapping is implicitly given by the attributes of the grammar. Note that OCL users
will not be confronted with the abstract syntax of OCL expressions - they will rather formulate
OCL constraints based upon a concrete language, preferably in the standard textual form as
proposed in the official UML specification. But now, one can think of well-defined alternative
approaches can now be established by simply providing a mapping to the abstract syntax of
OCL.

2.3.3.2 OCL Semantics

At this point, readers should be able to interpret OCL constraints in an intuitive manner. Nev-
ertheless, a semantics has to be defined in order to be able to precisely answer the question:

Given the overall system state of a UML model (i.espapshot what is the actual
result from evaluating an OCL expression over that snapshot?

In recent years, different formal semantics have been published that define (parts of) earlier
versions of OCL, e.g.i [RGY8, CKO1, BWO02]. Interestingly, OCL 2.0 provislesapproaches
for the semantics of OCL. First a semantics definition is given by a set-theoretic mathematical
other approach defines the semantics on the level of the UML metamodel, based on the report
‘Unification of Static and Dynamic Semantics for UME [KW0D1]. The structure is shown in

........

.................

.........

syntax. It shows the following packages:

e TheDomain package describes the values and evaluations. Note that this package resides
on layer M1 of the 4-layer architecture, while the abstract syntax resides on layer M2.
The package is divided into two subpackages:

— TheValues package describes the semantic domain, i.e., the set of possible values.
It represents the values that OCL expressions may yield as result.

— TheEvaluations package describes the evaluations of OCL expressions. It con-
tains the rules that determine the result value for a given expression.

e The AS-Domain-Mapping package describes the associations of the values and evalua-
tions with elements from the abstract syntax, i.e., this package links the domain (on layer

2.3. DETAILS OF SELECTED PARTS OF UML 43

Ocl-AbstractSyntax Ocl-Domain
Types Values
(from Ocl-AbstractSyntax) (from Ocl-Domain)
Expressions 0 0 Evaluations
(from Ocl-AbstractSyntax) | (from Ocl-Domain)
N
1
i
i
Ocl-AS-Domain-Mapping
i
1 ! Type-Value L
TTTTTTTTTTTTTTTTTTTrTT T (from Ocl-AS-Domain-Mapping)
1
Expression-Evaluation
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (from Ocl-AS-Domain-Mapping) | | _____!

M1) with the abstract syntax (on layer M2). Note that ti$eDomain-Mapping package
itself cannot be positioned in one of the layers. It is also divided into two subpackages:

— The Type-Value package contains the associations between the instances in the
semantics domain and the types in the abstract syntax.

— TheExpression-Evaluation package contains the associations between the eval-
uation classes and the expressions in the abstract syntax.

To summarize the approach, the semantics of an OCL expression is given by associating
each value defined in the semantic domain with a type defined in the abstract syntax, and by
associating each evaluation with an expression from the abstract syntax. In turn, the value
yielded by an OCL expression based on a given snapshot of the UML model is the result value
of its evaluation.

2.3.3.3 Discussion

Section 5]. For UML 2.0, the metamodel approach of OCL 2.0 might enable tool developers
to overcome this problem in the future. Tools could employ their own constraint language in
UML 2.0; they only have to provide a mapping to the OCL metamodel. Thus, a tool does
not have to stick to the concrete OCL syntax provided in the adopted OCL 2.0 specification.

[GHK99,(KHOZ].

Mandel and Cengarle have shown that OCL does not yet have the expressive power of a
relational algebrd [MCY99]. A relational algebra is a collection of operations that take relations
(or: sets of tuples) as operands and result in a relation. Relational algebra uses operations
from mathematical set theory and specific operations developed for manipulation of data in

44 CHAPTER 2. UNIFIED MODELING LANGUAGE

union, and(cartesian) productand several additional useful operations can be derived, e.g.,
intersection division andjoin. In standard OCL, operatiorselect difference andunion are
already available, but as OCL currently does not have a notion of tuples, opeatgectand
productare not supported. With the introduction of@ple type and corresponding operations
on tuplesi{AB01] and the adoption in OCL 2;0 JOMG03b], OCL is gettmostthe expressive
power of a relational algebra and can be used as a query language similar to SQL. In this context,
Balsters explains in [Bald3] that the relatiofain operation is still not suffiently supported in
OCL 2.0.

Besides the issues addressed in the OMG OCL 2.0:RfP.JOMGO00a], there are a number of
further unresolved issues in the OCL language definition, maybe the two most important and
frequently discussed among these are

Section 4.2.5], and

¢ the interpretation of recursion in OCL constraints. Consider the operation postcondition

context AClass:fac(n:Integer) : Boolean
pre: n >= 0
post: result = if (n=0) then 1
else n * fac(n -1)
endif

In UML 1.5 as well as in the OCL 2.0 specification it is allowed that the right-hand-side
of such a definition may refer to the operation actually being defined (i.e., the definition
may be recursiveds long as the recursion is not infinitBut this statement still does not
solve what expressions like

context AClass:op() : Boolean
post: result = self.op()

............

such expressions are illegal, or the result is the undefined Ballmdefined. Unfortu-
nately, the first solution requires a notion of well-formedness that is undecidable, i.e., not

..

From the OCL language concepts, the type system is by now in a considerable stable situ-
ation. Though, the role of typec1Type is discussed controversially in different publications.
In the sequel, we therefore consider once more the type system of the OCL 2.0 specification
and review the definition and usage of typelType within the OCL language definition and
different approaches in literature.

2.3. DETAILS OF SELECTED PARTS OF UML 45

The Role of OclType. In OCL expressions, it is sometimes necessary to access user-defined
classes, e.g., to perform type casts, to check for a certain subtype, etc. There are different
possibilities to provide access to such instances of metatlassifier:

1. The current standard as defined in UML 1.5 useType and refers to is as metatype
as it reads in (cf [OMG03d, Section 6.8.1.1)):

All types defined in a UML model, or pre-defined within OCL, have a type.
This type is an instance of the OCL type called OclType. Access to this type
allows the modeler limited access to the meta-level of the model. This can be
useful for advanced modelers.

There are even pre-defined operations provided&iType to further access metalevel
features, e.g., operations to get the list of attribute names, association end names, and
direct as well as indirect supertype names (surprisingly, operations to extract subtypes are
missing).

Modelers are thus able to access the metalevel (level M2). Note that this breaks up the
4-layer architecture underlying the UML modeling approach.

to be defined omclType in their approach, as the UML core metamodel already pro-
vides such means, either directly or indirectly (by navigation along associations in the
UML core metamodel). l.e., that approach also allows direct metamodel access. It is
worth noting in this context that nested collections are not possible in that metamodel.

3. Richters proposes in his OCL type metamodel a metatyp&ypeType with 0c1Type as
its only instance on level M1 [Ric®1, Section 6.4]. Moreover, all classifiers of the referred
UML user model are maintained by an additionaljectType, i.e., a bijective function
between instances @bjectType and user-defined classes is established. Semantically,
the domain of an object type is the set of object identifiers defined for the class and its
children.

4. In the adopted OCL 2.0 specificatiad;1Type is now residing on level M1 as a sub-
type of OclAny. It is regarded as an enumeration of the classifier names of the referred
UML user model. Its corresponding metaclas€9¢3ModelElementType, a subclass
of Classifier (more preciselydclModelElementType iS a subtype oEnumeration).

The operations previously defined 0n1Type are no longer available, as instances of
OclType are only used as parameters in some operations ofttypeny, namely in op-
erations

1. o0clIsKindOf (t:0clType) : Boolean
2. oclIsTypeOf (t:0clType) : Boolean
3. oclAsType (t:0clType) : instance of OclType -- Arguable! See below.

46 CHAPTER 2. UNIFIED MODELING LANGUAGE

superType

<<abstract>>
OclType

name : String

E

subType

conform

superConstructor
0..1

<<abstract>> -
CollectionConstructor
Collectable | elementType 1
N
A subConstructor
| | 1 descriptor
Classifier OclBasicType <<enumeration>>|
(from Core) CollectionKind
Bag
1 descriptor Set
<<enumeration>> Sequence
OclBasicKind Collection
OclAny
Real
Integer
String
Class DataType Boolean
(from Core) (from Core) OclExpression
OclState

Figure 2.10: OCL Type Metamodel Proposal by Baar aatiiie {BH00]

Note thatoc1AsType () actually does not return an instancelofi Type, as this refers to
an enumeration literal, e.¢1Type: : InputBuffer whenOclType iS an enumeration
type. That operation rather returns an object re-typed to the used-definedithipbe
namerepresented by parameterlt is better to specify in this case:

obj.oclAsType(t:0clType) : OclAny

context OclAny::oclAsType(t : OclType) : OclAny
post: if self.oclIsKindOf(t) then

result = self and result.oclIsTypeOf (t)
else

result = OclUndefined and result.oclIsTypeOf(0clVoid)
endif

Parameter denotes by definition an instance of metaclessssifier, asOclType IS
a powertype over classifiers. Onlyiifis a subtype of the current context determined by
self, re-typing can take place. In all other casgslUndefined is returned.

With the latter approach in mind, it is better to modelType as a powertype fobclAny,

generalization and gives access to specialized types as instances. It is thus a more natural way
to represent the elements@f1Type that does not need to redefine classifiers in an additional
enumeration.

2.3. DETAILS OF SELECTED PARTS OF UML 47

«powertype» __I? [_T_ 7
OclIType OclAny «datatype» | _) «datatype» |
N OclMessage Collection
|
«powertypey,
[

{complete, overlapping}

+ -

S \
Ja «datatype» «datatype» | |
Real Bag

This branch indicates that
all user-defined classifiers

on level M1 are subtypes F—T— 7 F_T_ 7
of OclAny «datatype» «datatype» «datatype» L «datatype» L
Boolean String Set ‘ Sequence
«datatype»
Integer
«enumeration» «datatype»
OclState OclVoid

Figure 2.11: OCL Standard Library Types Proposal

OCL and State Diagrams. In UML 1.5 there is a specific new kind of invariant defined that
has not yet received much attention; so-cafitade invariantcan be formulated and attached to
a specific statein a State Diagram associated to clafflMG03d, Section 2.5.2.13]. Basically,
this is equivalent to a common OCL invariant of the form

context c inv:
self.oclInState(s) implies <stateInvariantExpression>

Surprisingly, there is still no semantics definition for state invariants and state-related oper-
ationoclInState(s:0clState), and even in the adopted OCL 2.0 specification this issue is
missing. To overcome this, we are going to integrate a general State Diagram description to the
current semantic model of OCL in Chapiér 4.

2.3.4 UML Extension Mechanisms

Although UML is a general purpose modeling language, it has mechanisms that can be applied
to tailor UML to specific domains, i. e., to perform a specialization by introducing restrictions
metamodel specializations are referred td4. extensibility mechanism3he standard UML
extensibility mechanisms are stereotypes, (user-defined) tagged values, and constraints. These
modeling elements are capable of adapting the UML semantics without changing the actual
UML metamodel. They are often calléidhtweight extensibility mechanisimia contrast to a
direct manipulation of the UML metamodel, which can be seen as heavyweight extensibility
mechanisms (e.g., adding new meta classes and associations).

Stereotypesre classifications of existing model elements. They are an alternative way to
introduce specialized model elements without adding subclasses in the actual metamodel. It is

48 CHAPTER 2. UNIFIED MODELING LANGUAGE

possible to specify hierarchies among stereotypes, and besides the textual annotation in double
square brackets that identifies a stereotype (emg:taclass>), it is also allowed to introduce

a completely new notation (i. e., a graphical symbol) for a stereotype. In practise, stereotypes
are mainly applied to model elements in order to embed their corresponding diagram type into
the different stages of a software development process. E.§...in.JOMGO03d, Section 4.3.5] the
stereotypesentity>, <controls>, and<boundary> are introduced to specialize the notion

of classes. The stereotype semantics are informally described and a graphical notation is in-
troduced for each stereotype. The stereotypes are used to model UML classes as passive enti-
ties without initiative to interact, control classes that manage interactions between objects, and
'peripheral’ boundary classes that build an interface to actors outside of the regarded system.
Tagged valuesire characteristics of UML metamodel elements or stereotypes that restrict the
model elements by key/value pairs. Additionally, constraints can be defined to specify con-
sistency rules of and between model elements, often also denoted as well-formedness rules.
Constraints can be expressed in natural language or by use of the Object Constraint Language
standard for applying the presented extension mechanisms to specialize standard metamodels
like the UML, a white paper on the UML profile concept has been released by the OMG Section
[OMGYY]. In that article, first the general requirements for adequate extension mechanisms are
identified, before the notion of a profile is defined as follows:

A Profile is a specification that specializes one or several standard metamodels,
called the reference metamodels. [...] A Profile is a consistent definition con-
text for elements such as, but not limited to, well-formedness rules, tagged values,
stereotypes, constraints, semantics expressed in natural language, extensions to the
standard metamodel and transformation rules.

Popular examples of proposed UML profiles are UML-RT [$R98], the UML Profile for
CORBA [OMG00bB], and the two UML Profiles for Business Modeling and for Software De-

...........

2.4 UML and Time

The UML standard already provides a variety of means to construct object-oriented models.
However, several aspects of real-time systems development require additional constructs that
are not directly covered in standard UML. UML can be naturally extended to better define and
sulting models are then tailored more accurate towards the specific domain, and implementation
can be performed in a more straightforward way.

In the following, we describe

2.4. UML AND TIME 49

3. approaches that extend State Diagrams to capalravioral aspectsf real-time systems

2.4.1 Time and Timing Constraints in Standard UML

For modeling aspects of real-time, UML provides language elements for timing marks, time
expressions, and timing constraints to be used in Sequence and Collaboration Diagrams. Figure
‘f'i'g'j'i]?e, the annotations in curly brackets are timing constraints composed by time expressions.
On level M2, TimeExpression iS seen as a statement to define the absolute or relative time of
occurrence of an event. There is no particular format defined for time expressions and timing

...........

............

............

but note that the notation is ambiguous when the arrows are horizontal, because sending and
receiving time cannot be distinguished.

caller exchange | receiver |

a: liftReceiver

{b.receiveTime
- a.sendTime < 1 sec} b: dialTone

{c.receiveTime

- b.sendTime < 10 sec} c: dialDigit

The call is routed

through the network - %

ringing tone phone rings

!

{d.receiveTime
- d.sendTime < 5 sec}
e: answer phone

At this point the stopTone f: stop ringing $< 1 sec.
parties can talk -- NV

Figure 2.12: UML Sequence Diagram Example JOMG03d, Section 3.60.4, Figure 3-55]

As messageés standing for a specification concept in UML, actual messages sent between
objects are calledtimuliin UML. FunctionssendTime () (i.e., the time at which a message is
sent by an object) antkceiveTime () (the time at which a message is received by an object)
are applied to stimuli names to yield a time. Unfortunately, there is no semantics description in
the UML specification about those times. UML even suggests that users invent further timing
functions when needed for particular domains or implementationseegryutionTime (). A
semantics, however, is not in the scope of UML, and an appropriate mapping to a well-defined
time expression has still to be provided.

The UML Language User Guidshows a way to apply time expressions to operations
[BRJYY, page 324] with standard UML: A note with tagged vadesantics is attached to
an operation. In that note, a time expression then specifies the operation’s time complexity.

50 CHAPTER 2. UNIFIED MODELING LANGUAGE

This typically represents the minimal/maximal time of expected completion of an operation ex-

ecution. Such specifications can be used in different ways. E.g., the resulting running system

can be compared with the asserted times specified in the model. Alternatively, by adding up

(asserted or actual) operation times, compound times of entire transactions can be calculated.
In theUML 2.0 Superstructure ProposgDMGQ3f], Sequence Diagrams are now equipped

with improved modeling elements for time bounds. Arcs that represent messages that are sent

between objects can now be annotated by expressions that refer to

duration observations (e.gGdde d = duration’),

duration constraints (e.g{d. .3*d}),

time observations (e.g.t*now’), and

time constraints (e.g.{t..t+3}).

Moreover,Timing Diagramsare one of the new kinds of diagrams in UML 2.0 [OMGO03f,
Section 14.4]. Timing diagrams model changes of object states over time along a linear time
axis. Basically, modelers can specify conditions that imply object state changes as part of object
lifelines. The behavior of objects as well as interactions among objects can thus be restricted.
Though some examples are provided and a guideline for the basic graphical notation is given
in the UML 2.0 superstructure proposal, the semantics description of timing diagram is still
incomplete, e.g., the semantics of tick mark values and timing rulers is unclear.

2.4.2 Modeling Real-Time System Architectures with UML

To overcome the limited means for modeling time and related aspects in UML, several compet-
ing and complementary proposals to extend UML have been developed. These are specifically
tailored to the domain of real-time systems, i.e., focusing on aspects like system architecture,
communication mechanisms, and real- time constraints. In this context the approach known as
using stereotypes to explain the purpose of model elements that commonly occur in the real-
time domain. E.g., a variety of message stereotypes is presented to represent synchronization
and message arrival. The CASE tool Rhapsody is an implementation of R‘Ia UML

Another widely recognized work of real- trme systems modellng wrth UML is the UML- RT
RoseR’I” The key concepts of ROOM a[apsules ports connectors protocols and a spe-
cific variant of State Diagrams. Capsules represent components of real-time systems and have
explicit external interfaces specified by ports. Connectors between ports represent (logical)
communication between capsules. Protocols are defined independently of capsules and repre-
sent reusable interfaces for communication by specifying roles for participants with allowed
incoming and outgoing messages. Ports implement these participants, i.e., two ports may com-
municate when their corresponding protocol roles are compatible.

Shttp://www.ilogix.com
http://lwww.rational.com/products/rose

2.4. UML AND TIME 51

There are a number of other tools available that deal with development of real-time systems,
e.g., the Telelogic TA@swte uses SDL combined with UML and ARTiSAN offers a tool called
Real-Time Studt?: An extensive list of UML tools together with their provided functionality is
available onliné&

The fact that a number of different (tool-based) modeling techniques have emerged for de-
veloping real-time systems led to a variety of different notations and terminologies. The OMG
therefore issued a Request for Proposals Oivid Profile for Schedulability, Performance, and
Time (SPT}hat shall provide a common framework by means of UML that one the one hand
covers this diversity but one the other hand still offers flexibility for further specializations. An
extensive submission on that Request for Proposals has been submitted by leading CASE tool
vendors in the domain of real-time systems development (i.e., ARTISAN, I-Logix, Rational,
Telelogic, TimeSys, and Tri-Pacific). That submission is at time of writing still being reviewed
by the OMG {OMG03c].

All UML tools and the UML profile for SPT have only limited support for temporal (con-
straint) specification. Temporal operators are basically timers with a fixed duration, e.g.,
after(t). Currently, such properties can only be formulated in (stereotyped) notes without
a standard semantics. It is thus not possible to verify whether a UML model satisfies temporal
constraints. Different working groups therefore attempt to provide UML with a formal seman-
tics, e.g., the pUML initiative (precise UMEpr the 2U consortium (unambiguous UML)

2.4.3 Time-Annotated State Diagrams

While there are several publications available on introducing timing aspects in different
approaches regarding timed varlants of UML State Diagrams. As there are also a significant
number of works on Harel Statecharts in this context published, we also briefly mention these,
as they have heavily influenced more recent works on UML State Diagrams.

In 1987, Statecharts were introduced by Harel [Har87] to overcome the limitations of clas-
sical flat, unstructured state-transition diagrams. Statecharts basically introduce hierarchical
states and additionally support parallel substates and broadcast communication. The opera-
tional semantics of Statecharts was first defined by Harel et &,/ ii [HPSS87], providing a notion
of steps and microsteps. That semantics bases on the so-gg@lieldrony hypothesibat as-
sumes that the system instantaneously reacts on inputs coming from the environment. The
environment is seen as a discrete process sending inputs at successive points of time. It is as-
sumed that the system’s reactions on inputs at tiraee completed before the inputs at time
t + 1 occur.

However, this semantics showed some drawbacks, in particular, causal paradoxes could
occur due to negated events in transitions This problem was overcome by Pnueli and Shalev in

Shttp://www.telelogic.com
Shttp://www.artisansw.com
http://www.jeckle.de/umitools.htm
8http://www.puml.org
Shttp://2uworks.org

52 CHAPTER 2. UNIFIED MODELING LANGUAGE

they forbid that the cause attached to a transition may appear as a negated consequence in
the same step. Several variants of Statecharts have also been published by other authors with
different semantics definitions. But it is out of scope of this thesis to give a detailed overview

In 1996, Harel and Naama‘la pomtedout in their article on ‘The STATEMATE Semantics of
Statecharts:[HNY6]:

Being an unofficial language, statecharts clearly have no official semantics, and
researchers are free to propose semantics as they see fit. However, the only im-
plemented and working semantics for statecharts has for many years been the one
described here. [...]

The main difference [...] was whether changes that occur in a given step (such as
generated events or updates to the values of data items) should take effect in the
current step or in the next one.

STATEMATE semantics, generated events and value updates take effect in the next step (which,
however, may happen still at the same point of time).

STATEMATE supports discrete simulation time with a global clock. In the asynchronous
execution mode, the clock is only incremented at (super-)step boundaries to the next relevant
clock tick, determined by counters handling time-outs and scheduled actions.

Statecharts became also prominent in the areabg@ct-oriented system modelingspe-
cially with the emergence of the first UML specifications after fall 1995. As the semantics of
UML State Diagrams is only informally specified in the official OMG specifications, many re-
searchers have published works on formalizations of (subsets of) UML State Diagrams in recent
years, e.g..[BCROO, JEJGZ, KusO1, Kwol0, LMME9h, [F99, RACHO0, SKMO1, BeeO1].

Object-oriented UML State Diagrams exhibit a behavior different from structural State-
charts like Harel or STATEMATE Statecharts, the most important of which are

e point-to-point communication between objects instead of broadcast via channels,
e an implicit event queue storing incoming events instead of an event set,

e reaction on one event at a time by dispatching instead of reacting to all current input
events,

e input events may exist for an arbitrary time instead of one time unit only,

e non-instantaneous communication instead of instantaneous communication,

e activities that take time in addition to instantaneous actions,

¢ distinction between types and instances instead of pure instance level modeling,

e encapsulation instead of separation of data and control.

2.4. UML AND TIME 53

Explicit Timing Mechanisms in State Diagrams. Formalizations that explicitly introduce
timing mechanismto Statecharts, let it be Harel's, STATEMATE, or UML State Diagrams.
The following list provides an overview of existing work in this area without claiming that this
listis complete.

by timing intervals, denoting the lower and upper bounds of a transition. A global clock
is used for synchronous progress of time.

e Leung and Chan J.C96] introduce time-annotated transitions to Harel Statecharts, using
Duration CalculusfCHRY9%] to define the underlying semantics. This implies some se-
mantic changes w.r.t. the synchrony hypothesis as well as duration and consistency of
actions and events.

this context, Levi's PhD thesi§ [[.€V07] defines a compositional timed Statechart seman-
tics by a translation to a process language calléd® with discrete time.

form compositional model checking. The semantics differs from the article by Harel
and Naamad JHN96] in the sense that it provides a compositional semantics based upon
synchronous transition systems.

The article focuses on the asynchronous semantics (or super-step semantics) of the
STATEMATE simulation tool, in which it is distinguished between internally and ex-
ternally generated events. External events are only consulted at the first step and are
communicated to the environment not until completion of a super-step, while internal
events will be sensed already in the next step.

e Eshuis and Wieringa [EVW00] propose a formal real-time semantics for UML State Di-
agrams at requirements level, adapting the STATEMATE semantiés_of [HN96]. Local
variables, real-time, point-to-point communication, synchronous communication, and dy-
namic creation and deletion of objects are addressed.

o David, Moller, and Yi [DMOZ%,:DMY02] give a translation of restricted UML State Dia-
grams to flat UPPAAL timed automata. Among the preserved State Diagram concepts are
state hierarchy, parallel compaosition, synchronization of remote parts, and history entries.
Additionally, they equip State Diagrams with local clocks.

— a timed UML State Diagram semantics by a translation to a first order temporal logic
called TRIO. Though, several restrictions on UML State Diagrams are applied. Newly
introduced specification means include concurrent events attached to transitions, guards

54 CHAPTER 2. UNIFIED MODELING LANGUAGE

with references to events to formulategated eventaind extension of the timeout mech-
anismAfter(t), such that an intervalfter (a,b) may be specified, in which a state
may be left. It is also possible to get the latesturrence timef a transition.

e Knapp, Merz, and Rauh [KMR02] describe model checking of UML State Diagrams in
a prototype implementation called HUGO/RT, in which each time-annotated State Dia-
gram is translated to a flattened UPPAAL timed automata and an additional automata is
generated for each event queue. The current status does not cover parameters attached to
events, deferred events, history states, and more than one instance of a class.

e Burmester defines in his thesis a UML State Diagram variant c&kaltime Statechart

generate real-time code (Realtime Java code).

All standard features except elapsed time events and change events are kept in this ap-
proach. Additionally, Realtime Statecharts may be equipped with a number of local
clocks. Each state may havetiming invariantthat specifies the latest time it should

be left again, similar to invariants of timed automatdock resetsare attached to entry-

and exit-operations to reset local clocks. Worst-case execution-times (wcet) are attached
to operations that specify how long execution of an operation will take. A do-activity
may have a specified period, as do-activities are interpreted as being operations that are
periodically executed until a triggering event is dispatched. Transitions may additionally
carry time guards, clock resets, a deadline, a wcet, a priority, and synchronization signals.

Due to the number of introduced concepts, several methods are investigated to check
temporal consistencies among a Realtime Statechart. A formal semantics of Realtime
Statecharts is given by a mappingextended hierarchical timed automathat in turn

are based on hierarchical timed automata as presentgd’ii [DM01].

2.5 Contributions of the Chapter

The contributions of this chapter can be summarized as follows.

e A review of selected parts of the UML is given, i.e., UML Class Diagrams, State Dia-
grams, the Object Constraint Language, and UML extension mechanisms.

e A proposal for a better representation of built-in type Type within the OCL Standard
Library is presented. Though access to the metamodel cannot be abolished, the proposed
approach offers a way to access the metalevel M2 in a controlled way. As a consequence,
a number of issues that are currently ill-defined in the OCL 2.0 specification could be
resolvedi[Ela04], e.g., specifications for operations dik&AsType () can now be formu-
lated by means of OCL postconditions.

e A review of timing issues within the different UML specifications and corresponding
profiles is given, with an emphasis on timing annotations on behavioral elements such as
messages sent and state transitions.

Chapter 3

Formal Verification

Beware of bugs in the above code;
| have only proved it correct,
not tried it.
— Donald E. Knutf 1977

For certain computer systems — whether they are hardware, software, or a combination of both —
it is desirable to guarantee their correct execution. The question is no longe Danye build

the right system (w.r.t. the client’'s requirements)iut rather Do we build the system right

(w.r.t. the expected system behaviar)his is especially important fosafety-critical systems

i.e., those systems whose failure could result in loss of life, significant property damage, or
damage to the environment. Typical examples of safety-critical systems are medical devices,
aircraft flight control systems, and nuclear systems. But correct execution is also important for
the large number afommercially critical systemse., those systems whose failure would lead

to enormous financial loss, e.g., in the domain of chip mass production.

Different approaches are used to analyze the correctness of a system. Frequently applied
techniques aréestingandsimulation These techniques can become very time consuming —
especially in late phases of development — and do not consider all possible executions. Testing
is performed withtest caseshat are identified in early phases of development and represent
either typical or critical inputs. However, successful testing does only mean that the investigated
test cases run correctly. Simulation only regards a limited number of executions and can thus
only confirm that the investigated executions do not lead to erroneous situations.

Instead, formal verification techniques can investigate the complete state space of a sys-
tem or, more precisely, a model of the system. Formal verification techniques comprise three
different parts{[HR0O]:

e aframework for modeling systemsge., most typically a description language,
e aspecification languagtr formulating the properties that should be fulfilled,

e a verification methogdi.e., a formalism that defines when the description of a system
satisfies the property specification.

Ihttp://www-cs-faculty.stanford.edu/ knuth/fag.html

55

56 CHAPTER 3. FORMAL VERIFICATION

The main formal verification approaches in this context are theorem proving, equivalence
checking, constraint solving, and model checking. They can be classified based on different
criteria, like proof- or model-based verification, full- or property-based verification, the degree
of automation, the domain of application, and the stage of usage within the development process
[HROQ].

It is almost impossible to list all individual existing formal specification and verification
methods and corresponding tools. We will therefore focus on descriptions of those formal
specification and verification techniques that are necessary to follow the remainder of this thesis.

We start with a brief introduction tautomata-based modeling approachesich build an

.........

formal verification of time-dependent properties w.r.t. a given model.

3.1 Automata-Based Modeling Approaches

In formal methods, it is necessary to describe an abstract version of the system by means of
a modelin a certain notation, i.e., modeling language These languages base upon differ-
ent approachesAlgebraic modeling languagese used to model the behavior of concurrent
[Hoa78]. Object-oriented modeling languagesich as the graphical UML notation, structure
the system under consideration into different views, e.g., static and dynamic parts. The third
prominent approach in this context conceamsomata-based languages

The notion of afinite automatan language theory is also known #gite state machine
(FSM), Kripke Structure or transition systenin other areas. Basically, FSMs have a finite set
of states, a set of transitions between states, and labeling functions to define the output reaction
on given inputs.

Let 7 andO be the input and the output alphabets of the FSM. Generally, a (deterministic)
finite state machine is atuplet = (1,0, S, Sy, next, out) that has a finite sef of states, a set
Sy of initial stateg a transition functiomext : S x I — S, and an output functionut that is
either defined byut : S — O orout : S x I — O.

In literature, itis commonly distinguished between Moore-type (or: state-based) and Mealy-
type (or: input-based) automata. The difference lies in the definition of the output funation
For Moore-type, we haveut : S — O, i.e., an output symbal is assigned to each state
s € S. The symbolw is outputted when the FSM is in state For Mealy-type, we have
out : S x I — O, l.e., the outpu is depending on the current state S and an input symbol
v € I. The symbolv is outputted when the FSM is in stat@nd the input symbal occurs.

Several variants and extensions of this basic notion of an FSM exist. For instance, it might be
allowed to applysets of input and output symbdds functionout or introduce non-determinism
by allowing atransition relationnext C S x I x S.

2It is often required thatard(Sy) = 1.

3.1. AUTOMATA-BASED MODELING APPROACHES 57

One important variant is the notion okaipke Structure Kripke Structures are graphs that
comprise of nodes representing the set of reachable states of a system and of edges representing
the state transitions of the system. In the general Kripke Structure, it is often abstracted from
the inputs. The transition relation is required totb&l w.r.t. the first component, i.e., for each
s € Sthereis at least one outgoing transition. As Kripke Structures are applied in the context of
formal verification by model checking, we here define the general notion of a Kripke Structure
in more detail byC = (Pr, S, Sy, T, 1), wherePr is a set of atomic propositions (comparable to
the outputs of FSMs); is the set of statesy, is the set of initial stateq, C S x S is the (total)
transition relation, and : S — P(Pr) is a state labeling function that shows which atomic
propositions are valid in a given state

As modeling more complex systems with only one automata soon becomes quite cumber-
some, modularity is often supported in automata-based modeling approaches. System compo-
nents are modeled as separate automata that are equipped with some mechanisms to cooperate.
This can be done, for example, by synchronous signals communicated between automata.

Semantics. The execution semantics of an FSM is definedelxgcution paths An execu-
tion path is a (finite or infinite) sequence of states, ..., z;,...), whereVi € Ny 3. € I :
next(x;, 1) = x;11. (In the case thatext is a relation, we requiréc;, ¢, z;11) € next.)

Starting in an initial state € S, the possible execution paths can be represented as an
(infinite) tree of states. A staté € S is calledreachableiff it appears on one of the possible
execution paths (or in the tree of states, respectively).

FSMs in other domains. Different other classes of automata and FSMs have emerged for
particular application domains, e.g.,

e w-automata that accept inputs of infinite length,
e communicating concurrent FSMs,

¢ hierarchical concurrent FSMs, in particular Harel Statecharts that are a graphical ap-

o dataflow graphs that are more suitable to describe computational intensive systems,
¢ timed automata that have an inherent notion of time,
¢ hybrid automata that comprise discrete and continuous time,

e and different kinds of combinations of the above, e.g., timed and hybrid Statecharts or
FSMs with datapaing [SEp7].

definition of the syntax and semantics I6®-Interval Structureghat are equipped with syn-
chronous signals to exchange information and a notion of discrete time.

58 CHAPTER 3. FORMAL VERIFICATION

3.2 Formal Specification

The notion offormal specifications used with various meanings in literature. The IEEE stan-
dard defines formal specification to be a specification written in a formal language, which in turn
is based upon a rigorous mathematical model or just on a standardized programming or specifi-
cation language JIEE87]. Van Lamsweerde provides in his roadmap of formal specification the

.............

[...] a formal specification is the expression, in some formal language and at some
level of abstraction, of a collection of properties some system should satisfy.

Though this definition is kept very general, it also capturesrttemtionof a specification and —

in turn — a specification language; namely, a specification explicitly expresses the requirements
(or: properties) a system under consideration should fulfill, and this has to be given in a formal,
thus mathematical and unambiguous way. Depending on its intended application, a formal
specification can bexecutableon a machine. But frequently, formal specifications are just
mentally executabland used as a precise, unambiguous basis for discussion among members
of a developer team. Formal specifications have been classified in literature with respect to
different criteria, e.g., whether they contain graphical elements in their syntactical domain,
whether they are executable, or whether they are tool supported.

Different kinds of logics build the foundation of formal specification languages, ranging
from propositional and predicate logics over modal logics and temporal logics to process al-
gebras. An overview of specification languages based on this classification is presented in
[(MLGI986].

we here focus on specification languages that are basddngooral logics as these are of
relevance for the remainder of this thesis.

3.2.1 Temporal Logics

Temporal logics are frequently applied to specify properties of state-transition systems or —

.........

illegal execution sequences.

In contrast to propositional and predicate logic, the validity of a temporal logic formula
cannot be statically determined based on a single snapshot of a Kripke structure, i.e., an overall
description of the current status of the model. Rather, a temporal logic formula concerns several
(even infinitely many) snapshots. Temporal logics are therefore definedcoméguration
sequencesr runs that represent possible executions of a model. In the following, we write
7 = (wg, z1, ...) for a path in a given Kripke structué = (Pr, S, Sy, T, L). We denoter’ for
the suffix ofr starting a position of the path, i.e.r® = (z;, 75 1,...).

There is a variety of temporal logics described in literature that have been used in different
domains. We can classify these by their view of evolving tilriaear timebased logics have a

3.2. FORMAL SPECIFICATION 59

notion of execution sequences as a whole, wignching timebased logics work with alterna-
tive execution possibilities at each given point of time. This is especially useful when reasoning
about non-deterministic models. We can also distinguish between temporal logics that work for
discreteor for continuoustime. While continuous time is frequently applied to reason about
analogue systems, discrete time is often chosen to specify properties of concurrent synchronous
models. A third characteristic that can be employed to classify temporal logics are whether they
are future- or past-oriented.

We here describe two frequently applied discrete, future-oriented temporal logics called
Linear Temporal Logi¢LTL) and Computation Tree Logi@CTL), but note that there are other

the more general CTLXJCE81, CES86] that has LTL and CTL as sublanguages.

3.2.1.1 Linear Temporal Logic (LTL)

Formulas expressed in Linear Temporal Logi¢.[Pu80] are defined on individual computation
pathsr. The syntax of LTL formulas is defined by the following grammar in Backus Naur form.

Definition 3.1 Let Pr be a set of atomic propositions, and et Pr. The syntax of a linear
temporal logic formulap is recursively defined by

¢u=p | true | false | 79 [¢A@ [9V | X [Fo [Go [oUog.
The literalsX, F, G, andU aretemporal operatorshat describe properties of a path

e X is the nextoperator and requires that the following formula is true for the second — or
more generally — next state of the path,

¢ F (often also denoted by >) is the theeventuallyor sometime in the futureperator and
requires that the following formula is true in some subsequent state of the path,

e G (often also denoted b)) is theglobally operator and requires that the following for-
mula is true for all subsequent states of the path,

e U is theuntil operator and combines two formulasand¢,. The LTL formula¢; U ¢o
requires that — if there is a state on the path wheres true, on all preceding states
has to be true.

Sometimes additional useful operators are defined, e.gretbaseoperatorR that is dual to
including the first state wherg, holds, but note thap,; does not have to hold at all. Logically,
o1 R ¢y is equivalent to-(—¢; U —¢,).

An LTL formula is evaluated on an execution path or a set of execution paths. The regarded
paths satisfy a formula if each of the regarded paths satisfiesNote that in {CGP99], LTL
formulas are always considered for the setalifexecution paths. We define a satisfaction
relation for LTL formulas as follows.

60 CHAPTER 3. FORMAL VERIFICATION

Definition 3.2 Let ¢, ¢y, ¢, be LTL formulas. We writ&, 7 = ¢ to denote that the execution
path = of the Kripke structureC satisfies the LTL formula. The satisfaction relatiof= for
the semantics of LTL formulas over a pathn a Kripke structurekC is inductively defined as
follows.

K, = true
K,mEp iff p € I(xg), where p € Pr and x is the first state of 7
K, 7l —¢ iff not I, m = ¢
K,imEdgiNos it K,ml= ¢ and K, 7 = ¢
K,mEo1 Vo it C,mlEoror K,m = ¢
K,mEXo iff €, 7t = ¢
K,m=Fo iff there exists an 4 > 0, such that K, 7° = ¢
K,mEGo iff foralli >0:K,7 ¢
K,7 | ¢1 U gy iff thereis an i > 0, such that IC, 7% = ¢
and for all j € {0,...,7— 1} holds K, 7/ |= ¢

e B o e

It is easy to determine that operatars—, X, andU are sufficient to express any LTL formula,
as it holds
P1A P2 = (=1 V o),
F ¢ = true U ¢,
G ¢ = —(true U —¢).

3.2.1.2 Computation Tree Logic (CTL)

future branching executions, i.e., the execution of a model is regarded as a tree-like structure,
starting with the current status of the model as the root.

CTL and LTL are closely related, as they basically work with the same temporal operators.
However, in CTL there are additionphth quantifiersaattached to each temporal operator. Path
guantifiers are denoted ByandA. The existential path quantifiér is used to require that the
following subformula must hold for at least one of the possible future paths. The other path
guantifierA is used to require that the following subformula must hold for all possible future
execution paths. The syntax of CTL is recursively defined by the following grammar in Backus
Naur form.

Definition 3.3 Let Pr be a set of atomic propositions, and je€ Pr. The syntax of a compu-
tation tree logic formulap is recursively defined by

¢ == p | true | false | ¢ | AP | ¢V
| EX¢ | EF ¢ | EG¢ | E(¢U¢)
| AX¢ | AF¢ | AGo | A(¢U¢).

3.2. FORMAL SPECIFICATION 61

Again, several other useful operators are defined for CTL, e.g., logical implicatior:(¢2),
aweak untiloperatorW that does not require the second subformula to ever become true, or a
beforeoperatorB that is dual to the until operator.

In contrast to LTL, the semantics definition in terms of a satisfaction relation is based
on a single statee € S of the model and not on a run. We therefore need a slightly
different notation for execution paths and denote now a path starting in statec S by
7= (xg,21,...,24...). Implicitly, this requires that there is a transition between each subse-
quent pair of states in, i.e.,Vi € Ny : (x;, z,41) € T.

Definition 3.4 Let ¢, ¢1, ¢, be CTL formulas. We writé’, xy | ¢ to denote that the CTL
formula ¢ is valid for stater, € S of the Kripke structuréC. The satisfaction relatiof= for
the semantics of CTL formulas over a stagen of the Kripke structuréC is inductively defined
as follows.

1. K,z |= true

2. KizgEp iff p € l(xg), where p € Pr

3. K,xo =—¢ iff not K, xo = ¢

4. K,z | ¢1 N\ ¢o iff K29 = ¢ and K, xg = ¢

5. K,xog | ¢1V o ifft K,zg = ¢ or K, 29 = ¢

6. K,zg FEX¢ iff there exists a path (g, z1,...), such that
K,z | ¢

7. K,zo =EF ¢ iff there exists a path (xg, z1,...,x;,...), such that
thereis ani € N with K, x; = ¢

8. K,zo FEG¢ iff there exists a path (g, z1,...), such that

foralli e Ng: K, x; = ¢

9. K,zq E E(¢1 U ¢o) iff there exists a path (xg, z1,...,x;,...), such that
there is an i € Ny with K, x; = ¢ and
forall j € Ngwith0 <j <i: K, z; = ¢

6. K,z F AX ¢ iff for all paths (xg, 21, . ..) holds that
Kz Eo¢

7. K,zo = AF ¢ iff for all paths (xq, z1, ..., z;,...) holds that
there is an i € N with K, x; = ¢

8. K,zo E AG ¢ iff for all paths (xg, 21, . ..) holds that

foralli e Ng: K,z; = ¢

9. K,zo | A(¢1 U ¢9) iff for all paths (xg,x1,...,x;,...) holds that
there is an i € Ny with K, z; = ¢ and
forall j e Nowith0 <j <i: K, z; = ¢

62 CHAPTER 3. FORMAL VERIFICATION

Again, it is easy to determine that all CTL formulas can be expressed by only using the logical
operatorsv and —, the temporal operators and U, and the path quantifieis and A. For

more details about syntax and semantics of the temporal logics CTL and LTL and illustrative
examples, we refer to_[MP92, MP95, CGPY9. . HRO0] where also several references to other
literature concerning temporal logics are given.

CTL*

E(GF ¢)

LTL

GF,—~ F ¢,

G4~ F ¢,)
or resp.
AG($; — AF ¢,)

Figure 3.1: Expressive Power of LTL, CTL, and CTL*

Surprisingly, a comparison of CTL and LTL with respect to their expressiveness is difficult.
It turns out that neither language is contained in the other. More specifically, the situation is as

.....

.........

3.2.2 Property Specification Patterns

It is interesting to see that only a limited sublanguage of complete temporal logics is relevant
in practice. Certaipatternsof specification can be identified. The first classification is due to
are also called invariants and are used to ensure that some erroneous situation will never be
reached. Typically they start with the temporal operat@l, i.e., on all execution paths some
property must globally be true. Liveness properties specify that some desired situation will
eventually occur.

A more elaborated, hierarchical classification with the notion of safety and progress was
suggested by Manna and Pnueliiii [MP0, MP92]. They distinguish between six categories of

Safety propertiesonform to the invariants identified by Lamport. Additionally, formulas
of form F ¢ in LTL (or AF ¢ in CTL) build the class ofjuarantee propertiesThe disjunctive
combination of formulas of these two base classes builds the clabsightion properties Two
more classes callegsponsdor recurrencg andpersistenceare identified. Finally, the disjunc-
tive combination of response and persistence properties builds the clasetive properties

.........

tions between property classes. Here, an arrow connecting a property class with another class

3.2. FORMAL SPECIFICATION 63

Reactivity
GFp v FGqg

[Response J [Persistence]

GF p FG g

Obligation
Gp v Fqg

(resp. G q)

Guarantee
Faq

indicates an implication, e.g., a valid safety propedrty implies that the response property
GF p holds. Of course, additional implications can be derived, e.g., a valid obligation property
G p Vv F ¢ implies that the response propefiy¥ p holds.

However, this classification is based upon sigatax(or structure of the formulas. It might
be more useful to havesemanticaklassification that better reflects the way of thinking when
a requirement is to be specified. Such a classification might be more intuitive for non-experts
to find the right formula. We will discuss such an approach in the next paragraphs.

In the recent two decades, a lot of experience in the domain of formal specification with
temporal logics has been made. This is also due to the progress made in the area of formal

.......

ral logics, which allow for arbitrarily nested formulae, is not needed in practice to formulate
required properties. In this context, Dwyer et al. have developed a pattern system based upon
more than 500 property specifications from different projects in the area of finite-state verifica-
tion [DACY98H,/DACY8a; DACY9]. That pattern system provides a structured set of commonly
occurring property specifications and examples of how to translate these into different formal

The overall aim of the pattern approach is to support developers in a way that abstracts from
the formal syntax of temporal logics.

3.2.2.1 Scopes

Dwyer et al. have identified differestopesapplicable to a pattern. A scope is the part of the
system execution path over which a pattern has to hold. Five basic kinds of scopes have been

e Globally (i.e., the entire execution path),
e BeforeR (i.e., execution up to a stamg,

o After Q (i.e., execution after a stafy,

64 CHAPTER 3. FORMAL VERIFICATION

e Betweernq andR (i.e., all parts of the execution path from stqt® another statg), and

e After QuntilR (i.e., all parts of the execution path from stqti® another statg, including
those parts wherg never occurs).

Global <« >
Before R 4 >
R R
After Q €¢—— >
Q Q
Between Qand R ¢ | : } } >
Q Q R Q R Q
After Quntil R < }
Q Q R Q

For state-delimited scopes with distinct delimit@@ndgr, the interval in which the property
is evaluated is closed at the left and open at the right end. Thus, the scope consists of all states
beginning with the starting state and up to — but not including — the ending state. It is possible,
however, to define scopes that are open-left and closed-right as well.

Note that most scopes may appear repetitively or with an unlimited future, as illustrated in
invariant, as we only investigate executiansto the first occurrencef R in this case. Patterns
with that scope are only applied to paths starting at the initial state.

3.2.2.2 Patterns

.........

The absence pattern describes a part of an execution path that is free of a cert@nistate
is often also referred to adlevef. We take a closer look at the pattefh is false before
W R). This formula makes use of theeak untiloperatorw and means that along all possible
execution path® is not entered from the initial state until the first state in wHicis true, if
any. In particular, ifR is never entered along an execution path, themust also not be entered
along that path.

Dwyer et al. always consider the case that scope delimitensdR might not appear on
execution paths. Now consider the case that on every executiorPdahomes eventually
true, butR will afterwards never be entered. In this case, the propertys false before R’

3.2. FORMAL SPECIFICATION 65

Property Specification Patterns

/ \

Occurrence Order
Absence Existence Universality Precedence Response
Bounded Existence Chain Precedence Chain Response

Figure 3.4: Property Specification Patterns

Pisfalse. ..

...globally AG(!'P)

. .beforer ACC'P | AG('R)) W R)
.. .afterq AG(Q -> AG('P))

..betweermq andR | AG((Q & 'R) -> A(C(!'P |AG('R)) W R))
...afterq until R AG((Q & 'R) -> A(!'P W R))

should also be true. However, our first formal@ P W R) developed above does not cover this
case and results in false in this case. One solution to resolve this issue is to add the sub-formula
(P & AG(!'R)) as an alternative to sub-formul@, resulting in

AC ('P | (P & AG(!R))) W R)

As it holds—a V (a A b) = —a V b, we can simplify the latter formula to its final version as it

.........

ACC'P | AG(!'R)) W R)

As demonstrated, it always takes additional effort to include the case that scope deliraiters
R might not appear at all on execution paths. Such assumptions unnecessarily complicate the
resulting formulae. Instead, we propose a slightly different approach with inherent assumptions
requiring that scope delimiters will eventually appear on all paths. Only if an assumption of
such kind holds, a pattern can then be applied. Otherwise, a statement about validity cannot be
given. By this approach, it is guaranteed that all possible executions really comply to the in-
tended scope. Users of the pattern system need therefore pay less attention to whether delimiter
states) andR occur or not.

Moreover, mappings to respective temporal logic formulae, e.g., CTL, are significantly sim-

.........

the absence pattern with additional assumptions and a simplified mapping to CTL formulae.

66 CHAPTER 3. FORMAL VERIFICATION

Assumptions can also be easily mapped to CTL and have to be checked separately. When
an assumption is false over a given model, the actual property that is investigated cannot be
validated.

Table 3.2: CTL Formulae for Absence Pattern with Additional Assumptions

Assumption Pattern CTL Formula
P is globally false AG(!IP)
R becomes true on all paths .
[CTL: AF(R)] P is false befor& A('P U R)
Q becomes true on all paths . _
[CTL: AF(Q)] P is false afteq AG(Q -> AG('P))

Q andR always again become true
on all paths P is false betweeq andR | AG((Q & 'R) -> A(!P U R))
[CTL: AG AF(Q) & AG AF(R)]

Q always again becomes true
on all paths P is false afteQ until R AG((Q & 'R) -> A(!'P W R))
[CTL: AG AF(Q)]

While the patterns provided in the pattern system by Dwyer et al. already cover a broad range
of requirements, it might still be necessary to adjust them for particular and more complex prop-
erties. There are a number of ways how this can be performed, e.g., by parameterization, logical
are usually not able to modify the temporal logic formulae without a concise understanding of
the underlying semantics of the formal logics.

3.3 Symbolic Model Checking

In the terms of the classification for verification techniques, model checking is an automatic,
model-based, property-verification formal method. Model Checking is intended to prove the
correctness of safety-critical, concurrent, reactive systemsagtive systeris an event driven
or control driven system that continuously has to react to external and/or internal stimuli. An
additional specification by means of (temporal) properties represents the desired behavior of the
system. From a logical viewpoint, the system is given as a Kripke Structure, and the properties
are given by temporal logic formulae.

The general model checking approach is defined as follows.

Given a system that is modeled as a Kripke Structire- (Pr, S, Sy, R, L) with

a setPr of atomic predicates, a sét of states, a total state transition relation
T C S x S, and a state labeling functiah : S — P(Pr). Let f be a temporal
logic formula that specifies a desired behavioral properti of

3.3. SYMBOLIC MODEL CHECKING 67

Table 3.3: Example Symbolic Representation

Atomic Proposition | Symbolic Representation
D —x1 N\ X2

q —x1 AN T2 N\ I3

r x1 N\ X9 N\ X3

S x1 N\ 29 N\ T3

The task is to find the set’ C S of states, for whichf holds, i.e.,C o {s €
S| K,s L f}.

Model checking Kripke Structures has limits due to the state space explosion problem,
which results from the fact that the state space that has to be explored grows exponentially
due to the cross product of concurrent modules or components in the model. A major enhance-
ment therefore was to apphynary decision diagram@DDs) and asymbolic representatioof

(Q) (O)

32 (x,x,x)=(0,0,0) =(0,0,1)

(xp2x5%)

(epx2x)=(1,0,1) (x,%,)=(0,1,0)

Figure 3.5: Sample Binary Coding of States

.........

.........

.........

Unfortunately, finding an optimal order is NP-complete. However, several approaches apply
heuristics to find ‘reasonable’ orders of variables for BDDs.

68 CHAPTER 3. FORMAL VERIFICATION

0
1

Figure 3.6: Binary Decision Diagram fog A —xo A —z3

BDDs can be used to code Kripke Structures, such that model checking algorithms can
use this more compact structures for verification purposes. Basically, the transition relation is
coded byz,—zy—x3—a)—xh—ah. 1.e., each BDD variable is duplicated by:’ to distiﬁ"c'jﬂ'ish
between transition source and target states. The complete Kripke Structure is then represented
by disjunction of all transition formulas:

T Ty T3 xh Ty VBT xy T xhxh Vo mry mry s mawh
B R e A B R Y A e T VAR S DY s AR R T

A B R R S e VA A 1 DY 2 eV e ¥ VAR 3 B H D Y P H R H R H

Model checking of higher level software models has already been successfully applied

in model checking.

The two most popular model checking tools are Shévid SPIK. SMV accepts modular
transition systems and CTL formulae as an input. There is a distinction between synchronous
and interleaving execution of modules, i.e., in the interleaving mode, one execution step refers
to one execution step of a single module only, while in the synchronous mode, all modules
synchronously perform an execution step. SMV has a notidaigiess Fairness properties
are necessary to restrict the set of possible execution paths for verification of required behavioral
properties.Strong fairnesgnsures that a module (or transition) that is infinitely often activated
will also infinitely often be executed (or: firedyVeak fairnesgarantuees that modules progress
independently from another in the interleaving mode.

SPIN uses a modeling language called PROMELA (PROcess MEta LAnguage) and supports
verification of LTL formulae. As a remarkable feature, on-the-fly model checking techniques
are employed that allow for verification of basic properties like safety and liveness properties.
On-the-fly model checking has the advantage that there is no need to build a global state graph
for the verification certain system properties.

Shttp://www-2.cs.cmu.edu/ modelcheck/smv.html
“http://spinroot.com/spin/whatispin.html

3.4. REAL-TIME MODEL CHECKING 69

3.4 Real-Time Model Checking

Most of the currently existing works on model checking do not consider time-dependent be-
havior. But to be able to verify models with an inherent notion of time, some model checking
approaches have been developed to also verify corresponding state transition systems.

Generally, adding a notion of time to state transition systems exacerbates the state explo-
sion problem, especially if multiple timed transition systems are to be combined and (non-
deterministic) timing intervals for transition times are allowed. Therefore, enhanced symbolic
representations by extensions BDDs have been applied for timed transition systems which are
more suitable for dedicated efficient verification algorithms.

On the one hand side, well-known CTL model checking techniques have been extended to
cope with timing aspects. These approaches usually allow for labeling transitions with delay
times (by means of natural numbers). Most notably, the underlying models assume a global
clock with discrete time. For property specification, these approaches apply quantized timing
parameters that are attached to temporal operators. Corresponding CTL extensions are, e.g.,

On the other side, a more general approach is basetinoed automataby Alur et
al. FACD90]. In timed automata, time is represented by (an arbitrary number of) clocks car-
rying real numbers. The clocks are incremented synchronously. Each state is associated with
an invariant that is a requirement on the values of the clocks. However, comparisons of clock
values are only possible with constants. A transition is chosen based on input events and clock
predicates. When firing a transition, the corresponding clocks are reset to zero.

In timed automata, time is passing in states, while firing a transition does not take time. As
the clocks are real numbers, this results in an infinite state space. However, comparisons in
invariants can only be made over integer values, such that two clocks with actual different (real)
values might not be distinguished.

Properties over timed automata are expressed by Timed CTL (TCTL), an extension of CTL
with dense-time semantics. It has been shown that model checking timed automata over TCTL
efficient data structures such that the symbolic representation of the model still becomes man-
ageable.

Tools that base upon timed automata are Krorewsl UPPAAE, Note that UPPAAL only
supports limited subset of temporal logics for reachability analysis.

Another kind of model checking approach is considered by the HyTech tool. The under-
lying model arehybrid systemshat comprise of continuous as well as discrete parts, i.e., a
common finite state machine is equipped with continuous variables. States are associated with
conditions over these variables and their first derivative (i.e., time). Transitions of a hybrid au-
tomata have a triggering condition, a number of assignment to variables, and might carry an
annotation to synchronize with other automata. The HyTech model checker worksefmr
hybrid automata, i.e., all derivatives of variables are constants. Note that a hybrid automaton, in

Shttp://www-verimag.imag.fr TEMPORISE/kronos
Shttp://www.uppaal.com

70 CHAPTER 3. FORMAL VERIFICATION

which all derivatives are 1 and all variables of the transitions are set to zero, is basically a timed
automaton.

HyTech only supports a subset of TCTL, similar to UPPAAL. For hybrid automata, it has
been shown that for a given set of states one can determine the set of next states. But it cannot
be proved whether a given state will ever be reached. Thus, formal verification becomes semi-
decidable. But for model checking it is of more practical relevance that the memory complexity
and numeric precision can be handled.

3.5 Selection of a Real-Time Model Checking Tool

In this subsection, we review the four mentioned real-time model checkers Kronos, Verus, UP-
PAAL, and RAVEN in more detail. Basically, we can distinguish them by the following criteria:

e Underlying timing model (discrete or continuous),

e the number of clocks per module/component,

o the employed temporal logics (full TL or only partly supported),
e availability of a graphical user interface, and

e counter example representation.

model checkers cannot be directly compared in a fair way, as each of these tools has its advan-
tages in a certain application domain. Only some comparisons are documented in literature,
e.g., {Wit99; RufO1].

We identify the following list of requirements that have to be met by a model checker to be
suitable in the context of this thesis.

e The approach of this thesis aims to support verification of time-related properties in early
stages of development and thus on a rather high level of abstraction. We therefore do not
need to cope with subtle timing issues among system components (e.g., clock drifts). We
can thus assumegobal notion of timesuch that the system components synchronously
perform execution steps at each tick of the global clock.

e We require synchronous as well as asynchronous communication among system compo-
nents, and assume that messages are never lost.

¢ We also assume that we know of a minimal time unit for executions of actions and state
transitions, which leads todiscretizationof time.

e We need the ability to count the time elapsed since a state was entered. We therefore do
not need the full power of timed automata, as we do not need multiple clocks in a systems
component.

3.5. SELECTION OF A REAL-TIME MODEL CHECKING TOOL 71

Table 3.4: Overview of Real-Time Model Checkers

Criteria UPPAAL Kronos Verus RAVEN HyTech
Automata Timed Timed Common Time- Hybrid
Model Automata Automata Kripke annotated | Automata

Structures | Kripke
Structures
Time Model Continuous | Continuous | Discrete Discrete Continuous
unit-delay multiple
delay
Number of >1 >1 1 per module| 1 per modulel > 1
Clocks
Internal Explicit Explicit BDDs Multi Explicit
State Terminal
Representatiorn BDDs
Temporal Parts of TCTL TCTL CCTL Parts of
Logics TCTL TCTL
GUI Graphical None None Text input, | Graphical
Modeling GUI for Modeling
Environment Model Environment
Checking
Counter Graphical Textual Textual External Textual
Examples in GUI Waveform
Browser

e We want to be able twerify general propertieand can therefore not restrict on reacha-
bility analysis.

Discrete time, no need for multiple clocks, and support for general property specifications
lead to either choosing Verus or RAVEN. Note that asynchronous communication can be pro-
grammed by hand using intermediate channel modules.

provides a user interface and additional timing analysis algorithms, this model checker was
chosen for performing verification in the context of this thesis.

The timing and value analysis algorithms do not only return yes/no answers to inform
whether properties hold or not. They determine minimal/maximal times that pass between
two specified system states as well as minimal/maximal values of variables. This can be very
helpful in the analysis phase.

72 CHAPTER 3. FORMAL VERIFICATION

3.6 RAVEN

In RAVEN, a model is given by a time-annotated state transition system, i.e., a set of so-called
I/O-Interval Structures JRUfQ1]. 1/O-Interval Structures are based on Kripke Structures with
[min,max]-time intervals at their state transitions and additional input and output signals to bet-
ter support communication among Interval Structures. The specification language of RAVEN
is calledClocked CTL(CCTL). Interval Structures, CCTL, and a corresponding input language

3.6.1 Interval Structures

Interval Structuresre basically state-transition systems with time-annotated transitions. Each
Interval Structure has exactly one clock that keeps track of elapsed time. The clock is reset to
zero when — after taking a transition — the transition destination state is entered. Aatate

be left if the current clock value corresponds to a delay time specified by (at least) one of the
outgoing transitions. The stateustbe left if the maximal delay time of all outgoing transitions

.........

Figure 3.7: Example Interval Structure Transitipn. [RK99]

Definition 3.5 An Interval Structures is a tupleS = (Pr, S, so, T, L, I) with
e a set of atomic propositionBr,
e aset of states),
e an initial statesy € 5,

e a transition relation between the statésC S x S, in which every state has at least one
successor state, i.eds € S3s' € S: (s,s") € T,

e a state labeling functiod, : S — P(Pr),

e atransition time labeling function : 7' — P(N).

3.6. RAVEN 73

Definition 3.6 The maximal state time of a statec S is the maximal delay time of all outgoing
transitions ofs. It is defined by

. def | S—N
MaxTime =
sr—maz{v|3s € S:(s,s)eT Nvel(ss)}

Every states of an Interval Structure must be left after the maximal state tithecTime(s).

Besides the states, we also have to consider the elapsed time since entering the current state to
determine the transition behavior of the system. Thus, the actual state of an Interval Structure is
given by a state together with the current clock value that represents the elapsed time. We call
this tuple anS-configuration

Definition 3.7 An IS-configuratiory € S x N is a states € S associated with a clock value
v € Ny. The set of all IS-configurations in an Interval Struct@e= (Pr, S, so,T, L, I) is
given by:

G (s,v) | s€ S NveNy A v< MaxTime(s)}
The dynamic semantics of Interval Structures is definedrdnys i.e., sequences of IS-
configurations.

Definition 3.8 Let< be an Interval Structurey = (Pr, S, s, T, L, I'), and letg, be an initial
IS-configuration. Arun r is an (infinite) sequence of 1S-configuratiofas, g1, ...). For the
IS-configurationg); = (s;, v;) of such a sequence holds either

® 5i =811 AN Vi1 =0+ 1 A vy < MaxTime(s;), or

o <8i,8i+1> el A v; + 1e I(Si;3i+1) VAN Vit1 = 0.

3.6.1.1 1/O-Interval Structures

To enable communication between a set of Interval Structures, an extension/laterval
Structureshas been proposed [RK99]. In these structures, input variables may be additionally
specified. Aninput label i.e., a Boolean formula over input variables, is attached to each
transition. It is interpreted as an input condition that has to hold during the corresponding
transition times. If no input label is explicitly specified for a transition, it is setrtee by
default.

In the following definition, we formalize input labels with sets of valuations over the set

Prinmue Of input variables. An element of sétp = P(Prinpe) defines exactly one valuation

of the input variables: the propositions contained in the set are true, all others are false. An
element of sePP(Inp) then defines all possible input valuations for one transition. E.g., given
the input variablegnp = {a, b}, the boolean function

(@ A =b) V (a ANb)=a

is represented by s¢{a}, {a,b}} € P(Inp). This example shows that variatiiéas no effect
on the valuation, i.e., a transition labeled with formulanay be taken independently of the
input variableb.

74 CHAPTER 3. FORMAL VERIFICATION

Definition 3.9 An I/O-Interval Structure is a tuple

3110 < (Pr, Progu, S, 50, T, L, T, Linpur),
where
e the component®r, S, s¢, L, and[are defined analogously to Interval Structures,
o Pri,u is afinite set of atomic input propositions,
¢ the transition relation connects pairs of states and inpltst S x S x Inp.
Recall that/np is the power set of input variablespp = P(Prinput)-
o Ly : T — P(Inp) is a transition input labeling function.

In 7', the relevant input variables are defined for each transition, whild;ip,., the valid
valuations of input variables are defined that enable a transition to fire. For accessing the first
component of a transitioh € 7, we writet[1]. We require the following restriction on input
labels:

th,tg € T (tl[l] == tQ[l] A tl 7é tg)
= (Iinput(tl) = Iinput<t2) V Iinput(tl) N Iinput<t2) = ®>

The restriction above ensures that if there are multiple transitions starting in the same state,
their input restrictions are either equal or disjoint. With this restriction, the input valuations on
transitions can be clustered as follows.

Definition 3.10 The cluster functio’ computes all input valuations of a cluster represented
by an arbitraryi € Inp.

S x Inp — P(Inp)

C déf Iinput(t) 7/f Elsl € S, 32, € [np :
(s,9) t=(s,87) €T A i€ Lypult)
o otherwise

.........

are disjoint.
For a definition of the dynamic semantics of 1/0O-Interval Structures, the maximal state time
has to be formalized.

Definition 3.11 The maximal state tim&/axTime : S x Inp — N is the maximal delay time
of all outgoing transitions, i.e.,

SxInp — N

. def (s,i) +—mazx{v]| I € S, € Inp:
MazTime =
t=(s,s,i) €T N

i € Linput(t) Av=maz(I(t)) }

3.6. RAVEN 75

In addition to the current state and elapsed time, configurations of 1/0O-Interval Structures
also have to consider the current inputs.

Definition 3.12 An 1/O-IS-configurationy = (s, i, v) is an 1S-configuration{s, v) enriched by
an input valuatiori € Inp. The set of all I/O-IS-configurations is given by

Gr/0) {(s,i,v) |s€S Nie€ U C(s,i') N 0<v < MaxTime(s,i)}

i/ €lnp
We are now able to define the dynamic semantics of I/O Interval Structures by means of

Definition 3.13 LetS; /0 = (Pr, Prinpu, S, T, L, I, I;np,) be an 1/O-Interval Structure. Aun

def
r = (.907917 o)

is a sequence of I/O-IS-configurations with= (s;,i;,v;) € G1/0, and for all j € Ny holds
either

gji+1 = (85,%j4+1,0 + 1)
withij1 € C(s;,1;) N v; +1 < MazTime(s;, 1),
or

gj+1 = (841,541, 0)
with t = <Sj, 8j+1,ij+1> el A ij S Iznput<t) AN (% +1€ I(t)

When we require that for every 1/0-1S-configuration and for every input valuation there has
to be a successor I/0-1S-configuration, we need to introduce a spdifie statefor each of
those transitions that have input restrictions and a delay time greater than 1. The failure state is
entered if the current input valuation does not fulfill the input restriction any more. This leads
to the following cases to be distinguished:

1. In the simplest case, a transition has no input restriction. Behavior is then as before in
Interval Structures.

2. A unit-delay transition has an input restriction. Then it must be ensured that for all input
valuations a successor state is specified.

3. Atransition has an input restriction and a delay time 1. Then an additional transition
with interval [1,§ — 1] and no input restriction has to connect the transition source state
with a failure state.

To illustrate these cases, a graphical notation for 1/0O-Interval Structures is given in Figure

.........

:3.8. Input variables are denoted by, ..., q,, and f is a function withf : (Prjp.)" —

{true, false}.

76 CHAPTER 3. FORMAL VERIFICATION

e fa,....a,) 9 e f(a,,,.,a,),& e
Unit-delay transition ‘@

e} Timed transition
with input restriction
Timed transition
without input restriction

3.6.1.2 Extended I/O-Interval Structures

Finally, we extend 1/O-Interval Structures by variables over finite value sets. Additionally,
transitions can be attached by assignments and input conditions may carry complex boolean
expressions over variables. These extensions are basically syntactical issues that can easily be
mapped to and expressed by simple I/O-Interval Structures.

Definition 3.14 An I/O-Interval Structure with variables and output signals is a tuple

oVar def
\S[/O - <Q7 PT’, Prinput, Proutputa S> S0, VCL?“Q, T7 L7 [7 Iinputa [output7 Tassgn> .

e The component&r;,,.., S, T, L, andI are defined analogously to I/O-Interval Struc-
tures.

o = {vary,...,var,} is a set of variables with finite value sétal(var;). We require
Vie{l,...,n}: Irange; € N: Val(var;) = {0,...range;},

i.e., each variable is defined over a finite integer interf@al . . , range;].

Alternatively, a variable may also be declared as an enumeration of identifiers over a
given alphabet or as bitvectogd), 1}". As these can easily be mapped to finite integer
intervals as defined above, we do not explicitly consider these alternatives in the remain-
der.

e The elements i’ are atomic propositions ovep, i.e.,

def

Pr = {(var; = valyy,) | 1< <|Q| A

var; € Q N valy,, € Val(var;)}

Semantically, we interprévar; = val,,,,) to be true when variablear; has the value
val,qr-, In the current configuration, and false otherwise.

e The elements a?r,,,,: are boolean variables representing output signals visible in other
I/O-Interval Structures. To avoid naming conflicts, we reqUire P71yt N Prinpur = .

3.6. RAVEN 77

o Functionl,upu: : Prowpwt — P(Out) is an output signal labeling function, where

Anoutput labell,,,.:(sig) for an output signakig is a Boolean formula over variables
of setPr U Prippu U Proup. Analogously to elements ofip (i.e., valuations of input
variables), an elemerit! of Out defines exactly one valuation of all atomic propositions:
the propositions contained ifb/ are true, all others are false. An element of the set
P(Out) then defines all possible valuations for an output signal.

e The transition input labeling functiofy,;,,, : 7 — P(Inp U Out) may now also carry
boolean expressions over output sign#ls,,,... We here leave out a more detailed
re-definition.

e In addition to the initial states; € S, we have to set initial values for all variables:

Varg ={ (var; = valy), ..., (var, =wval,) |
n=|Q
AYie{l,...,n} var; € Q A val; € Val(var;)
AYje{l,...,n}: (i # j = var; # var;) }

e We assume that there is a simple expression languagen available for specifying
assignments to variables of sgt

e The transition assignment labeling functi@py,,, : 7 — P(Assgng) defines updates
on the variables irQ. If for a transitiont € 7', an explicit update on a variableur € @
iS missing inl 4, (t), we have two choices:

1. The value obar gets an arbitrary value whehis fired, or

2. the value obar is kept unchanged wheris fired (this is also referred to asuto-
matic signal equivalenge

We here take automatic signal equivalence semantics as default.

e The execution semantics are the same as for I/O-Interval Structures. We assume that
assigning new values to variables is executed without consuming time. Output signals
are synchronously visible in all I/O-Interval Structures that are part of the model under
consideration.

3.6.2 Clocked Computation Tree Logic

........

the temporal operatofs(i.e., eventually)G (globally), andU (until) are provided with interval
time-boundsa, b], a € Ny, b € NgU{oo}. The symboho is defined throughvi € Ny : i < oo,
and it holdsi + co = oo and: — oo = oco. These temporal operators can also have a single

78 CHAPTER 3. FORMAL VERIFICATION

time-bound only. In this case the lower bound is set to zero by default. If no interval is specified,
the lower bound is zero and the upper bound is infinity by default. X4ogperator (i.e., next)

can have a single time-boud only (@ € N). If no time bound is specified, it is implicitly set

to one.

The syntax of CCTL is recursively defined by the following grammar:

| true | false | @A G | @V @ | 0
EXq ¢ | EF a4 ¢ | EGlay ¢
E(@ Uy @) | E(@ Uy ¢)

E(@S, ¢) | E(¢Cly o)

AXy @ | AF (4 ¢ | AGiay ¢
A

A

Uy @) | Al@ Upay) ¢)

¢ =P
|
|
|
|
| A(
| Ao §[a] b) | Ao C[a])

wherep € Pr is a propositiong € Ny, andb € Ny U {oo}. For the symbobo, we define

Vi € Ny : 1 < o0.

The semantics of CCTL is defined as a validation relatipi,”using the notion ofruns
which represent possible sequences of clocked states that occur during executiowy
formal descriptions of the validation relation for a given Interval Structuemd a clocked state
go = (s0,v0) € G. Note thatp andw denote arbitrary CCTL (sub)formulae.

The semantics for temporal operators with path quanii€re., regardingll possible runs)
can easily be derived, e.gA X[, ¢ is equivalent to-EX{;;—¢. Another example iAF, ¢,
which is equivalent te-EG, 3 .

Extended CCTL Syntax. Analogously to the extension of 1/0O-Interval Structures, CCTL
can also be extended to allow for variables over finite value sets. The syntax is extended by the
following new rules for variable-based formulas.

¢ == (var =wval) | (var > val)| (var >=wal) | (var <wval) | (var <= wval)

wherevar € @ is a variable andal € Val(var) is a value of a given I/O Interval Structure
sy;g The semantics of CCTL are kept unchanged, as the new variable-based formulas still
evaluate to a boolean value.

Example. For property specification, consider the following example. One requirement in
our case study is that the input buffer of a station must not be blocked for too long in order to
guarantee sufficient continuous workload, i.e., each accepted delivery request must be followed
by actually loading an item at the input buffer within 100 time units after acceptance. Due to
the dependency on other modules, in particular the AGVs, it is not obvious whether the model
satisfies this property. Therefore, a corresponding CCTL formula has to be specified:

AG((acceptor.state = acceptor.accepting)
-> AF[100] ((loader.state = loader.waitingForDelivery)

& AX(loader.state = loader.loading)

)

3.6. RAVEN 79
Table 3.5: Semi-formal Description of CCTL Operators
Formula Denotation Description

goEDp (p€Pr) Proposition | g is valid inp, if p € L(so)

go E ¢ Negation go is satisfied by-¢ if gg = ¢ Is false.

90 = (6 NY) Conjunction| go = ¢ andgo = v

90 = (V) Disjunction | go = ¢ 0r go = ¢

9o F EX{q ¢ Next There exists a run = (go, . . .) such thaty, = ¢

go EEF[q 4 ¢ Eventually | There existsarun= (gg,...)anda <i <bs.t.g; £ ¢

90 FEGpap ¢ Globally There exists a rum = (gp,...) s.t. foralla < i < b
h0|ngi ': (Z)

90 = E(¢ Uy,) ¥) | Strong Until | There exists a rum = (go,...) and ana < i < bs.t.
g; = andforallj <iholdsg; = ¢

90 F E(¢ U,y) | Weak Until | There exists a run = (go,...) and and either (a) ther
exists ame < i < bs.t.g; = ¢ and for allj < i holds
g; = ¢, or (b) for alli < b holdsg; = ¢

90 = E(¢ S ¥) Successor | There exists a run = (go,...) S.t.g, = % and for all
i < aholdsy; = ¢

g0 F E(¢ Cqy) | Conditional | There exists a run = (go, .. .) for that holds: ifg; = ¢
forall i < a, theng, = ¢

If RAVEN evaluates a CCTL formula to be incorrect, a counter example execution run can
be generated. Execution runs are given by time-annotated sequences of state changes. RAVEN
invokes a built-in waveform browser that lists all variables and their states over time.

3.6.3 RAVEN Input Language (RIL)

In the context of RAVEN, I/O-Interval Structures and a set of CCTL formulae are specified by
means of the textual RAVEN Input Language (RIL). A RIL specification contains

(a) a set of global definitions, e.g., fixed time bounds or frequently used formulae,

(b) the specification of parallel runningodulesi.e., a textual specification of 1/0O-Interval
Structures, and

(c) a specificationwith a set of CCTL formulae, representing required properties of the
model,

80 CHAPTER 3. FORMAL VERIFICATION

(d) ananalyzesection with a set of analysis formulae that extract times for minimal/maximal
state transition times.

The following code is a fragment of the RIL model for the manufacturing case study.

MODULE agvl_negotiator
// the internal states are declared in the SIGNALS compartment

SIGNALS
state : { waitingForOrder computingBid waitingForAcknowledgement }
dest : { in ou ao pm mi mo am pd di do ad pw wi wo aw cl c2 c3 c4 }

order : BOOL
currentItem : RANGE[O,20]

INPUTS // signals visible from other modules
disp_requestTransport_inpStation := (inpStation_requestTransport_agvl.state = true)
disp_requestTransport_mill := (mill_requestTransport_agvl.state = true)

(drill_requestTransport_agvl.state = true)
(wash_requestTransport_agvl.state = true)

disp_requestTransport_drill
disp_requestTransport_wash

... // further inputs omitted

DEFINE // declaration of output signals
bidding_inpStation := (sendBidding_inpStation = true)
bidding mill (sendBidding mill = true)
bidding_drill (sendBidding_drill = true)
bidding_wash (sendBidding_wash = true)

... // further output signals are omitted

INIT // the initial value of the internal states
(state = waitingForOrder) & (order = false)

TRANS // transitions of the module
|- state=waitingForOrder
-- disp_requestTransport_inpStation & !order :1 --> dest:=in;
state:=computingBid

-- disp_requestTransport_mill & lorder :1 --> dest:=mi;
state:=computingBid
-- disp_requestTransport_drill & l'order :1 --> dest:=di;
state:=computingBid
-- disp_requestTransport_wash & 'order :1 --> dest:=wi;

state:=computingBid
... // other transitions omitted

In RIL, we have to specify modules (i.e., I/O-Interval Structures) on the instance level, i.e.,
for each object, we have (at least one) mocfi_l’_blle.the code shown above, we consider parts of
the negotiation behavior of an AGV namegv1.

In the SIGNALS compartment, the variables (or: attributes) of an object are declared. By de-
fault, variablestate comprises the states of the corresponding State Diagram part. As RAVEN

"This — among other restrictions — implies that we have to know in advance how many objects are created for a
concrete system. Later, we define corresponding rules for our application domain that restrict UML models to be
applicable to be mapped to I/O-Interval Structures.

3.6. RAVEN 81

only supports finite value sets, Integer values must be restricted to some finite value domain,
e.g., here the intervdlo, 20] is chosen for attributeurrentItem.

The set of dispatched events that trigger a transition is defined INBiES compartment of
input signals. In the code listed, the predixsp_ shall indicate that these input signals represent
dispatched event€vent dispatching — in turn — is treated in separate modules and not shown
here.

In the DEFINE compartment, signals visible to other modules are listed (so-called output
signals). In the example, we use output signals to represent signals sent to other stations, e.g.,
to send bids in reply to requests for a transport.

In the INIT section, internal variables that have been defined irSTIGHALS compartment
get an initial value. This is of particular relevance for the corresponding initial State Diagram
state, i.e, we have to setate = WaitingForOrder for our example.

TheTRANS compartment finally lists all transitions between the states. Conditions for taking
a transition are prefixed by-. To build more complex conditions, the usual logical operators
(&, |, ! for logical and, or, not) and relational operators can be applied.

An optional timing specification is prefixed by a colon. The timing specification can be a
single value or an interval. If it is omitted, the time bound is set to [1,1] by default. When
a transition is taken, the assignments following the arrew are executed. The assignments
can affect all variables defined in ti88GNALS or DEFINE compartment. For more complex
assignments, arithmetic operatoss énd—) can be applied. More details about the syntax of
RIL can be found ini[Ruf(i1].

Specification and Analysis. Property specifications by CCTL formulae are given ingReC
compartment. Each CCTL formula gets a name to refer to. But basically, the syntax of CCTL

We here therefore focus on the analysis compartment with additional analysis queries. They
are of the following form.

analysisDeclaration ::
analysis
anatype

>ANALYSIS’ analysis

analysisName ’:=’ anatype

’MIN STABLE TIME OF’ °’(’ cctlFormula ’)’

| ’MAX STABLE TIME OF’ ’(’ cctlFormula ’)’

| °MIN TIME FROM’ °’(’ cctlFormula ’)’ ’T0’ ’(’ cctlFormula ’)’
| °MAX TIME FROM’ °’(’ cctlFormula ’)’ ’T0’ ’(’ cctlFormula ’)’

The grammar foect1Formula is basically the same as for ordinary CCTL formulas. Only
some additional features are defined, e.g., the predefined varigbteto refer to the overall
initial state of the model.

Analysis queries allow to compute time delays, i.e., minimal and maximal reaction times or
maximal wait times. AIIN STABLE query takes a CCTL formula as a parameter and computes
the minimal time for which the formula is true during execution of the corresponding model.
Analogously, @MAX STABLE query takes a CCTL formula and computes the maximal time for
which the formula is true during execution of the model. For example,

agvl_remainingInWaitingState :=
MAX STABLE TIME OF (agvl_negotiator.state=agvl_negotiator.waitingForOrder)

82 CHAPTER 3. FORMAL VERIFICATION

is a query to determine the maximal time in whigdv1 remains in stateaitingForOrder®

MIN TIME andMAX TIME require two CCTL formulae as parameters. They compute the
minimal/maximal delay time between two conditions becoming true. The first parameter de-
termines thestart configuration seti.e., those model states and time points, in which the first
CCTL formulais true. The second CCTL formula then determinedds¢ination configuration
set i.e., those model states and time points, in which the second CCTL formula igtiuand
MAX compute the minimal and maximal time distances between these two configuration sets.
For example,

agvl_maxTime_firstAccept :=
MAX TIME FROM (INIT) TO (agvl_negotiator.sendAcceptBid_inpStation
| agvl_negotiator.sendAcceptBid_mill
| agvl_negotiator.sendAcceptBid_drill
| agvl_negotiator.sendAcceptBid_wash)

is a query to determine the maximal time until the AGV accepts to take an order for the first
time.

3.6.4 Graphical User Interface

While the RAVEN verification engine can be called directly from the console by a purely textual
command, the graphical RAVEN user interface is of great help due to the large number of
options that can be applied. We here only outline the main features of the GUI and refer to
[RUif01] for more details.

The RAVEN GUI consists of three parts, i.e., (1) status information at the top, (2) main
buttons and different control sheets in the middle, and (3) log information at the bottom. The
four different control sheets are of special interest and need further explanatio@omiposi-

...............

optimizations, and heuristics to build the internal representation of a given RIL model. Com-
pared to the standard expand-compose-reduce algorithm, other techniques may lead to faster
compilations, e.g., the algorithm 'combined’ performs the composition and reduction phases
in one step. The RAVEN manual states that the latter algorithm is preferrably to be used for
large models in thenultiple delay modeRAVEN basically distinguishes unit delay and multi-

.........

MTBDD (multi terminal binary decision diagram) is used that allows to use further optimiza-
tion techniques for model checking (e.g., time prediction and time jumps). In unit delay mode,
delay times of transitions are simply encoded by introducing additional stutter states. Other

............

.........

fications and timing analysis formulae. Again, different optimization techniques can be enabled
(e.g., 'time jump’ in multiple delay mode or 'abstraction’ for untimed specifications). Enabling
‘counter example’ leads to the generation of an execution trace when a CCTL formula with

8Actually, the state formula becomes more complex when the the mapping of UML State Diagrams to 1/O-

3.7. CONTRIBUTIONS OF THE CHAPTER 83

A-quantifiers is falsified. Pressing the button 'check’ starts the verification with the chosen op-
tions. With the buttons 'show’ and 'new’, one can edit and update specifications directly within
the user interface. The reset’ button sets the proof state to unproved, such that a verification can
be performed again with different options. The analysis compartment in the lower part of the
control sheet shows the parsed timing analysis formulae. Its options and buttons can be used in
a very similar way. The simulation compartment is for randomly generating an example trace
of the model. Users can set the desired number of execution steps with a slider.

.........

about the run times that were necessary for the different tasks of the verification. In particular,
the BDD-PACKAGE window gives detailed information about the generated internal represen-
tation of the investigated model.

3.7 Contributions of the Chapter

This chapter provides the following contributions:

e An overview of formal modeling and specification approaches w.r.t. the formal verifi-
cation method of model checking, especially real-time model checking, is given. The
property specification pattern system by Dwyer et al. is reviewed. We illustrated that
the CTL temporal logic formulas of that pattern system could be simplified under certain
reasonable assumptions.

e An evaluation of existing model checkers is made w.r.t. requirements relevant for the
considered domain. The RAVEN model checker is chosen to be applied in the context of
this thesis.

e |/O-Interval Structures are outlined. They build the underlying formal model of the
the context of this thesis. In that section, the formal model of I/O-Interval Structures is
extended by variables over finite value sets, transitions that can be annotated by assign-
ments, and input conditions that may carry complex boolean expressions over variables.

e Correspondingly, the syntax of CCTL is extended to allow variables over finite value sets
and boolean operators to compare their values.

84

(a) Composition

CHAPTER 3. FORMAL VERIFICATION

:|ig|obals!uﬁlﬂakeldisscopylriICode_Kapitelsffallsludiez.ril browse... || time: 0:00 memory: 0000 kB|

New TanposT¥ Lon/Tiode] Eneshing & Analysis)/Fesowces b SEatistiod/Frefarences b P f
Edit Algorithm ¥ standard ~ prerestriction . combined () re erences
About - restriction [R Versfwe0]
Exit File |Igloba|slu6fﬂakeld|ssCopy!r|ICode_KapiteISIfaIIstud|e2 ril browse. || time 000| memory: 0000 kB!
T reae o New ! Canposition),/Hodel Chesking § Analusis)/Rezourses § SLabistiosl/Prererences - :
Edit | Mode 4 multiple delay - unit delay
Al ic signal equival 8
About |Use gray encoding i
Optimizati icti 2
PUmization= S M picdiciion Mz Exit |Check input clustering |
Performe dead-/livelock test W | showset | show trace
Minimization T o T Text editor xedit browse...
Waveform browser command /globalsiuciflakefravenign browse...
Start composition invoke browser in 4 foreground -~ background
Tracing variables - encoding 4 original ~ both
arse [encode [expand [compose Waveform file _wif browse...
10000
Bitvector unique table size BT 10000
5000
Symbol table size] 5000
ButpLityre forvalue tabies «- start|input | dest . order . dfs
@ start, time | dest, tii .- alphabetically

I

(c) Model Checking

New e e e Ce K ie || time: 1:27| memory: 20056 kB|
Edit T - p.redilction [New CoRpRE EIaR) /PRReT Chesiing L RaT0Ri) /Resairoes & Statisties)/FRerernee
About 7 Bt ol Edit | o 6,58 B er e Al msal AEthong
rese i FALSE |invé I M . =i e e ENOTY Manager es QCHTE
—I ~| abstraction ;’:Egg "‘Vz pars: time = (,b7 sec Approximate bytes used: 4380168
Exit show | _| witness e About cgmpos_lt%qn tine = 85581 sec Hu&nher of nodes 4
inu: mmmization = U sec ode i
_I counter example |7iux s = Tock test = 0,26 seo Overflon 1o
- Extension set BID nodes for trans : 239 éggﬁgxﬁﬁegﬁﬁﬁ% tek A%
B [nerineen before minimizat 1on 24042 (99 41%) Cache size: 18536
analyse 56 i PRUCESS TMEFORY Cache load ‘factor 0, 6IBZ67
M prediction Cache lgok ups: 51226951
| o G
ACHSE rate: U,
Cache ingertions: 377993 3
show Elitiace BVEG_PACKAGE: Cache collisions: 31693375
| arithmetic min 0, 2% of the HI occupded (20 out of 10007) Nbbrctor s
20 bit vecors are stored in HI
| 0 collisions in Humger o? var%able aﬁ:—sloc%atlon.leSE
0 geripal collielon dn HE Nomber Of Bades garbage collected: 12025197
1136 obJects are shared ot &
simulate I_I— 50 Eitvector-blscks allocated (0 KB) thmber of find operations: 27617769
new |ANALYSIS maxTimeTransport:= MAXVAL
write | read |File: [tmp
aredyes uaxlineErgineBetoralill print relation | count | print variable order to: |0rder browse... update
mameeEngmeBefoieNﬂl b 5
i o e /&lobals/u6/Tlake/dissCopy/r1100de Kapitels/fallstudis?. r1l: 16 warning: constant input definition EY
gﬁﬁ%e mﬁ;e%?xagsmggansport /&lobals/u6/T1ake/d1ssCopy/r11Code Kapitels/fallstudis2, r1l: 18:warning: constant input definition
e _p50 /globals/u/Tlake/d1ssCopy/rilCode Kapitels/fallstudis2, ril:19:warning: constant input definition
globals/uG/flake/dissCony/rilCode Kapiteld/fallstudie? ril: 21 :warning: constant input definition
~ Elob§l5/u6/f |ake/dissCopy/rillode Kapitels/fallstudied ril: 2533:warning: constant input definition
VeI,
Il | v

& Analysis

(d) Resources & Statistics

Figure 3.9: RAVEN Graphical User Interface

Chapter 4
Extended Object Model

The sciences do not try to explain,
they hardly even try to interpret,
they mainly make models.
By a model is meant a mathematical construct which,
with the addition of certain verbal interpretations,
describes observed phenomena.
The justification of such a mathematical construct
is solely and precisely that it is expected to work.
—John Von Neumann (1903 — 1957)

This section formally defines the syntax and semantiext#nded object modeilsat take State
Diagrams as a behavioral description of active classes into account. The notion of an extended
object model is based upon a formalization of the object model as presented by Richteres in
[Ric0Z]. Note that a number of definitions are adopted from that work, but the following con-
cepts are additionally introduced in this chapter:

e Signals for classes together with well-formedness rules,

generalization of signals,

State Diagrams and their relation to classes,

an extension of the formal descriptor of a class,

an extension of the formal definition of a system state, and

a formal definition of system state sequences.

.........

.............

notion ofactive state configuratiorfsr UML State Diagrams are identified and resolved. Based
upon a definition of extendeml/erall system statess snapshots of an executed model in Section

85

86 CHAPTER 4. EXTENDED OBJECT MODEL

.............

completion of the formal semantics of OCL 2.0.

4.1 Syntax

An Extended Object Modéd a tuple

ME (CLASS, ATT,0OP, SIG, isQuery, paramKind, SC,

ASSOC, <, <gs16, associates, roles, multiplicities)
with

e asetCLASS of classesCLASS <Y ACTIVE U PASSIVE,

e asetATT of attributes ATT < U,y 15 ATT.,

e asetOP of operationsOP “ |J, ..., 155 OP:,

e afunctionisQuery : CLASS x OP — Boolean that determines whether an operation
IS a query operation or not,

e a functionparamKind : CLASS x OP x N — {in,inout,out} that gives for each
operation parameter its parameter kind,

e asetSIG of signals,SIG 2 |J.copass SIG.,

e asetSC of State Diagrams§C Uceacrive SCe
e asetASSOC of associations,
e generalization hierarchies for classes ane g for signals, and

e functions associates, roles, and multiplicities that give for each associatiors €
ASSOC its dedicated classes, their role names, and multiplicities, respectively.

In the following, each of the tuple elements is considered in detail. For element nagvés in
let A be an alphabet ani” C A* a set of finite, non-empty names.

4.1. SYNTAX 87

411 Types

We assume that there is a &t/ (T, Q), whereT' C P(N) is a set of type names afitla set
of operation signatures over typesiin In particular,”’ et Tg UTE U T UTs comprises

a set of basic standard library typ€s, i.e., Integer, Real, Boolean, andString,

a setT; of user-defined enumeration types,

a setT of user-defined classes, and

a set of special typeBy = {OclV oid, OclState, Ocl Any}.

The elements of the typeésc T" are keptin value set§y pg(t). Ity pr(t) (Or SimplyI(t) when
the context is clear) is called thype domairof ¢t € T'.

OclVoid is a subtype of any other type and allows to operate with undefined values. The
only value of0clVoid is calledOclUndefined and is denoted in the following by. For
convenience, we presume thats included in each type domain, such that we have, e.g.,

1(OclVoid) < {1},

I(Integer) “zu {Ll},

I(Real) R U {1},

I(Boolean) =] {true, false} U {L},

I(String) oAy {1},

I(OclState) YN U {Ll},

10cdAny) < (Ueryuraur, 1(8)) U I(OclState).

As the type domait (OclState) is actually determined by the states of the State Diagrams
SC., of the referred UML user model, a more elaborated definitioh(6fcl State) is given in

.............

have
T = {MachineKind, AcceptState, Loader State, [temState, [tem Kind}, and

I(MachineKind) = {Mill, Drill, Wash, L}.

Note that in the concrete OCL syntax, enumeration literals are represented by double colon
notation, e.g.MachineKind: :Mill.
The domains of types ifc areobject identifiersthat represent instances of classThis
Operations in? include, e.g., the usual arlthmetic operations +, -, *, /Tateger values.
Moreovercollection typegor sets, ordered sets, sequences, and bags are defii¢a mmanage
collections of values, e.gSet (String), Bag(Integer), andSequence (Real).

88 CHAPTER 4. EXTENDED OBJECT MODEL

4.1.2 Classes and their Characteristics

A class is a description for a set of objects sharing the same characteristics, i.e., attributes,
operations, signals, and assomatlétne conformance with the semantics of the adopted OCL
2.0 specification, we here do not dlstlngwsh between the UML classifier concepts of classes and
interfaces. OCL constraints are specified for instances aiterface spemﬂcat@?p Whether

such an interface specification is given in the form of a UML class or interface definition does
not make a difference in the context of OCL. We first focus on attributes, operations, and signals.

Definition 4.1 (Classes and Types)
The set of classeSLASS is a finite set of names§;LASS C N. CLASS is the union of two
disjoint setsACT IV E and PASSIV E of active and passive classes,

def

CLASS = ACTIVEUPASSIVE.

Active classes specify entities capable of dynamic behavior, which is specified by an associated

Each class: € CLASS mduces atype. € T C T having the same name as the class. A
valueval € I(t.) of a typet. € T refers to an object of the corresponding class C'LASS.

The difference betweenandyt, is that the special valu¢ is additionally included in/(¢.) for
all c € CLASS. Inthe remainder, let € CLASS be a class antl. € T be the type of the
classc.

.......

ACTIVE = { FactoryUnit, AGV, Station, InputStorage, OutputStorage,
Machine, Buf fer, Input Buf fer, Output Buf fer } and
PASSIVE = { Item, NegotiationParticipantTransport,

NegotiationParticipant Destination, NegotiationManager } .

Attributes. Classes are associated with attributes that describe characteristics of their objects.
An attribute has a name and a type that specifies the domain of attribute values.

Definition 4.2 (Attributes)
Letc € CLASS be aclass and. € T be the type of class The set of attributes efis defined

by ATT. ™ {(a,t.,t) [a€ N A t €T}

1In this thesis, we use the teramaracteristicsto refer to the elements that are calle@pertiesin terms of
UML, because we employ the notion opeopertyin a different context. We will use the terpmopertyto refer to
a specification of a requirdaehavioralor dynamicproperty of a given model.

Here, the terninterfaceis used in a general sense, i.e., we are not referring to the UML classifier concept
Interface.

4.1. SYNTAX 89

In the triple (a,t.,t), a denotes the attribute name, represents the type efto which the
attribute is applied, and is the type ofi. Attribute names must be pairwise distinct, i.e.,

Vatt, att’ € ATT, with att = (a,t.,t),att’ = (d,t., ') :
att # att’' = a # d'.

For example, the attributes of claBsputBuffer are

AT TrpputBuffer = { (acceptStatus, Input Buf fer, AcceptState),
(loader Status, Input Buf fer, LoaderState),
(announced, Input Buf fer, Boolean) }.

Though the attribute names of a class must be pairwise distinct, attributes with the same
name may appear in several classes which are not related by generalization (cf. well-formedness

Operations. In addition to attributes, a class may be associated with a number of operations
and signals. Operations are used to describe behavioral characteristics of objects. That behav-
ior might be specified by an associated State Diagram, but we here only coog&tation
signatureghat declare an interface of operations.

Definition 4.3 (Operations)
Letc € CLASS be a class and. € T be the type of classe. The operations of classare
defined by a seb P. of operation signatures,

OPcdéf (Wite Xty X ... Xt, > t)|weN,neNy, and t,ty,...t, € T}.
Symbolw determines the operation name, and the first parametienotes the type afto
which operationv belongs.
For example, the operations of the abstract chas<er are

OPpysfer ={ (load : Buf fer x Item — OclV oid),
(unload : Buf fer x Item — OclV oid) }.

FunctionisQuery : CLASS x OP — Boolean determines whether an operation is a
query operation without side-effects on the current status of the executed modgl (¢f. [OMG03d,
Section 2.5.2.7]). Only operation® of a class: with isQuery(c,op) = true are allowed to
becalledwhen an OCL expression is evaluated, as the evaluation of OCL expressions must not
have side effects on the actual status of the referred UML user model.

operations:
(getDistance : AGV x FactoryUnit — Position),

(getParkPos : AGV x Station — Position),
(getInputPos : AGV x Station — Position).

90 CHAPTER 4. EXTENDED OBJECT MODEL

Operation Parameter Kinds. Note that UML generally allows operation parameters to be
of kind in, out, inout, or result [OMGO3d, Sect. 2.5.2.31]. The current official OCL spec-
ification as well as the object model definition by Richters do not consider parameter types.
However, the adopted OCL 2.0 specification now considers parameter kinds.

Therefore, we introduce functigmuramKind : CLASS x OP x N — {in,inout, out}
gives for each formal parameter its parameter kind [OMG03d, Section 2.5.2.31y.iSesed
to access individual parameters, i.e., for an operation signaguse(w : t. xt; X...xt, — t),
positioni, 1 < i < n, refers to the parameter of type

Parameter kindn represents an input parameter that is not changed after operation execu-
tion. Parameters of kindut are output parameter that are unassigned at the time of operation
call. They are assigned with a specific value when the operation call returns. Parameters of
kind inout are a combination of the two previous kinds, i.e., they provide an input value for the
operation, and this value might be changed when the operation returns (this is also known as
call-by-value-and-result).

OCL 2.0 assumes that at most one parameter of kizahlt is specified [OMGO3b, Ap-
pendix A.2.1.2 and A.3.2]. If neither a result type nor anygut or out parameters are specified
for an operation, we set the result typw the predefined typeclVoid. If there areinout or
out parameters specified, the operation result type is a tuple in which the relevant parameter
values appear in their specified order, including the result value (if any) as the last element.

However, in this formalization we employ some simplifications without loss of generality.
First, we simply always consider the complete tuple of operation parameters, i.e., parameters
of kind in are always considered. All we have to require is that the values of input parameters
must not change when the operation call returns. And then we also always include a return
value, even if the operation return typefislVoid. In this case, the return value is simply set
to L.

Signals. Signals are an asynchronous communication mechanism of UML. When a signal is
sent, the calling object simply continues its execution, while synchronous operation calls make
the invoking operation wait for a return value. In contrast, an asynchronous operation call is
like sending a signal, but note that a potential return value is simply discarded.

Richters has not considered asynchronous signals in his formal model. Reactions on signals
received by an objeet; are specified by a State Diagram associated with the class to wiich
belongs. Consequently, when integrating State Diagrams into the formal object model, signals
now also have to be regarded as well.

In UML, signals are classifiers, i.e., signals are generalizable model elements defined in-
dependently of the classes handling them. TheSdét in the model description defines all
signals of a model. As we support generalization of sigrfals; is a superset of the individual
signal setsS/G.. The setS1G. of signals that can be handled by objects of a ctassspeci-
fied by so-calledeceptiongOMGO3d, Sect. 3.26.6]. Note that signals can only be handled by
instances of active classes, as passive classes do not have associated State Diagrams.

Definition 4.4 (Signals)
The signals that can be handled by instances of a classACT IV E are defined by the set

4.1. SYNTAX 91

SIG. of signal receptions,

SIG. ™ {(wit,xtyx...xt,) |weN,neN,, andty,...,t, € T}.
Symbolw denotes the signal name, andefers to the type af to which signalv is applied.
As signals are asynchronous, no return value is expected, such that all signal parameters are all
input parameters.
For example, the negotiation of transports to be performed is modeled by signal communi-

..............

...............

Visibility of Attributes, Signals, and Operations. Though supported in UML Class Dia-
grams, visibility features such agivate, protected, or public are not reflected in the
formal object model. In the adopted OCL 2.0 specification, all model elements are considered
visible [OMGQ3b, Section 9.2.2], although it is also mentioned that tools may employ UML
visibility rules, i.e., only allow OCL expressions to be specified over model elements visible
from the expression’s context.

4.1.3 Abstract Syntax of State Diagrams

The UML 1.5 StateMachine package specifies concepts for modeling discrete behavior through

to various model elements within UML, the graphical formW¥IL State Diagramss most
frequently used to model the reactive behavior of class instances.

UML allows multiple State Diagrams to be applied to a single class. The reason for this is
that it should be possible to associate different State Diagram to a class in different phases of
development, e.g., in the analysis and in the design phase. However, we here require that there
is one State DiagrarfC.. for eachc € ACTIV E.

Note that UMLsubmachine stateandstub stategslo not appear in our general definition.
Submachine states are a syntactical convenience to represent a ‘call’ to a another state machine
as a ‘subroutine’, using stub states as entry and exit points. Thus, a submachine state is seman-
tically equivalent to a composite state, and we can assume that all these states have explicitly
been copied int&'C, such that all submachine states and stub states are eliminated.

Definition 4.5 (Abstract Syntax of State Diagrams)
Letc € CLASS be a class. Eaclh € ACTIV E has an associated State Diagrafit..
representing the reactive behavior of instances. of

(
(S, VARS. TR., EVTS. GUARDS,., ACTS,,
nt T ¢, shallowHistory,, deepHistory,., |
internalTrans,, shallowHistory,., deepHistory, fee ACTIVE
def init., final,., substates,, entry.., exit,,

SC, =
doActivity., de ferrable Events,),

6]

, if ce PASSIVE.

92 CHAPTER 4. EXTENDED OBJECT MODEL

To keep the definition concise, we omit the class annotaftor State Diagram components
in the following and provide the general definition of a State Diagtimi.e.,

SC ™ (S,VARS,EVTS,GUARDS, ACTS, TR, internalTrans,

shallowHistory, deepHistory, de fault History, init, final,

substates, entry, exit, doActivity, de ferrable Events),

where
1. S C N is a set of statesS is the union of the following disjoint sets.

e Pseudo stateBseudo, consisting of the disjoint sets of (a) initial statesit, (b)
merging stateg/oin, (c) splitting stated’ork, (d) static conditional branch states
Junction, (€) dynamic conditional branch staté8ioice, and (f) history states

History = ShallowHistory U DeepHistory,
e synchronization statesynch,
e simple statesimple,

e composite state€'omposite, which in turn comprises the two disjoint sets of se-
guential composite statésor and orthogonal composite statésd, and

e final stateg-inal.

For more details about these states, 5ee. [OMG03d, Section 2.12.2]. For convenience, we
define

Proper “ And U Xor U Simple.

2. VARS C N is a set of local variables.

3. EVTS C EXPRg.. is a set of events. We assume that there is an expression language
EX PR, available to formulate events such as operation calls, signals, timers, etc.

4. GUARDS C EXPRcauards 1S @ set of conditions. We assume that there is a language
EX PRcu,qras available to formulate boolean expressiﬁns.

5. ACTS C EXPR 4 IS a set of actions. We assume that there is an expression language
EXPR 4., available to formulate actions such as assignments, operation calls, signals,
etc.

6. TR C (S\ Final) x EVTS x GUARDS x ACTS x (S'\ Init) is a set of transitions.
A transition connects a source state S \ Final and a destination staté € S\ Init,

3In this context, boolean OCL expressions are frequently applied.

4.1. SYNTAX 93

10.

11.

may have a trigger eveate EV'T'S, a guard conditioy € GUARDS, and an action
expressiom € ACTS. In the following, the five convenience functions

treg.: TR — S\ Final,
trygs - TR — S\ Init,
trey : TR — EVTS,
trga : TR — GUARDS,
troe : TR — ACTS

are used to extract the source state, destination state, event, guard, and action of a given
transition, respectively.

For a transitiont = (s, e, g, a, s'), we use the notation /e, o and omite, g, ora when

trepi(€e) = @, trga(g) = @, Or treq(a) = @, respectively. Transitions € TR with
tra.(t) = trqq(t) are calledself-transitions

FunctioninternalTrans : Proper — P(EVTS x GUARDS x ACTS) gives the set
of internal transitionsfor a given states € Proper. Internal transitions semantically
differ from self-transitions. When triggering an internal transition in a statbe exit-
and entry-actions of are not executed.

Functions
shallowHistory : Composite — ShallowHistory,

deepHistory : Composite — DeepHistory, and
defaultHistory : Composite — History

determine for a given composite statee C'omposite its (potential) shallow, deep, and
default history state, respectively. The concept of history states has already been pre-

Let h € History be a history state of a composite staté.e.,h = shallowHistory(s)

or h = deepHistory(s). We require that there is at most one transitioa 7R with
tre..(t) = h. This transition leads to thdefault history stateof s, i.e., trqq(t) =
default History(s). This default state is entered only when (a) the composite state
is entered viah and (b) the composite stataes entered for the first time.

Functioninit : Composite — Init gives for each composite state the unique initial
(pseudo) state. For all€ Init, there is nar € T R with tryg(tr) = s, i.e., initial states

do not have incoming transitions. Moreover, there is exactly one transitiari' R with
treg..(tr) = s, i.e., each initial state has exactly one outgoing transition that leads to a
corresponding proper state.

Functionfinal : Composite — Final gives for each composite state the unique final
state. There is no transitian € TR with tr,..(tr) € Final, i.e., final states do not have
outgoing transitions.

substates : Composite — P(S) gives all substates of a state, such that

94 CHAPTER 4. EXTENDED OBJECT MODEL

(a) there is a unique statep € Composite with
Vs € Composite : top & substates(s),

(b) Vs € And : substates(s) C Composite,ﬁ
(c) Vs € Composite \ {top} there is exactly one path

(81,...,8n) € Composite x ... x Composite,

Vv
n times, n>2

with s; = top A s, =s A $;41 € substates(s;) forl <i<n—1.

12. Functions:ntry, doActivity, exit : Proper — ACTS give the actions to take when a
state is entered, active, or left, respectively.

13. deferrableEvents : Proper — P(EVTS) gives the set of events to be retained for
later consumption.

...............

pressed as follows.

Init asqv = { inity,inity },

Andsav = { AGV },

Xoragy = { Negotiator, Transport },

Simple gy = { WaitingForOrder, ComputingBid,

Waiting For Acknowledgement, Idle, MovingT oLoad, Loading,
MovingToUnload, Unloading, MovingT oV acate },

VARS sqv = { currentltem,sl,s2 },

EVTSacv = { sl."requestTransport(i), s2.”accept Bid(i), s2."reject Bid(i),
s2.”requestTransport(i), agv.vacate(p), when(order = true) },

GUARDS gy = { order = true,order = false,s2 = sl and i = currentItem,
p = self.pos },

ACTS pqv = { order := true, order := false, currentItem := i, pos := dest,
dest := getInput Pos(sl), dest := sel f.getInput Pos(s1),
dest := getParkPos(), dest := currentltem.next Dest(pos),
send sl.reject Request(i), send s1.bidding(currentItem, bid),
send s2.reject Request (i), compute Bid(dest),

move(dest), load(currentItem), unload(currentltem) },

4This is a well-formedness rule of the UML standard (€€ [OMG03d, Section 2.12.3.1]). In many alternative
formal syntax definitions, evesi € Xor is required in this case, leading tamarmal formof alternating Xor- and
And-states in the state hierarchy.

4.1. SYNTAX 95

The rich setl'R o of transitions is not listed for brevity reasons. To give an example, we
here only provide the self-transition of stdiéuiting ForOrder: The remaining transitions can

........

sl.requestTransport(i)[order=true]/send sl.reject Request(s)

Waiting ForOrder

Waiting ForOrder.

For the states ity 4y, the corresponding initial states and substates are defined as follows.
Note that in this special case final states do not appear, as we assume the ideal case that the
(physical) AGVs do not break down and their corresponding objects will never be destroyed.

initagv (inity) = WaitingForOrder,

initagy (inity) = Idle,

substates aqy (AGV) = { Negotiator, Transport },
substates aqv (Negotiator) = { WaitingForOrder, ComputingBid,

W aitingFor Acknowledgement },
substates agv (Transport) = { Idle, MovingToLoad, Loading, Unloading,
MovingToUnload, M ovingT oV acate },

Finally, the entry, exit, and do-activities are defined.

entryacy (Computing Bid) = 'currentItem =1,

exitaqv (MovingT oLoad) = 'pos := dest’,

exitaqv (Loading) = 'dest := currentItem.nextDest(pos)’,
exit agy (MovingT oUnload) = 'pos := dest/,

exitaqv (Loading) = 'order := falsée,

exitaqv (MovingT oV acate) = 'pos := dest,

doActivity agy (computing Bid) = 'computeBid(dest)’,

doActivityacy (MovingToLoad) = "move(dest)’,
doActivity scv (Loading) = "load(currentItem)’,

(

(
doActivityaqy (MovingToUnload) = "move(dest)’,
doActivity acv (Unloading) = "unload(currentItem)’,
(

doActivity acy (MovingT oV acate) = "move(dest)’,

All other components o C 4y are set taz.

lot, e.g., a final state cannot have an entry action, activity, exit action, internal transitions, and
deferrable events. Therefore, one might argue that final states belong to the set of pseudo states.
But there is one significant semantic difference: Pseudo states are transient nodes, i.e., they are
never part of an active state configuration. Final states, however, may appear in an active state

96 CHAPTER 4. EXTENDED OBJECT MODEL

.....................

steps (i.e., run-to-completion steps, RTC-steps). This justifies to keep final states separated from
pseudo states.

Definitioni4.% covers most of the abstract State Diagram syntax of the official UML 1.5
specification:[OMGQ3d, Section 2.12.2]. There are only a few details left out (e.g., the bound
of synch states and some more syntactical restrictions. [OMGO03d, Section 2.12.3]), which can
easily be added to the definition if necessary. But for our purposes, it is sufficient to regard the
State Diagram components defined above.

There are several semantic issues arising when State Diagrams have to be considered along

UML State Diagrams do not have an inherent explicit time model, although it is possible to
syntactically specify time-related events. For example, a timeout that requires to leave a state
after 10 seconds can be specified by an exénér (10 sec) attached to a transition. Later, in
Chaptef 5, we formally define syntax and semanticstohad State Diagram variant

4.1.4 Associations

Associations are used to model structural relationships between classes. Though generally as-
sociations may connect an arbitrary number of classes, most frequently binary associations are
applied. Moreover, there is no restriction on the number of associations a class may participate

in.

Definition 4.6 (Associations)
The set ASSOC of associations is defined by

¢ afinite set of named SSOC C N,
ASSOC — CLASST

e a functionassociates : _
as+— (C1,...,¢,) withn > 2.

Functionassociates gives for each associations € ASSOC a tuple(cy,...,c,) that
represents the classes that participate in the association. Note that the elenents aofc,,)
do not necessarily have to be distinct. In particular, binary associationswithiates(as) =
(¢, c), i.e., both association-ends are attached to the samecckagscalled self-associations or
recursive associations. In general, a class may participate multiple times in a single association.
In order to distinguish the role of each association end in such a case, unique role names are
applied to be able to uniquely refer to a specific association end when navigating through the
model.

Definition 4.7 (Role Names)
Letas € ASSOC be an association withssociates(as) = (ci,...,c,). Role names for an
association are defined by a function

{ ASSOC — N+
roles :

as v (ry,...,ry) withn > 2,

Ssee UML RTF1.4, issue 3201, http://cgi.omg.org/issues/issue3201.txt

4.1. SYNTAX 97

where all role names must be distinct, i.e.,
Vi,je{l,....,n}:i#j = ri#r;.

Functionroles(as) = (rq,...,r,) assigns each clags participating in the associatias a
unique role name;. If no role name is provided for an association end, the respective name of
the class is taken by default, with the first letter in lower case. Note that for self-associations
unique role names must be provided, as discussed above.

Moreover, an additional syntactical constraint is needed to guarantee unique role names,
namely for the case that a class is part of multiple associations. Before we can formally express
this constraint, we need to define two help functions, perticipating andnavEnds. First,
functionparticipating gives the set of associations a class participates in.

CLASS — P(ASSOC)

c—{as| as € ASSOC
A associates(as) = (c1,...,Cn)
ANFie{l,...,n}:¢ =c}.

participating :

Second, functiomav Ends gives the set of all role names that are reachable (or: navigable)
from a class along a given association.

CLASS x ASSOC — P(N)

(c,as) — {r| associates(as) = {c1,...,Cpn)
navEnds :
Aroles(as) = (r1,...,T)

ANTi,jed{l,...,n}i#jNci=cAr;=T1}

Informally speaking, we have to guarantee that navigation ends of the associations a given
classc participates in are pairwise distinct. Otherwise, we might not be able to unambiguously
navigate along associations and functieivigation Ends (See below) cannot correctly be built.

We therefore require

Ve € CLASS,Vas,as' € participating(c)
as # as’ = navEnds(c,as) NnavEnds(c,as’) = @.

We can now determine the set of role names that can be directly reached from a given class
by navigating along the associations this class participates in by funetioiyation Ends,
which is defined by

CLASS
navigation Ends : { = PN)

cr Uaseparticipatmg(c) navEnds(c, CLS).

An association specifies the possible existence of connections between objects. A connec-

.............

multiplicities specify the number of links that can be established on a given object.

98 CHAPTER 4. EXTENDED OBJECT MODEL

Definition 4.8 (Association Multiplicities)
Letas € ASSOC be an association withssociates(as) = (c1, ..., ¢,). Function

multiplicities(as) = (M, ..., M)

assigns each class participating in the association, < i < n, a nhon-empty set/; C Ny
with M; # {0}.

For example, we require that an item is always associated with a factory unit. This is in-

..........

..............

FactoryUnit end.

Aggregation and composition are special forms of associations representing part-whole re-
lationships among classes. They are denoted by hollow and filled diamonds in the UML Class
Diagram notation. Based on the observation that aggregations and compositions can be mapped

simple associations in this formal model.

4.1.5 Generalization

Generalization and specialization are taxonomic relationships between classes. Generalization
refers to the bottom-up approach of setting up a more general class from one or more existing
subclasses. Common features are adopted in the general class, while specific differences are
restrained. By specialization, we refer to a relationship between classes, in which a general class
is specialized in a top-down manner into one or more subclasses. Subclasses inherit features of
their superclasses (e.g., attributes and operations).

Basically, specialization and generalization are different views of the same concept, and
we will mainly use the terngeneralizationin the following to refer to this concept. Thus, we
may say that in a generalization relationshipgwb classes, we have a more general class (the
parent) and a more specific class (the child) that is consistent with the parent and carries some
additional information. Note that the notion of generalization is not only known for classes in
UML. For example, generalization relationships are also applied to signals, packages, and use
cases.

Definition 4.9 (Generalization Hierarchy, Child and Parent Classes)
A generalization hierarchy is an irreflexive partial order oilC'LASS, i.e., < is an irreflex-
ive, anti-symmetric, and transitive relation. Pairs #describe generalization relationships
between two classes.

For ¢1,c; € CLASS with ¢; < ¢, ¢ is called a child class of,, andc; is called a parent
class ofc;.

A child class transitively inherits characteristics (i.e., attributes, operations, signals, and associ-
ations) of its parent classes.

Correspondingly, the generalization hierarchy;; defines an irreflexive partial order on
SIG. As a signal can be specified as the child of another signal, reception of that child signal
may also trigger any transition in a State Diagram that depends on any of its ancestor signals.

4.1. SYNTAX 99

The set of characteristics defined for a class together with its inherited characteristics is
called afull descriptor of a class Before formalizing this issue, we define a function for col-
lecting all transitive parents of a given class.

CLASS — P(CLASS)
parents :
c—{d|d e CLASS Ne < '},

The complete set of attributes ofis the setAT'T; that contains all inherited and direct at-
tributes.

Aty € arT, v | ATTL.

¢’ €parents(c)

The complete set of user-defined operations is determined analogously.
x def
or;<0pr, U |J OP.

¢’ eparents(c)

The complete set of user-defined signals is given by
sic: € s1G. v) SIG..

¢’ €parents(c)

Finally, the complete set of navigable role names for a clas€’'LASS is given as follows.
navigationEnds*(c) = navigationEnds(c) U U navigation Ends(c).

¢’ €parents(c)

Definition 4.10 (Full Descriptor of a Class)
The full descriptor of a classe C'LASS is a tuple

FD, = (ATT, OP:, SIG:, SC.,navigation Ends*(c))

containing all attributes, user-defined operations, signals, navigable role names, and the possi-
bly associated State Diagram.

The UML standard requires that certain characteristics of a full descriptor must be distinct.
For example, a class may not define an attribute that is already defined in one of its parent
classes. These constraints are captured more precisely by the following well-formedness rules.
Each constraint must hold for eacle CLASS.

1. Attributes are defined in exactly one class.

Y{a,t.,t), (a to,t') € ATTY :
a=d = t.=ts Nt=1

100 CHAPTER 4. EXTENDED OBJECT MODEL

2. An operation may only be defined once in a full class descriptor. The first parameter of an
operation signature indicates the class in which the operation is defined. The following
condition guarantees that each operation in a full class descriptor is defined in a single
class.

V(w:te Xty X oo Xty =), (W ity xty x...xt, —1t)eOPF:
w:w//\tlztll/\/\tn:t;l = t,.=tu

3. A signal may only be defined once in a full class descriptor. The first parameter of a
signal signature indicates the class in which the signal is defined. The following condition
guarantees that each signal in a full class descriptor is defined in a single class.

V(w:te Xty X oo X ty), (W ity xt) x...xth) e SIGE:
w=w At =t)AN...Nt,=t, —= t.=1tu

4. Role names are defined in exactly one class among the generalization hierarchy of a given
classc.

Yey, co € parents(c) U {c} :
c1 # o = navigationEnds(c1) N navigationEnds(cy) = &

and signals to specify OCL messages. To uniquely identify an operation or signal, the
operation and signal names of a class (in combination with the corresponding parameters)
must be pairwise distinct.

V(w:texty x...xt, —t)e ATTY,
V(W ity Xty X ... X t,) € SIGE: w# W

Note that for’, the typeg,, ..., t, are fixed by the parameter types.af

6. Similarly, OCL uses the same notation for accessing attributes and navigating by role
name. Therefore, attribute names and role names must be pairwise distinct.

Y{a,t., t) € ATT!,Vr € navigationEnds*(c) : a #r

Note that it is allowed for operations and signals to have the same name as attributes or role
names, because the concrete syntax of OCL allows to distinguish between these cases.

4.2 Semantics

In the previous section, the syntax of extended object models has been defined. In this section,
we now present a formal semantics of extended object models.

4.2. SEMANTICS 101

4.2.1 Objects

The domain of a classe C'LASS is the set of objects of this class and all of its child classes.
Objects are referred to by object identifiers that are unique in the context of the whole executed
model. In the remainder, no distinction will be made between objects and their identifiers, i.e.,
each object is uniquely determined by its identifier and vice versa.

Definition 4.11 (Object Identifiers and Domain of a Class)
The set of object identifiers of a clasg CLASS is defined by an infinite set

oid(c) «f {objId ,objld,,...}.

The domain of a classe CLASS is defined as

Topass(e) < U oid(c).

c/eCLASS with ¢/’<c V c'=c

Correspondingly, the domain of typec T that is induced by class is

de
Ity pe(te) 2 Icrass(c) U {L}.

For brevity reasons, we omit the index&f, 4s5(c) and 1y pg(t) when the context is clear.

4.2.2 A Note about State Diagram Inheritance

The problem of consistency among generalization of classes and inheritance of characteristics
(i.e., attributes and operations) has been studied extensively for object-oriented languages, but
consistency among inheritance of behavioconceptual object-oriented design notations like
UML has received less attention. Different notions for consistency of behavior have been iden-
tified in this context[EE94, $500, $502a]. Their definition makes use of the dynamic execution
of State Diagrams by traces, which are execution runs through (the processes derived from)
State Diagrams.

First, weak invocation consistengypiarantees that each trace of the State Diagram for the
superclass is also contained in the set of traces of the State Diagram for the subclass. With other
words, a sequence of activities performable on instances of a superclass can also be performed
on instances of a subclass. Secatthng invocation consistengyarantees the latter property
even if activities added to the subclass have been inserted arbitrarily in that sequence. Finally,
in observation consistencyhe State Diagram of the superclass specifies an upper bound to
the behavior of the subclasses. It is guaranteed that every trace of an instance of a subclass is
observable as a trace of the superclass, when states, events, and activities added at the subclass
are neglected.

Apart from that classification, UML 1.5 provides an informal description of three different
inheritance policies for state machings [OMG03d, Section 2.12.5.3], which implicitly applies
as well to State Diagrams: subtyping, strict inheritance, and general refinement, where 'refine-
ment’ in this case is a synonym for inheritance.

102 CHAPTER 4. EXTENDED OBJECT MODEL

Subtypingrequires that a state in the subclass retains all its transitions. Transitions may
lead to the same state or a new substate of that state (i.e., strengthening of the transition post-
condition), and guard conditions may be weakened by adding disjunctions (i.e., weakening of
transition preconditions). This correspondsueak invocation consisteneynd complies to the
substitutability principle.

The other two policies provided by UML 1.5 support neither observation nor invocation
consistency and are instead oriented towards coding and inheritance iSsugtsnheritance
is intended to encourage reuse of implementation rather than preserving behavior. This kind of
policy results from the fact that in many programming languages features cannot be deleted in
subclasses once defined in a superclass. Thus, it is not allowed to remove outgoing transitions
in subclasses and to apply a different source state to an existing transition. Nevertheless, new
states and transitions can be added, and guard conditions, transition target states, and incoming
transitions may be altered without any further restrictions. Fingéiperal refinemeriasically
places no restrictions on State Diagram inheritance.

Note that if a class has multiple superclasses, the default State Diagramdonsists of all
the State Diagrams of its superclasses as orthogonal regions. This may be overridden through a
kind of State Diagram inheritance if required.

4.2.3 State Configurations

As a result from the discussion in the previous section we assume in the following that an
extended object modél under consideration complies to a predefined policy of State Diagram
inheritance. This means that for each active class ACTIV E there is a State Diagram
specificationSC.. which is consistent with the State Diagrams of the superclasses of

In a State Diagram with composite and concurrent states, the term ‘current state’ cannot
be applied without causing confusion, as more than one state can be active at the same time.
Consequently, UML 1.5 provides the notionadtive state configuration€&IMG03d, Section
2.12.4.3].

If the State Diagram is in a simple state that is contained in a composite state, then all
the composite states that (transitively) contain the simple state are also active. Furthermore, as
composite states in the state hierarchy may be concurrent, the currently active states are actually
represented by a tree of states starting with the single &tateat the root down to individual
simple states;; € Simple, at the leaves. Such a state tree is in UML 1.5 referred to as a
of state configurations. But first, we define a convenience funetigarstate. that gives the
direct superstate of a statec S..:

S. — Composite,

superstate, : s, if s’ € Composite. with s € substates.(s')
S —
a, else.

UML 1.5 does not consider final states in state configurations. In contrast, we include final
states in the following definition for state configurations, as they might be active after an RTC-
step. However, a final state that is a direct child stateopf is not part of any configuration,

4.2. SEMANTICS 103

since entering that state is equivalent to termination (or: destruction) of the corresponding ob-

ject. Additionally, we explicitly excludémmediate statesimmediate states are proper states

that are directly run through in an RTC-step, as they do not have outgoing transitions that have

to wait for a triggering event. Consequently, they can never be part of an active state configura-

tion after completion of an RTC-step. We here leave out a formal definition and simply refer to

setImmediate, to denote the set of all immediate proper states of a State Diagam
Furthermore, we make use of the following help sets for classeslCT IV E:

ProperStay. = Proper. \ Immediate,.,
Stay. =) ProperStay. U {f € Final. | f & substates.(top,)},

Basic, = (Simple. \ Immediate,) U {f € Final. | f ¢ substates.(top.)}.

Definition 4.12 (State Configurations with respect to state s)
Letc € ACTIV E andSC, be the State Diagram far. A state configuratiod@ with respect to
a state $s a maximal set of states that the State Diagram can be simultaneously in, taking state
s as the root. Functior fg. that maps a state € ProperStay. to the set of configurations
with respect te is defined by
(ProperStay, — P(P(Stay.))
s+—{C e P(Stay.) | s€C
cfge: AVs € CN And, : substates.(s') C C
AVs € CN Xor. : |substates.(s') NC| =1
AVs € C\ {s} : superstate.(s’) € C }.

Definition 4.13 (State Configuration)

The set/s¢(c) of overallstate configurationfor a classc € ACT1V E, which are state config-
urations with respect to the top statep,, is determined by fg.(top.).

For convenience, we defidgc(c) forall c € CLASS by

def | cfge(top.), if c € ACTIVE,
Isc<0) =)

9, if ce PASSIVE.
By definition, each state configuration induces a state tree. But to uniquely determine a state

configuration, it is sufficient to have information about terminal states, i.e., the simple and final
states.

Definition 4.14 (Basic State Configurations)
Letc € ACTIV E and SC, be the State Diagram far. Lets € ProperStay. be a state and
letC € ¢fg.(s) be a state configuration with respect4oThe set

d .
Be “Ien Basic,

is called abasic state configuratiofwith respect taC). The setB, of all basic configurations
with respect te; is then defined by

B, {Bc|C € cfgc(s)} CP(P(Basic.)) .

104 CHAPTER 4. EXTENDED OBJECT MODEL

Note that the following condition holds (cf. [PUJ97, Lemma 1]):
Vs € ProperStay.,VBc € By :
superstate*(Beg) N substates™(s) = C .

In other words, given a basic state configuratiéyy we can uniquely determine the state con-
figurationC = cfg.(s) with respect to a state
We here employed function

superstate™ : P(S.) — P(ProperStay.).

Basically, that function gives the set of transitive superstates on a given set of states (including
that given set of states). Functienbstates* : ProperStay. — P(Stay.) in turn gives the set
of transitive substates on a given state (including this state).

4 s N\

> ’ J

Proper States: { sXY,AB,J,K,L,MN }

Final States: { S::FinalState,B::FinalState }
{
{

Immediate States: K }

State Configurations: {s,%X,A,B,J,M}, {S,X,A,B,J,N},
{S,X,A,B,J,B::FinalState},
{s,%x,A,B,L,M}, {S,X,A,B,L,N},
{S,X,A,B,L,B::FinalState},
{s,¥Y} }

Basic Configurations: { {J,M},{J,N},{J,B::FinalState},
{L,M},{L,N}, {L,B::FinalState},
{Y} }

Figure 4.1: State Diagram Example

.........

All proper states except immediate stétleave an outgoing transition with a specified ewgnt

1 <4 < 6. As UML does not provide a textual equivalent for final states, we use the parent state
name, double colons, and the keywarthalState to syntactically refer to final states. Note
thatS: :FinalState is not part of the configuration set (cf. usage of Séiy.. in Definition

4.2.4 Links

An association describes possible connections between objects (i.e., links) of the classes par-
ticipating in the association. Semantically, an association is a relation that describes the set of
all possible connections between objects of the associated classes (more precisely, classes and
their children).

4.2. SEMANTICS 105

Definition 4.15 (Links)
Each associations € ASSOC with associates(as) = {(c1, ..., ¢,) is interpreted as the prod-
uct of the sets of object identifiers of the participating classes:

de
I4ss0c(as) 2 Icpass(cr) X ... x Iopass(cn).

Alink is an element,; € [4550c(as).

4.2.5 System State

In the following, we call a particular instantiation of an extended object modgistem A

system is in different states as it changes over time, i.e., the (number of) objects, their attribute
values, State Diagram configurations, and other characteristics change when actually executing
the system. But it still has to be defined what a single system state exactly consists of. It
is important to point out here that different notions of a system state are generally possible,
depending on the scope of model analysis one wants to perform. In the original work on object
models[Ric01], a system state is a tuple consisting of three parts:

e the current set of objects,
¢ their attribute values, and
¢ the current links that connect the objects.

A semantics of a large part of standard OCL expressions is defined over such systems states in
[Ric0Z, Sect. 5.2]. However, as State Diagrams are not considered in that work, state-related
operations such asx1InState(statename:0clState) could not be handled so far.

In our approach, we additionally investigatequencesf system states, i.e., we are going
to perform an analysis over possible future system states and thus reason about evolution of
State Diagram states. For this, we need a concise notieystém state sequendbsit also
covers State Diagram configurations. In order to be able to formally define such sequences,
we need to define which operations are to be executed next (for operation preconditions) and
which operations terminate later (for operation postconditions). In this context, we adopt ideas
of [ZG02,:i2G03] to formalize currently executed operations and define additional functions to
capture that information.

Definition 4.16 (System State)
A system state for an extended object mddeis a tuple

def
U(M) = <ECLASS7 EATT; 2ASSOC? EC’ONF7 ECUT’I'STLtO}H EcurrentOpPa'ram>
where

def
1. Ycrass = Ueecrass Zorass,e

The finite setS- 1455, contain all objects of a clagse CLASS existing in the system
state, i.e.,
Yorass,e C oid(c) C Iopass(c).

106

. ZcurremﬁOpParam =

CHAPTER 4. EXTENDED OBJECT MODEL

For further application, we definEscrv e, for active andXpassive,. for passive
classes correspondingly.

. The current attribute values are kept in Bgty. It is the union of functions 477, :

Yorasse — I(t), wherea € ATT?. Each functiorv 411, assigns a value to a certain
attribute of each object of a given class C'LASS.

def

- Xassoc = Uwscassoc Zassoc,as comprises the finite sels,gsoc.q.s that contain links

that connect objects, where

Vas € ASSOC : L as50c.as € Tassoc(as).

and formalization of multiplicity specifications.

. The current State Diagram configurations are kept by

def
oconr = Uencrive {0conre : Sacrivee — Isc(e)}.

Each functiorvcon . @ssigns a state configuration with respect to the corresponding top
statetop. to each object of a given classe ACTIV E.

Let ZD be an infinite enumerable set, e.dDP = N. The set of currently executed
operations is denoted by

def
2curremep - UceCLASS{UcurrentOp,c : 2C’LASS,C X OP; - P(ID>}

Each functiono ,,entop. gives a set of unique identifiess ZD that represents all cur-
rently executed operations for a given objett and operation signaturg. At the start-

ing point of an operation execution, a unique identiferZD is associated with that
operation execution. We require that the associated identifier must not change until the
execution of that operation terminates.

def

UC€CLASS{qurrentOpParam,c : EC’LASS,C X OPC* X ID — [(tl) X...X [(tn) X I(t) }

is a set of functions that gives the parameter values of each of the currently executed
operations. For eache CLASS, we defines .y rentopparam.. as follows, wherep =
(Wite Xty X...xXt, —>t) € OP,.:

UcurrentOpParam,c(Oida op, Zd) =

{ (valy, ..., val,, returnVal), if id € oeyrrentop,c(0id, op)

g, otherwise.

In the definition aboveyal; € I(t;) denotes an arbitrary value defined for types T,
1 < j < n. The same holds foreturnVal € I(t). If an operation is not returning a
result, the result typeof operatiorop is 0c1Void. In that case, we setturnVal =.1.

4.2. SEMANTICS 107

Of course there are additional State Diagram characteristics that could also be taken into
account to be part of a system state, e.g., event queues and changes occurring to them or addi-
tional information required for re-entering composite states via history states. However, while
this can make sense in some specific approaches, the definition above is sufficient for reasoning
about currently activated states and executed operations.

4.2.6 Semantics of Operation oclinState(statename:OclState)

The notion of a system state with integrated active State Diagram state configurations enables
us to define a semantics of operatie¢lInState (statename:0clState). This issue is still
missing in the semantics of the adopted OCL 2.0 specification.

According to the OCL 2.0 specification, the operation signaturectfinState (state-
name:0clState) is defined by

oclInState : OclAny x OclState — Boolean,

where the domain abclState is formally defined by

I(OclState) = (|] Staye) U{L}.

ceACTIVE

For an operationp = (w : t. x t; X ... x t,, — t) € OP,, a semantics is generally defined
by a total function with signature

Ilopl] : I(t.) x I(ty) x ... x I(t,) — I(t),

where we implicitly assume a given system sfgalte.

Correspondingly, we define the semantics of operatiohInState(statename:0cl-
State) on a given system state(M), a given objecid € Ycrass., and a state name
s € I(OclState) by

I[[oclInState : OclAny x OclState — Boolean)|(oid,) wf

(true, if oid € Xacrive N\ s € Stay.
A s € oconrF.(0id),
false, if oid € Yacrive.e N\ s € Stay.
N s & oconre(0id),
L, if oid & Yacrive,e
V (oid € Zacrivee N s € Stay. U{L})
Vs=1.

\

®More precisely, the additional variable assignmeéiias also to be considered. Functj@determines values
for OCL-specific variables, such as iterator variables and local variables of so-tatlezkpressions [OMG03Db,
Section A.3.1.2].

108 CHAPTER 4. EXTENDED OBJECT MODEL

Note here thatclInState(statename:0clState) returnsl whenoid is a passive object
or when state is not element of seftay,. of an active class € ACTIV E... Alternatively, we
could have chosen to returia/se instead in these cases. Neither the UML 1.5 standard nor the
adopted OCL 2.0 specification give any information about this issue.

4.2.7 Traces

So far, it is not defined how a system state is actually built. The OCL 2.0 semantics simply
assumes that a system stat&@-; 455, X arr, Lassoc) IS given by a sebqp 55 Of currently
existing objects, a sef 4 of attribute values for the objects, and a Selssoc of currently
established links that connect the objects. While this structure is easy to obtain from a concrete
(implementation of a) running system, the situation becomes more complicated when also State
Diagram states are considered.

We therefore have to defirteaces i.e., sequences of system states that keep track of all
‘noteworthy changes’ within a running system. In the context of checking OCL constraints,
we are, for instance, not interested in every single attribute value change that occurs during
execution of an operation. Instead, we are interested in those system states in which something
happens that is of relevance for evaluation of OCL expressions, e.g., when an operation has
been completed and a corresponding postcondition should be checked.

In the simplest case, e.g., when (an implementation of) the system is executed on a single
CPU, there is a clear temporal order on the system execution. But when (the implementation of)
the system is distributed, we have a partial order among the system executions. This problem
can be treated in an ideal case by introducimgdodoal clockthat allows for a global view on the
system. We here follow the idea of a global view on the system.

Definition 4.17 (Trace)
A well-defined system state sequence calladefor an instantiation of an extended object
modelM is an (infinite) sequence of system states,

trace(M) E ((a(M) g, (M), ..., a(M), ..).

The first trace element(M)|, denotes the initial system state. Given a system staid);;,
i € Ny, the next system statg.M);; 1) is added to the trace when for at least one object a
noteworthy changeccurs.

Noteworthy Changes. Let inv(c) denote the set of invariants of a clasg CLASS. Let
inv*(c) denote the full set of invariants for a class.e.,

inv*(c) = inv(c) U U inv(c).

¢ €parents(c)

Similarly, let pre(op, ¢) and post(op, c) denote the pre- and postconditions of an operation

op € OP?. Recall that we assume that there isimneritance policyfor State Diagrams that
guarantees that state-related OCL expressions are well-defined over inheritance relationships
among active classes with associated State Diagrams.

4.2. SEMANTICS 109

We identified the following kinds ohoteworthy changegelevant for evaluation of OCL
expressions. In each case, we give a corresponding rule for updating the current system state
o(M)}; and indicate whether OCL constraints have to be checked. Note that different kinds of
noteworthy changes might occur in parallel at the same instant of time, such that more than one
rule might have to be applied on a given system statet);;. For example, a number of objects
can be created at the same time on different nodes in a distributed system, and in addition one
or more links can be established.

Although we abstract from an explicit notion of time here, we have to assume a global view
on the system to determine the set of noteworthy changes on the whole (in particular distributed)
system at each instant of time.

In the following rules, we are using tfi@-annotation also for the components and functions
defined ino (M), 7 € N.

1. Letoid,,...,oid, be theobjectsof classes;; € CLASS, 1 < j < n, that are newly
created

Vie{l,...,n}:
Y0LAsS e lit1] = BoLasseli) U {oid; }
Task: Check invariantgv*(c;) for all objectsoid; on system state(M) ;).

2. Letoid,,...,o0id,, be theobjectsof classes;; € CLASS, 1 < j < m, that arede-
stroyed.

Vie{l,...,m}:
ECLASS,cj li+1] = ECLASS,cj (4] \ {Mj}

3. Letl,s;, 1 < j < r, be thelinks of associations.s; € ASSOC that are newlyestab-
lished.

Vie{l,...,r}:

Y ASSOC as;[i+1] = BASSOC,as;[i] Y {las; }

4. Letly,, 1 <j<p, be thelinks for associationgas; € ASSOC that areremoved

Vie{l,...,p}:

YASSOC as;[i+1] = BA5S0C,as;[i] \ Llas; }

5. Letefg;, 1 < j < g, be thenew state configurationsthat arereachedfor objectsoid,;
of active classes;.

Vie{l,...,q}:

O-CONF,Cj(Oidj)[i-‘rl} = Cfgj

Task: Checknv*(c;) for objectoid; on system state (M)).

110 CHAPTER 4. EXTENDED OBJECT MODEL

6. Letop; = (wj : te; X tj1 X ... X t;, — t;), 1 < j < z, be thewaiting operation calls
that arestarted to be executed by objectgd; of classes; € CLASS.

Viedl,...,x}:

T eurrentOp,e; (0id;, 0D)[i41) =

T eurrentOp,e; (0id;, op;)g U {newld;}

where newld; € ID is a unique identifier foop;
and
O eurrentOpParam,c; (01d,, 0pj, newld;)jit1) = (Vi1 - - -, Vi, returnValy),
where Vk € {1,...,n;}: vjp € I(t)

A (paramKind(c;j,opj, k) = out = vj, = 1)

and returnVal; = L .

We require that the tuples; 1, . . ., vj,,, returnVal;) remain unchanged until the corre-
sponding operation execution terminates. By default, weeatnV al; = L to indicate

that the return value is currently undetermined. Correspondingly, output parameters are
also set tal.. The values of parameters of ki andinout are determined by the given
values of the referred operation call.

Task: For allj € {1,...,x}, checkpre(op;, c;) of operationop; with identifier newId;
on system state (M)(;1).

7. Letop; = (wj : te, X tj1 X ... X tj, — t;) With opld;, 1 < j <y, be theexecuting
operationsof objectsoid; thatterminate.

Note that it is not the scope of the semantics of OCL to perform updates on the parameter
values when an operation terminates, just as it is not the task of OCL to update attribute
values. We therefore assume that the system performs the necessary updates on the actual
parameter values; ,, ..., v;,;, and the return valueeturnVal; of the terminating oper-

ations identified bypld,. Thus, all parameters of kinth are still unchanged and the
parameters of kindnout andout are already updated in system stateM);;. We can
therefore simply assign the updated parameter values as follows.

Vie{l,...,y}:
OcurrentOpParam,c; (Oidjw opj;, 0p[dj)[i+1] =

(Vj1, oy Vg, returnValy)

Furthermore, in the next but one step 2, the operation identifierspld; must be elimi-
nated fronv .y, rentop.c; (0id;, 0p;). The corresponding tuple of parameter values is elimi-
nated in stateé + 2 as well, as it is no longer needed.

O_currentOp,c]' (Mja OPj) [i+2] — UcurrentOp,Cj (@j; Opj) [i+1] \ {Opldj}

and UcurrentOpParam,cj (Mj; Opj, Op[dj)[i+2] =d

4.2. SEMANTICS 111

Task: For allj € {1,...,y}, checkpost(op;,c;) of operationop; with identifier opId;

on system state (M);;1). For passive objectsid;, we here also check the invariants
inv*(c) on system state (M);,q). In contrast, invariants of active objects are only
checked after completion of RTC-steps, which is covered by noteworthy change (5).

All components of system statg M);; except setA7'T" and the ones that are explicitly
mentioned above remain unchanged for the subsequent system(stdje. ;.

Restrictions on Traces. The following additional restrictions apply to traces:

1. Two subsequent sequence elements may differ in at most one operation call per object.
In order to formally define this, we denote the overall number of operation executions for
an objectid of classc in system state (M) by

. def ;
P(id)y " (Geurreniopeloid, op)|

opeOP,

Using this definition, for each pair of adjacent system state$t); and o(M)j;1),
i € Ny, intrace(M), it holds:
Ve e CLASS, VM € ECLASS,C[Z’] .
0id € Ycorass.ivy) = abs(Y(oid)y — ¥ (0id)ivy) < 1
2. An object must not be destroyed when one of its operations is still executed. In turn, each
executed operation occurring in the sequence must eventually be terminated, i.e., for all

operation signaturesp € OP, of an objectoid of a classc in a system state (M),
1 € Ny, it must hold:

VexecOp € Ocurrentop,c(0id, 0p)1, 37 € N, j > i :

Vi < k S] : %l € ECLASS,c[k} A\ €$€COP ¢ UcurrentOp,c(Ma Op)[j]

Our definition of a trace neither makes any assumptions about concurrency among objects
nor considers explicit time that has passed between two subsequent sequence elements. By
documenting system states with the tuple components as defined above, this work can be seen
as a general approach to capture those parts of the system runtime information that is necessary
to reason about all relevant system states. In particular, a trace consists of a sequence of system
states, documenting all situations

e immediately before any operation is executed, and
e immediately after any operation is terminated, and
e immediately after a new State Diagram configuration is reached.

These system states are sufficient to check OCL invariants as well as operation pre- and post-
conditions that make use of state-oriented operations.

112 CHAPTER 4. EXTENDED OBJECT MODEL

4.3 Discussion

With the syntax and formal semantics developed in this chapter, the formal semantics of OCL
2.0 is almost complete. Remaining issues not tackled here concern

1. aformalization of OCL messages,

2. a formal definition of global variable definitions within OCL constraints (so-called def-
clauses), and

3. formal descriptions of operations on collection typpéeredSet.

Based on the extension of object models as presented in this chapter, a formalization of OCL
messages with a semantics of message operators and operations has already been published in
[FM04]. The necessary steps to integrate OCL messages are as follows.

e System states have to be further extended to keep the sequence of messages sent.

e Type domaind/ (¢) for t € T have to be extended by a special symbol denoted by ? to
represent theindetermineadr unspecifiedstatus of a variable. Note that this symbol is
different from the String literal “?".

e Object identifiers have to be used in a different way, as it might be necessary to refer to
an object that is no longer existing at the time of postcondition evaluation.

Assume that during execution of operatmmounceOrder (i) of an output buffer object

buf fer, messagesequestTransport (i) have been sentto all associated AGV objects.
Consider the following postcondition and assume that one of the associated AGV objects,
say agvObj, is for some reason destroyed while operatimnounceOrder (i) is still
executing.

context OutputBuffer::announceOrder(i:Item)
post: machine.transporters@pre->forAll(vehicle:AGV |
vehicle” "requestTransport(i:Item)->size() = 1)

Then, at the time of evaluating this postcondition (i.e., at a later point of time), the object
agvObj does no longer exist. But still, we need to have a valid reference to it in order to
evaluate the subexpressioshicle2equestTransport (i:Item).

This is the reason why we have to distinguish between ‘real’ objeet©bj € X1 ass,
that are currently existing and object identifiergObj € oid(c) that just refer to a
unique value.

The two other issues are quite easy to resolve; operations defined for ordered sets are basi-
cally the same as for sequences, and def-clauses can directly be mapped to So=thdeper
variables and operation8c1Helper variables and operations, in turn, are stereotyped attributes
and operations of classifiers. Such variables and operations can be used in OCL expressions just
like common attributes and operations. Thus, it only has to be ensured that no naming conflicts
occur, while additional semantic issues do not occur.

4.4. CONTRIBUTIONS OF THE CHAPTER 113

One important remaining task is to complete the metamodel-based OCL semantics. First of
all, State Diagram states are still not considered at all in the metamodel-based OCL semantics.
But also consistency among the two semantics should be reviewed.

4.4 Contributions of the Chapter

This chapter provides the following contributions:

e The formal model of thebject modefor OCL has been extended by several components.
In particular, an abstract syntax of UML State Diagrams has been developed.

e Correspondingly, the semantics of object models has been extended. We provided a for-
mal notion of state configurations that overcomes the deficiencies of the informal notion
of active state configurationa the official UML specification.

e Moreover, a high-level dynamic semantics of traces, i.e., sequences of system states, is
defined. Traces are built based on a set of noteworthy changes that were identifed as being
sufficient to document all changes of a running system that are needed to evaluate OCL
constraints.

e Together with the definition of traces, we provided rules that determine when OCL in-
variants as well as pre- and postconditions have to be checked.

114 CHAPTER 4. EXTENDED OBJECT MODEL

Chapter 5
A Timed UML State Diagram Variant

Quid est ergo tempus?
Si nemo ex me quaerat,
Sscio;
si quaerendi explicare velim,
nescio.
— Aurelius Augustinus

In this chapter, we define a timed State Diagram formalism we will later apply to model real-
time behavior in the context of modeling manufacturing systems. On the one hand, we only
allow a limited subset of standard UML State Diagram model elements in our approach — pre-

.....

.........

annotated operations in Class Diagrams, i.e., an operation is associated with a timing interval
that specifies the required (or estimated) [min,max] execution time. Furthermore, we introduce
transition priorities to UML State Diagrams to overcome potential conflicts for firing state tran-

.......

completes the formalization.

The current UML standard does not have an inherent notion of time. This has been inves-
tigated by different groups for the design of time-dependent systems, e.g., RT{UML [Dou00],
[OMGO3¢]. Furthermore, UML (on purpose) leaves several issues open that inhibit a unique
formal definition for the dynamic semantics of UML State Diagrams. E.g., there is no particular
dispatching policy defined, and it is not clear which event is selected next from the event queue
to trigger the next run-to-completion step (RTC-step) within the State Diagram.

While this approach might make sense for the intended general purpose of a modeling lan-
guage standard, it is essential to have a mathematically precise formal semantics of State Dia-
grams for formal analysis purposes. Studying the numerous publications on formal semantics of
UML State Diagrams, it can be observed that none of these covers all concepts of the extensive
is oftennotnecessary to regard the whole syntax of UML State Diagrams in a specific modeling
approach. However, the chosen sublanguage and the dynamic semantics for the specific context

115

116 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

must be clearly identified. Thus, a precise modeling approach that makes use of UML State
Diagrams must still additionally define a formal dynamic semantics, either by referring to an
existing one or defining a new one.

Motivation and General Strategy of the Approach. As the focus of this thesis is on spec-
ification of state-oriented real-time constraints with (an extension of) the Object Constraint
Language OCL, we have to build upon State Diagrams that are equipped with a notion of time.
On the one hand, we want to adopt a large number of UML State Diagram concepts in order to
support the rich set of modeling means. On the other hand, we have to define a new semantics
with an inherent notion of evolving time. This is simply because we cannot formally relate
time-bounded OCL constraints to an untimed referred UML user model.

Of course, we could make use of an existing timed variant of State Diagrams as described
we want to address here (e.g., support of elapsed time events). Thus, we have to define our
own formal semantics for a new (sub)set of UML State Diagram concepts. First, several design
choices have to be made w.r.t. compositionality of State Diagrams, negated triggering events,
priority schemes for transitions and events, etc. All these issues will be further addressed in the
remainder of this chapter.

One of the most important design choices is the restriction to discrete time. This is due
to the considered domain of manufacturing systems (cf. Chapter 6) — as message exchange is
performed based on discrete events, we can assume discrete time. However, note that many
existing timed State Diagram semantics employ continuous time.

With this decision, it is possible to consider state-transition systems with discrete time as an
underlying formal basis for defining the execution semantics of timed UML State Diagrams. In
the context of this thesis, we choose I/O-Interval Structures as the target language. With a corre-
sponding mapping of state-oriented real-time OCL constraints to CCTL formulae (cf. Chapter
i), a formal relation between timed State Diagrams and real-time OCL constraints is then auto-

—yet similar — translation of real-time OCL constraints to a corresponding other temporal logics,
e.g., timed CTL (TCTL) with continuous time has to be applied (cf. Chapter 7).

Relation to Synchronous Languages. In accordance with UML, we support point-to-point
communication — however, signal broadcasts are considered to be part of UML 2.0. Actually, it
turns out to be very easy to also integrate signal broadcasts into the formalization presented here,
as the target language of I/0O-Interval Structures already supports global visibility of signals.

But in the context of this thesis, we focus on point-to-point communication with asyn-
chronous signals and synchronous operation calls. Synchronous operation calls block the send-
ing object until a result is received. This causes the calling objegait which will take some
time in a running system. One can abstract from this issue and assume that the syatm is
enoughto reply without anotable time This assumption refers to tteynchrony hypothesis

a notable time. If a system can thus react on all input events without loss of a received event and

117

if this property can be actually checked, modeling under the synchrony hypothesis is as good as
modeling with an explicit physical timing model.

But this is somehow in contrast to then-to-completion step&RTC-steps) defined in UML.
UML employs event queues, from which one event is dispatched at a time to perform a so-called
RTC-step, leading from one staldetive state configuratioto another stable active state con-
figuration. Basically, this refers tosuperstegknown from other Statechart approaches. When
considering evolving time, it is obvious that no two different stable active state configurations
can exist at the same point of time, thus one has to assume a minimal elapseddimediaie
unit between two stable active state configurations. This refersitot@elay structuresimilar
to u-charts JP597], a Statechart variant in which transitions take place in exactly one time unit.
u-charts, however, have a different communication scheme ingtantaneous feedbachat
makes a direct comparison with our approach difficult. Ink&hart communication scheme,
the employed unit delay structure complies to the synchrony hypothesis, whereas in our ap-
proach, a Statechart might react on an input event not instantaneously, based on the dispatching
mechanism that takes only one event at a time out of the event queue of waiting events.

Supported UML State Diagram Concepts. In our timed variant of syntactically restricted

UML State Diagrams, we neglect some rarely used pseudo-state concepts (e.g., synch states)
and do not allow transitions to cross borders of And-states (as such transitions lead to subtle
side effects and determination of the next active state configuration is not possible without

.......

Machine
«semantics» type: MachineKind
(a) executed within [3 sec, 5 sec] [~
«semantics» ™ load(i:Iltem) : Boolean
executed within [3 sec, 5 sec] [~~~ Unload(i:item) : Boolean

Machine

type: MachineKind

[3 sec, 5 sec] load(i:ltem) : Boolean
[3 sec, 5 sec] unload(i:Item) : Boolean

Figure 5.1: Operations Specified with Execution Times, (a) in standard UML Notation Using
Structured Text, and (b) Our Shorthand Notation

A time expression attached to an operation in such a way specifies the operation’s time com-
plexity, typically the minimal/maximal time aéxpectedcompletion of an operation execution.
Such specifications can be used in different ways, e.g., the resulting running system can be

118

CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

compared with the asserted times specified in the model. Alternatively, by adding up (asserted
or actual) operation times, compound times of entire transactions can be computed.

5.1

Syntactical Restrictions

Among the different state notions within the UML, only composite states, simple states, final
states, and initial pseudo states are considered. In particular, we do not regard the following
UML State Diagram modeling elements for states in our Timed State Diagram notation:

StubState and SubmachineStateSubmachine and stub states are used for syntactical
convenience and can be substituted by actual composite states.

In UML, submachine states are a syntactical convenience to represent a ‘call’ to a another
state machine as a ‘subroutine’, using stub states as entry and exit points. Thus, a sub-
machine state is semantically equivalent to a composite state, and we can assume that all
these states have explicitly been copied ifito, such that all submachine states and stub
states are eliminated.

SynchState.Synch States in UML State Diagram Diagrams are used to model synchro-

nizations among orthogonal regions. The firing of outgoing transitions from a synch state
can be limited by a bound on the difference between the number of times outgoing and
incoming transitions have fired. Synch states can be simulated by additional internal sig-
nals.

Junction PseudoStateThese are splits (also called forks or static conditional branches)
or merges (also called joins) of transitions. They are for syntactical convenience and can
simply be replaced by specifying corresponding simple state-to-state transitions.

Choice PseudoState.These are dynamic conditional branches that can be simulated
by adding intermediate states, provided that visiting these intermediate states does not
take any additional time (as it is possible in the run-to-completion step semantics). In
our approach, though, transition to another state consumes at least one time unit, and
therefore these states cannot be directly simulated here.

With a translation to state-transition systems in mind, there are some more concepts in
UML State Diagrams that we do not need or explicitly want to abstract from. In particular, the
following UML State Diagram concepts are not regarded for our Timed State Diagram variant.

Internal Transitions. Internal Transitions do not trigger entry- and exit-actions and are
sometimes even seen as unnecessary [Sim00], as internal transitions are actually modeling
behavior that belongs to a substate.

History States. Shallow and deep history are a convenient modeling elements when
recently exited substates should be re-entered.

In our mapping to I/O-Interval Structures, exiting a composite staite performed by
setting an internal variablactivatedto false, while the most recent activated substate,

5.2. SYNTAX 119

says, is retained in another internal variabi&ite. When re-entering composite state
via a history state, variablgctivatedhas simply to be set to true, and the right substate
is then automatically ‘re-entered’.

But although it is generally possible to construct a translation of this concept and even no
additional states are necessary, several additional cases have to be distinguished for the

formalization of this concept is left out in this thesis.

e Object Creation/Deletion. Actions for dynamic creation/deletion of objects are not sup-
ported, as we need to know all participating objects in advance to be able to instantiate a
corresponding system with Kripke Structures. This is also a requirement when real-time

e Event Parameters. Though standard UML allows parameters not only for operation
calls but also for asynchronous signals, we do not regard event parameters. Note that
these can be simulated by specifying a set of parameterless events, built based upon the
cross product of the parameters’ value sets.

e Deferred Events.Deferred events can be simulated by regenerating them as often as they
are to be deferred.

¢ Interlevel Transitions. We are going to give well-formedness rules for interlevel tran-
sitions that restrict the set of possible interlevel transitions. In particular interlevel tran-
sitions that cross the border of composite states are critical w.r.t. the affected orthogonal
regions.

e Local Variables. Local Variables in State Diagrams can be simulated by attributes de-
fined in the class the State Diagram belongs to.

What we preserve from UML State Diagrams are hierarchical states, interlevel transitions
to/from concurrent composite states, and synchronous and asynchronous event communication.

5.2 Syntax

We first formally define the supported subset of UML State Diagrams_eé a set of names.

Definition 5.1 A timed UML-like State DiagrariC' is a tuple
SC (S, init, final, EVTS, GUARDS, ACTS, TR,
substates, entry, exit, doActivity),
where
1. S C N is a set of statesS is the union of the following disjoint sets.

e Simple (or: basic) states, denoted ®ymnple,

120 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

e Composite states — denoted Bymposite — consisting of the two disjoint sets of
sequential composite stat&3r and orthogonal composite statésd.

For convenience, we make use of function
type : S — {Simple, And, Xor}

to assign a type to each proper state.
Note that initial and final states are now handled in separate sets and functions.

2. Functioninit : Composite — P(S) defines the initial state(s) of a composite state.

For each state € Xor, init(s) contains exactly one direct substatef s, which is the
default state that is entered (or: activated), wheémentered. In this case, we might just
write init(s) = x instead of the formally correct versianit(s) = {x}. For each state
s € And, we always haveénit(s) = substates(s). Note here that it holdss € And :
init(s) C Xor.

3. Final states may appear as childretXai- states. Though it is generally allowed in UML
to draw several final states within a single Xor-state, we formally define that there is at
most one final state as a child of each state X or.

Functionfinal : Xor — Final returns the final state of a given Xor-stataf existent.
If no final state is specified;inal(s) = @. In the remainder, we may ugénal(Xor) to
denote the set of all final states.

For dealing with (implicitly generated) completion events, we additionally define function
7 : Conf x Composite — Bool that returns true, iff composite states terminated in
configurationc.

false if type(s) = Xor A final(s) & c
T(c,s) = true if type(s) = Xor A final(s) € ¢
/\xésubstates(s) T(C’ :L') if type(s) = And

4. EVTS C EXPRpg.s is a set of events. We assume that there is an expression language
EX PR, available to formulate events such as operation calls, signals, timers, etc. We
propose the following basic syntax:

s // asynchronous call event, s is the name of a signal received
op() // synchronous call event, op is the name of an operation call

An obvious extension to that proposed action syntax would be to @&@nt parameters

as specified in standard UML. With the proposed basic syntax, event parameters can be
simulated by a set of parameterless events, i. e., one event for each element of the cross
product of the parameter value sets.

5.2. SYNTAX 121

For reasons of formality, let.., € EX PRg,:, be the null event which is later used to
denote that no triggering event is associated with a transition. As mentioned above, we
do not regard event parameters.

Elapsed time events. A relative time expression denoting atapsed time everih
EX PR, is usually specified bydfter tm”, with tm € N. Semanticallytm is relative

to the assumed minimal time unit. E.g., if the minimal time unit is 1m$tér 1000”

is equivalentto &fter 1 sec”. However, we assume in the remainder that all specified
timerstm directly refer to the assumed minimal time unit.

5. GUARDS C EXPRguaras 1S a set of conditions. We assume that there is a language
EX PRguqrqs @vailable to formulate boolean expressions (e.g., standard OCL). We use
true € EX PRguards 10 refer to the guard that is always valid.

6. ACTS C EXPR ., is a set of actions. We assume that there is an expression language
EX PR, available to formulate actions such as assignments, operation calls, signals,
etc. For convenience, we here define a very basic action syntax with

vV = expr // assignment, v is an attribute, expr is an expression
// that evaluates to a value of the type of v
objId. s // asynchronous call action,

// s is a signal sent to object objId
send objId.s // alternative syntax for signals sent
//
objId.op() // synchronous call action,
// op is an operation defined for object objId

This syntax can be easily extended if necessary (e.g., by event parameters similar as in
ACTS), but note that the effects from executing the actions must be formalized in the
semantics definition.

For reasons of formality, l&t,.. € EX PR 4., be the empty action that is associated with
no action when evaluated.

7. TR C SXEVTSxGUARDSXxACTSx(SUfinal(Xor))is aset of transitions. A tran-
sition connects a source state Proper with a destination staté € S U final(Xor),
may have a trigger eveate EV'TS, a guard conditioy € GUARDS, and an action
expressiom € ACTS.

UML does not allow transitions to cross borders of an And-state with a source outside of
that And-state. In addition, we also do not allow a transition to start in a substate of an

.........

.........

TR — SU final(Xor),trey : TR — EVTS, try.q : TR — GUARDS, troe : TR —
ACTS are used to extract the source state, destination state, triggering event, guard, and
action of a given transition, respectively.

122 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

(" Xor-s1 /)
And-s1.2
(i N
(v~ -~) i (v . .~~~)
Xor-s1.2.1 ! Xor-s1.2.2

$1.2.1.1 s1.2.21

s1.1 / ‘ _
/ s1.2.1.2 | ‘ s1.2.2.2
7>
\ ; J
\ _J

Figure 5.2: Invalid Transitions Crossing Boundaries of And-States

8. Funtionsubstates : Composite — P(S) gives all immediate substates of a state, such
that

(a) there is a unique statep < Composite with Vs € Composite : top &
substates(s),

(b) Vs € And : substates(s) C Xor A |substates(s)| > 1,%

(c) Vs € Composite \ {top} there is exactly one path

(S1,...,8,) € Composite X ... x Composite,
A
-~
n times, n>2

with sy =top A s, =s A S;41 € substates(s;)forl <i<n—1.

Additionally, functionsubstates™ : Composite — P(S) is used to get all (transitive)
substates of a state, i. e.,

substates™ (s) = substates(s) U U substates™ ().
x€substates(s)

We also make use Gfubstates*(s) = substates™(s) U {s}.

Functionsubstates™ defines an irreflexive partial ordering among states (denoted)by
i. e, we writes’ < s, iff s’ € substates™(s). It holds

"< Nsd<s = §<s (Transitivity)

If s < s, we calls anancestorof s'. If eithers’ < s ors < ¢, we say that ands’ are
ancestrally related We also make use of the reflexive partial ordering (denoted Jy
i.e.,s <s,iff s € substates*(s).

1The first condition is a restricted variant of a well-formedness rule in the UML staridaid JOMGO03d, Section
2.12.3.1], which also allows And-states as substates of an And-state. Our proposed definition ensures that all direct
substates of an And-state are Xor-states.

5.2. SYNTAX 123

10.

Theleast common ancestoffor a set of stateX’ C P(5) is defined by function

P(S) — Composite
lca : X — ¢ whereVe € X : 2 < c A
Vye S:(VzeX:z<y)=c<y

Two statess ands’ areorthogonal(denoted by | &), iff (1) s # </, (2) s ands’ are not
ancestrally related, and (8)pe(lca({s, s'})) = And.

If s € substates(s), we call s the parentof s and define the three functioparent,
parentt, and parent* : S — Composite according to functiorsubstates. We set

parent(top) “a.

A set of states{ C S is consistentiff for every distinct pairz, y € X eitherx andy are
ancestrally related ar L .

A configurationfor a states is a maximal consistent sét; C substates(s). Let Conf
be the set of all overall configurations, i.€on f denotes all configurations for state.

Functionsntry, exit : Proper — ACT'S give the actions to take when a state is entered
or left, respectively.

FunctiondoActivity : Proper — ACTS gives the activity to take when a state is acti-
vated. We allow that the activity has a specified timing interval that denotes how long the
activity might take at least and at most. Note that this issue is not standard UML, but an
extension we make use of for our analysis of timed State Diagram execution.

UML does not make syntactical restrictions for states with a specified do-activity and
different interpretations are possible for these activities, e.g., single execution or peri-
odic execution until some outgoing transition is fired, and in this context preemption of
activities, etc.

To keep concise, we here further restrict states with do-activities that denote local opera-
tion calls with a specified execution time greater than 1. We require that those states are
simple stateshat have ainique triggerless outgoing transitidn another (not necessar-

ily simple) state. The reason for these requirements is that it is not possible to perform a
transition in one time step if activities were to be executed as part of the chain of actions
that is determined by interlevel transitions. However, we allow entry- and exit-actions
and an action associated with the outgoing transition for simple states with do-activities.

As an effect, a state with such a do-activity will remain in that state for the specified
(interval) amount of time and then change to the target state of the outgoing transition.
Basically, this kind of behavior refers to that of UML Activity Diagrams.

Note that we do not allow transitions to cross boundaries of And-states, as illustrated in

..................

124 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

possibly different levels of hierarchy) are listed, provided that the transition conforms to the
following property:

Vir e TR :
V€ substates*(lea({trg.(tr), tras(tr)})) N parent™ (trg..(tr)) :
type(z) # And A
Vo € substates*(lea({trg..(tr), trast(tr)})) N parent™ (tras:(tr)) :
type(x) # And

to lower level same level upper level

from Simple | Xor And | History | Simple | Xor And final | Simple | Xor And

s is initial (pseudo) state - - - v v v v

type(s) = Simple v v v v v v v v v v v
type(s) = Or v v v v v v v v v v v
type(s) = And v v v v v v v v v v v

Figure 5.3: Legal Transitions

5.3 Semantics

The official UML Specification does not make specific timing assumptions for execution of
State Diagrams, e.g., it is possible for transitions to both be instantaneous or to take time
[OMG03d, Section 3.75.1]. Most-often, it is assumed that transitions take no time. The same
holds for states; they can be instantaneous as well as having a notable duration, e.g., when an
activity is specified for a state.

For a formal analysis of timed UML State Diagrams, we have to provide a precise execu-
tion semantics w.r.t. evolving time. So, we have to decide for which operational parts time is
evolving and how much time is needed for execution. We decide that

e A run-to-completion step takes one time unit. Basically, the system will change from one
stable source configuration denoting the current status of the object before commencing
the RTC-step to another destination configuration denoting the subsequent stable state
configuration right after the RTC-step. In other words, when considering evolving time
as an inherent characteristic of the system, two subsequent stable state configurations
cannot occur at the same time instance. Thus, we assume at least a minimal expired time
of one time unit between two stable state configurations to be able to distinguish these
two configurations, no matter if any actions or activities are to be executed or not.

If actions (i.e., exit, transition, or entry actions) are to be executed, we assume the follow-
ing timing scheme:

5.3.

SEMANTICS 125

— assignments take no additional time (w.r.t. the run-to-completion step),
— asynchronous signal calls take no additional time (w.r.t. the run-to-completion step),

— a synchronous operation call blocks the corresponding region until a corresponding
response is received. Note that a synchronous operation call blocks the State Di-
agram region where the call is sent from, and in the meantime, time is of course
evolving.

The dispatching mechanism dispatches an event as soon as the previous RTC-step is com-
pleted right at the next instance of time. In order to be able to proceed in one time step,

............

We abstract from communication times, as we are primarily interested in duration of
object activities. The time an event needs when it is sent from one object to another is
one time unit by default, i.e., a signal sent as a reaction to some dispatched event is visible
after one time unit at the target object. Other approaches allow to specify delay times for

In a timed model, synchronous operation call events seottier objectannot be seen

as actions "with negligible time” as described in the UML specification, as time evolves
when waiting for an response on that operation call. Thus, we do not allow such operation
calls as exit-, transition-, or entry-actions of states. Furthermore, as we extend UML by
timing annotations on operations, synchronous operations invoked as exit-, transition-, or
entry-actions for the object itself must not have a specified execution time larger than 1.

We restrict on clock-synchronous semantics, i.e., an object dispatches a new event from
its event queue to be processed by the corresponding State Diagram only at the tick of the
(global) clock, in the moment when the previous RTC-step is completed. In the official
UML specification, this issue is left open, such that alternatively, a clock-asynchronous
semantics can be assumed, i.e., an object dispatches a new event as soon as it can.

We allow synchronous as well as asynchronous communication, i.e., synchronous opera-
tion calls block the sender until a returning answer is received, and asynchronous signals
sent appear as incoming signal events on the receiver side, but do not block the sender.
However, we restrict the positions where synchronous operation calls can be made; these
are only allowed as activities, as they block the State Diagram until an answer is received,
and that will take some time.

We assume a perfect underlying communication technology, i.e., none of the communi-
cated events will be lost. We also abstract from the time needed for an event sent from
the sending object to the receiving object. An event is visible on the receiver’s side at the
next instance of time, i.e., the event will immediately be inserted into the event queue of
State Diagram associated to the receiving object. (This is different to,neygGharts,

in which the synchrony hypothesis is preserved, i.ey-f@iharts an action and the event
causing this action occur at the same instant of time.)

126

CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

A possible extension is to attach a time (or timing interval) to activities to denote the
assumed time needed to terminate a certain task that is associated with the state. In some
approaches, that time specification may even be infinite, leading to situation in which

a sent call is never getting to its receiving object. In this case, model analysis has to
take into account additional so-called fairness properties, i.e., only those executions are
investigated that exclude such situations. As we assume a perfect technology, we can
abstract from this issue.

As standard UML assumes, no compound triggers (i.e., at most one triggering event for
a transition), no negated trigger events, and only a single entry and exit action attached
to each state and a single action attached to each transition are allowed. Among the three
actions that are to be executed when a transition is taken (exit-, entry-, and transition
action), we do not allow mutual dependenéﬁéeE.g., we do not allow a transition that
connects states with exit actian:= 1 and entry actiox := x + 2.

Priority preorder is UML-conform, i.e., transitions on a lower level have precedence on
higher level transitions.

Instantaneous states are not possible due to our time semantics. The State Diagram re-
mains for at least one time unit in each entered non-pseudo state.

We limit the length of event queues by the following assumptions. The most important
assumption is, that a limited, in advance well-known maximal number of objects of each
class is instantiated. Then, for each State Diagram (that is instantiated for an object), the
number of concurrently occurring synchronous call events is limited by the number of
parallel substates of all potential calling objects. We still have to cope with a potential
infinite number of received asynchronous signal events. This is limited by suppressing a
signal (hamedsig) to be sent from objecibj; to objs, if there is already such a signal

sig waiting in the event queue obj, that has been sent frondj; beforehand. Thus, a
maximal number of concurrently events in the event queue can be determined based on
the number of objects, and the event queue can be modeled by a finite number of states
that represent the received events.

Elapsed time events w.r.t. absolute time, euhen(time=15:00:00h), are not sup-
ported.

.........

Diagrams and our Timed State Diagram variant.

5.4 Translation to I/O-Interval Structures

The problem of flattening hierarchical State Diagrams into flat FSMs has already been ad-

.............

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES

Concept

UML State Diagrams

Our Timed State Diagram |

Incoming Event

Events are stored in an unlimited eve
queue and subsequently dispatch
(one per RTC-step).

€dg events, i.e., one operation event g
one signal event per sending object ¢
be queued.

Event Dispatching

It is assumed that a reaction to all i

coming events is eventually been car-

ried out, but no specific dispatchin
mechanism is provided.

nNon-deterministic choice.

g

Deferred Event

Events that are dispatched can be
ferred for later consumption.

déNot supported.

Transition Priority

Innermost transition has higher prig
ity.

r-lnnermost transition has higher prio
ity. Additional priorities for conflicting
transitions.

Interlevel Transi-

tions

No interlevel transitions crossin
boundaries of And-states in inbour
direction.

gIn addition, also no interlevel trans

in outbound direction.

Transitions Time

No standard semantics about time cq
sumption, but most commonly, it is a
sumed that transitions take no time.

nsetting from the source state to the dé
s-tination state takes one time unit.

nA limited event queue can store incom

127

Table 5.1: Comparison of Standard UML State Diagrams and Our Timed State Diagram Variant

=
]

dions crossing boundaries of And-states

2S-

Actions Actions have a negligible duration andActions have a negligible duration and
can be specified with transitions andcan be specified with transitions and
entering/exiting of states. entering/exiting of states. Some restric-

tions on interdependencies among ac-
tions.

Activities Ongoing activities can be specified jnActivities can be modeled by those op-
states (do/-activity). erations that have a specified timing in-

terval. Default is [1,1].

Communication

Non-instantaneous, but no assumptid
or specification means for how long
takes to send a message.

itunit. If required, an interval can b
specified to simulate a delay.

nSent messages visible after one tine

e

Connectivity No assumptions whether messages m&ommunication is always correctly
be lost or not. performed, no message will be lost.
Clock No assumptions about clocks. One local clock per State Diagram to
measure elapsed time since last enter-
ing of a state. Processing based upoh a

global clock tick.

128 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

our restricted State Diagram approach to 1/O-Interval Structures. We make use of both, the
formal mathematical set-theoretic definition of 1/0O-Interval Structures as defined in Definition

Note that this translation doewt claim to result in an efficient structure w.r.t. the target
language of 1/0 Interval Structures. In particular, hierarchical states with interlevel transitions
induce quite complex structures for flat FSMs, and additional signals have to be introduced to
manage the ‘synchronization’ among the different composite state levels.

.........

and entered states for each transitione T'R. We define the least common ancestor for a
transitiontr € T'R by function

/ def | TR — Composite
ca =
tr v lea({trg.(tr), troa(tr)})

For eachs € Composite, let InitCon f, be the set of default initial substates relatives tae.,

InitConf = {r €S | x € substates™(s) A

(
(init(parent(x)) = x V x = top) A
Yy € substates™(s) N parent™(z) :
init(parent(y)) = y}
In particular, InitCon fi,, denotes the initial overall configuration ofC, wheretop is the

outermost composite state. The g&titStates,, of exited states and the sBtiter States,, of
entered states for a transitionc T'R are given by

ExitStates,, < {z €8 | x € parent*(trg.(tr)) N substates™ (lca(tr))}
U{x €S | x € substates™ (trg..(tr))}

EnterStates, < {x €S | x € parent*(tras(tr)) N substates™ (lca(tr))}
U{z e S | z € InitConf,, with y = trqu(tr)}

When a transitiorir is taken from a source state = t¢r,,..(tr), States; and all parent states
of s; up to but excluding the least common ancesgtofir) as well as all substates of are
exited. Analogously, the set of entered states is determined bysstatetr . (¢r), its parent
states up to but excluding the least common ancésiéfr), and those substates©fthat build
the initial configuration/nitConf,,. By definition, at most one substate of an Xor-state is in
EnterStates,,, i.e., for alltr € TR andxz € Xor, it holds

0 < |substates(x) N EnterStates,| < 1.

With these preliminaries, we are now going to successively build I/O-Interval Structures for
a given State Diagrar@C. We start with generatingudimentaryl/O-Interval Structures that
comprise all necessary variables and local input and output signals, but do not include transitions

.............

chapter.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 129

5.4.1 Generating I/O-Interval Structures

...............

objects necessary to perform the execution are already instantiated at the initial state of the
system; recall that we do not support dynamic creation and deletion of objects. While this issue
cannot generally be employed, it is acceptable for the considered domain of manufacturing
systems, in which active objects represent the production processes that transform production
items (cf. Chapter:6).

For each active objecei;/d that is associated via its classvith a State DiagranyC', the
following 1/0-Interval Structures will be constructed.

1. For each composite stateof SC, we define a separate I/O-Interval Structli®;;q,s-
These will first be only rudimentary, but will be completed step by step in subsequent
sections, considering different cases, e.g., transitions with/without an elapsed time event
or intralevel/interlevel transitions. As interlevel transitions have an effect on several other
I/O-Interval Structured S,;;;4,+, We have to synchronize all affected I/O-Interval Struc-
tures by additional signals.

2. A separate I/O-Interval StructubéarlS,,;1q is responsible for keeping attribute values
and executing actions. Firing a transitionin an I/O-Interval Structuré€ S;;4 s causes
VarlS,;1q 10 execute the corresponding actions associated with that transition. Note
that it can happen that in orthogonal regions, transitions can be executed in parallel due
to the same specified triggering event. In that case, execution of actions must not have
side-effects.

3. The event queue fo§C' is modeled by a set of 1/O-Interval Structures over the cross
product of objects that can send eventskg/d and the particular (synchronous and
asynchronous) events on whisld’' reacts.

4. The event dispatchdpispatchlSqjrq iS an 1/O-Interval Structure that non-deterministi-
cally selects queued events from the event queue. This part can be replaced by different
priority schemes if necessary.

5.4.1.1 Rudimentary I/O-Interval Structures for Composite States

Let ATT., OF,., andSIG. be the attributes, operations, and signals defined in clagspec-
tively.

Assuming that we have a fixed number of objects, i.e., we know in advance which objects
will be part of the system, we can statically determine the objects (object identifiers) that ex-
change messages by analyzing the State Diagrams associated with these classes. Thus, for each
objectobjld € Ycrass., We define the set of objects that may send a particular operation
(signal) call event t@bj Id by functions

130 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Iorasse X OP. — P(Ecrass)
opSenders : (objld,op) +— { Zcrasse | ¢ € CLASS A
Jdevt € EVTS, : evt = op}

Icrasse x SIG. — P(Xcrass)
sigSenders : (objld,sig) v+ { Lcorasse | ¢ € Class A
devt € EVTSy : evt = sig}

We now generate a rudimentary I/O-Interval Structui®,,;;,, for each states &

.........

make use of double square brackets as used in denotational semdfitigs - — to explicitly
refer to theevaluation valuef an expressionzpr, €.9., in(state = [[init(s)]]), the subexpres-
sion[[init(s)]] actually refers to the name of the initial state of composite staffer transitions
tr € TR, we assume a naming scheme that allows to uniquely deteifnifie e.g., a simple
numberingt1, t2, etc.

The actuaktatesof I/O-Interval Structurel S,,;;4 are of course the (direct) substatessof
But additionally, we explicitly model whetheris activated or not, using a boolean state called
activated. Furthermore, for all relevant transitions(i.e., those transitions with = trg,..(tr)),
we define a boolean variablene_[[tr]] for synchronization with other 1/O-Interval Structures
after completion of transitioty.

.........

other I/O-Interval Structures. Variablésput_[[evt]] are needed to determine whether an oper-
ation or signal call everdut is selected to be dispatched. VariabjedV alue_[[tr]] are used to
check whether a transition condition,,4(¢r) is true. Note that the actual condition expression

Finally, input variablesfire_[[tr]] combine event triggers and guards for each transition
the setl'R, of transitions that affect a composite state

The initial configurations, of 1.5,,14 s IS constructed by assigning initial values to all ele-
ments of set), depending on the type af € Composite (s € And or s € Xor) and on the
initial overall configuration defined by State Diagrai@'.

Note that this construction is by now only resulting in a set of rudimentary, incomplete 1/0-
Interval Structures. The sét of transitions and functions, I;,,,,:, andTs,, are still to be

5.4.1.2 1/O-Interval Structures for Variables and Assignments

A separate I/O-Interval StructuéarlS,,;;q is responsible for keeping attribute values and
executing actions. Firing a transitionin an 1/0O-Interval StructuréS,;;q,, causes/arlS,y;q

.......

definition of ViarlSy,r4.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 131

Given a state € Composite.
Let state be a variable with/ alue(state) = {z | x € substates(s)} .
Let activated be a variable with/ alue(activated) = {true, false}.
LetTR, = {tr € TR | s € EzitStates,. V s € EnterStates,;, } be the set of
transitionstr that affects.
LetparentT Ry = {tr € TR | s =trg.(tr)}.
Let done_[[tr]] be a boolean variable for eathc parentT R,.
Let OpEvts, C U, crp, tres(tr) be the operation calls specified for transitiondiR,.
Let SigEuvts, C UtreTm,,éﬁqyt(tr) be the signal triggers specified for transitiongiR,.
According to Definition 3.14, we generate a rudimentary I/O-Interval Structure
ISobde,s = <Qa PT, Prlnputasa S0, V(ZT(), T7 L7 Ia Iinput7 L)utputv Tassgn>
with:
0 |} {state,activated} U {done_[[tr]] | tr € parentTR,}, if s € Xor
{activated} U {done_[[tr]] | tr € parentT R}, it s € And
Pr = { (var; = valyy,) | 1<i<|Q| A var; € Q A valyy,, € Val(var;) }
Priwa = { (input_[[opEvt]] := DispatchlSj[objld)].dispatch_[[opEvt]])
| opEvt € OpEvuts, }
U { (input_[[sigFvt]] := DispatchlS{lobjld]].dispatch_[[sigEvt]])
| sigEvt € SigEvts, }
U { (grdValue_[[tr]] := VarIS_[[objId]].[[tr]])
| tr € TR, with try.q(tr) # @ }
U { (fire[[tr]] := input_[[tre.(tr)]] A grdValue_[[tr]])
| tr € TRy, trew(tr) # @, tro.q(tr) # @ }
U { (fire [[tr]] = input_[[trem(tr)]])
| tr € TRy, trep(tr) = @, tryq(tr) # @ }
U { (fire[[tr]] := grdValue[[tr]])
| tr € TRy, tren(tr) = @, trg.q(tr) # @ }
S = Value(state) x Value(activated)
(state = [[init(s)]]) A (activated = true), it s € Xor N InitCon fiop
(state = [[init(s)]]) N (activated = false), if s € Xor \ InitCon fi,
S =
’ (activated = true), if s € And N InitCon fi,,
(activated = false), if s € And \ InitCon fyop
Varg = A { (done_[[tr]] = false) | tr € parentT R, }
L: S — P(Pr)with L(s) ={ (state = s), (activated = true) }
Lutpur ={ (executed_[[tr]] := (done_[[tr]] = true)) | tr € parentT R, }

Figure 5.4: Rudimentary 1/O-Interval Structures for Composite States

132 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Finite Value Sets. Note here that only finite value sets for variables can be handled in the
translation, such that specified variables of tygaa1, String, or Integer have to be re-
stricted to a finite value set. For simplicity reasons, we here require that all variables are defined
over finite value sets already on the modeling level of UML within Class Diagrams and State
Diagrams, i.e., all variables are basically of enumeration types with a limited set of values.
Related approaches that have formal verification by model checking in mind also restrict the

They additionally employ reduction techniques like abstraction from data values to get a model
representation with a reduced state space. However, this is not in the scope of this thesis.

Let state be a variable with/ alue(state) = {ok} .

Let VARS, = {vary, ...,var,} be all attributes defined for clagso which SC'is
associated.

For eachvar;, 1 <1i < m, letValue(var;) be a finite enumeration of variable values and
let init(var;) be the initial value obar;.

We generate a rudimentary I/O-Interval Structure

VarlSejra = (Q, Pr, Prinput, S, 80, Vare, T, L, I, Iipput, Loutput, Tassgn)

according to Definition 3.14 and define:

Q = {state} UV ARS,

Pr = {(var; = valye,) | 1 <1 <|Q| N var; € Q A valya,, € Val(var;)}
Prippw = {fire_[[tr]] | tr € TR, tryq(tr) # @}

S = Value(state)

So = (state = ok)

Varg = (vary = [[init(vary)]]) A ... A (vary, = [[init(vary,)]])

L:S — P(Pr) with L(s) = (state = ok).

Lowipur = {(grdValue_[[tr]] := [[trga(tr)]]) | tr € TR, try.q(tr) # o}

The setl’ of transitions and functions, ;,,,:, andTys.,, are still to be defined.

Figure 5.5: Rudimentary 1/O-Interval Structure for Variables

5.4.1.3 1/O-Interval Structures for Operation and Signal Calls

Synchronous and asynchronous call events (i.e., operation calls and signals sent) are handled in
separate I/O-Interval Structures. More precisely, for each pair of objects (one calling and one
callee object), an own I/O-Interval Structure for each operation/signal is generated. To support
readability of this translation, we are going to provide these I/O-Interval Structures by means
of RIL syntax, the RAVEN Input Language. Note that the expressions inside double square
brackets have to be replaced by the values gained from evaluating these expressions, based on
the given State DiagrarfiC.

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 133

For a concrete system with a given number of objects, we can determine which objects can
send call events to which other objects. For each operation of acchasghen have to build the
cross product of all possible calling objects with all possible callee objects, i.e., we generate a
set of I/O-Interval Structures for each operation naipée.g.,getStatus ()), while attaching
corresponding object identifiers to the structure’s name to be able to distinguish which particular
calling object is sending an event to which particular callee object.

For examplegetStatus_agvl mill represents the name of the I/O-Interval Structure that
keeps track of an operation call11.getStatus () sent fromaguvl to m:ll. Recall that such
a synchronous operation call is only allowed adoaactivityin our restricted version of UML
State Diagrams.

In the generated I/O-Interval Structures shown belowjId represents the identifier of
the callee object receiving an operation call event nae®bt_i for each: € {1,...,n},

n = |OP,.|. We denote bybjId i1 ...0bjId_i_q(i) those calling objects that potentially
send an operation call eveopEvt_i € OF, to objId. Thus, we generat® !, ¢(i) many
I/O-interval Structures of the following form, wheiec {1,...,n} andj € {1,...,¢(¢)}:

Module op_[[opEvt_i]]_[[objId]]_[[objId_i_j]l]
STATES state: {absent,waiting}
INPUTS opReceived := IS_[[objId_i_jl].sent_[[opEvt_il]_[[objId]]
opExecuted := IS_[[objId]].executed_[[opEvt_i]]
DEFINE queued := (state=waiting)

opReturn := opExecuted
INIT state=absent
TRANS
|- state=absent -- opReceived --> state:=waiting
|-> state:=absent
|- state=waiting -- opExecuted --> state:=absent

|-> state:=waiting

Internal states argbsent andwaiting to model the fact that an operation call is currently
gueued or not.

Input sighalspReceived andopExecuted are monitoring whether a call has been sent and
has been executed, respectively. Based on these ‘signals’, transitions between internal states
absent andwaiting are performed.

Output signabueued is used in the dispatching mechanism to select an event. Output signal
opReturn is used to synchronize with the calling object to proceed its computation.

Analogously, we denote the(i)-many objects that possibly send a signal call event
sigkvt i, i € {1,...,m}, m = |SIG.|, t0o objId by sigObj_i 1 ...sig0bj i r(i),
and generate 1/O-Interval Structures of the following form, where {1,...,m} and j

e {1,....r(i)}:

Module sig_[[sigEvt_i]]_[[objId]]_[[sigObj_i_j1]
STATES state: {absent,waiting}
INPUTS sigReceived := IS_[[sigObj_i_jl].sent_[[sigEvt_i]]_[[objId]]
sigConsumed := IS_[[objId]].consumed_[[sigEvt_i]]
DEFINE queued := (state=waiting)
INIT state=absent
TRANS

134 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

|- state=absent -- sigReceived --> state:=waiting
|-> state:=absent
|- state=waiting -- sigConsumed --> state:=absent

|-> state:=waiting

Limited Event Queue. The I/O-Interval Structures defined above can only store one event
of a certain kind at a time. In other words, the event queue of the State Diagram for an ob-
jectobjId_2 cannot store an eventt sent from an objeatbjId_1 more than once. Repeated
sending of such events is thus ignored up to the point of time, where the queued event is con-
sumed. For synchronous operation calls, this assumption is legitimate, as the calling object is
blocked until the operation returns, i.e., in the meantime no second synchronous operation call
can be made by the same calling object (at least unless orthogonal regions do not make concur-
rent calls). Concerning signals, the situation is different. The semantics we assume here imply
that there is no ‘loop’ that iteratively sends signals faster than they can be consumed. Other-
wise, events that represent a signal call will be discarded, in contrast to the UML semantics that
gueue each individual event. However, this situation can be overcome by introducing additional
counter variables in the signal modules. But then, one has to specify an upper limit for that
counter in order to be able to express this issue in the target language RIL.

5.4.1.4 1/O-Interval Structure for Event Dispatching

We generate another I/O-Interval Structure to non-deterministically select one out of the queued
events. Note that UML does not make any statements of how the event dispatching mecha-
nism is implemented. Thus, we here assume that one of the currently queued events is non-
deterministically chosen.

Each transitiontr € TR will have a corresponding set of transitions in the affected 1/0-

.............

sition ¢r, there is one particular I/O-Interval Structufé, (with x = parent(trg..(tr)) €
Composite) that is especially responsible for executing the reactions induced, yhile all
other affected I/O-Interval Structures are just synchronized Wthby additional signals.

The following code fragment represents the event dispatching mechanism in RIL syntax,
where

e objIdis a given (uniquely identified) object of an active clasgith State Diagrant C,

e foreachi € {1,...,n},n = |OP.|, we denote the objects that possibly send an operation
call eventop; € OP,.t0o objId byopObj_i_1,...,op0bj_i_q(i),

e for eachi € {1,...,m}, we denote the objects that possibly send a signal call event
sig; € SIG.t00bjld by sighbj i 1,...,sig0bj i r(i),

e opEvt_11,...,0pEvt n q(n) denote whether an operation call event is currently in the
event queue,

e sigEvt 1.1, ...,sigEvt_m r(m) denote whether a signal call event is currently in the
event queue,

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 135

o for eachi € {1,...,|TR|}, IS_[[x-i]] is the name of the I/O-Interval Structure that
manages transitiotr;,

e executed [[tr_i]] is the signal of I/O-Interval Structutes_[[x_i]] that indicates that
transitiontr; has been completely executed.

Module DispatchIS_[[objId]]
STATES state: { select,
wait_[[opEvt_1_1]]1 , ..., wait_[[opEvt_n_q(n)]] ,
wait_[[sigEvt_1_11]1, ..., wait_[[sigEvt_m_r(m)]] }
INPUTS
// list all operation and signal triggers
in_[[opEvt_1_1]1] := op_[lobjIdl]_[lopObj_1_1]].queued

iﬁ;[[opEvt_n_q(n)]]
in_[[sigEvt_1_1]]

op_[lobjId]l]_[[opObj_n_q(n)]].queued
sig_[[objIdl]_[[sigObj_1_1]1].queued

in_[[sigEvt_m_r(m)]] := sig_[[objId]]_[[sig0bj_r(m)_m]l].queued
// transition completion signals
completed := IS_[[x_1]1].executed_[[tr_1]]
[...
| IS_[[x_k]].executed_[[tr_k]]
DEFINE
// output signals for triggering transitions
dispatch_[[opEvt_1]] := (state=wait_[[opEvt_1_1]1)
| ... | (state=wait_[[opEvt_1_q(1)]11)

dispatch_[[opEvt_n]]

(state=wait_[[opEvt_n_q(n)]1]1)

[... | (state=wait_[[opEvt_1_q(n)]1]1)
(state=wait_[[sigEvt_1_111)

| ... | (state=wait_[[sigEvt_1_r(1)11)

dispatch_[[sigEvt_1]] :

Aiépatch_[[sigEvt_m]] := (state=wait_[[sigEvt_m_r(m)]])
| ... | (state=wait_[[sigEvt_m_r(m)]1])

INIT state=select

TRANS
// non-deterministic choice
|- state=select -- in_[[opEvt_1_1]] --> state:=wait_[[opEvt_1_1]]

_ in_[[opEvt_n_q(n)]] --> state:=wait_[[opEvt_n_q(n)]]
-— in_[[sigEvt_1_1]1] -—> state:=wait_[[sigEvt_1_1]]

—-— in_[[sigEvt_m_r(m)]] --> state:=wait_[[sigEvt_m_r(m)]]
|-> state:=select
// wait for completion of transition
|- state=wait_[[opEvt_1_1]] -- completed --> state:=select
|-> state:=wait_[[opEvt_1_11]

|- state=wait_[[opEvt_n_q(n)]] -- completed --> state:=select

|-> state:=wait_[[opEvt_n_q(n)]]
|- state=wait_[[sigEvt_1_1]] -- completed --> state:=select

|-> state:=wait_[[sigEvt_1_1]]

136 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

|- state=wait_[[sigEvt_m_r(m)]] -- completed --> state:=select
|-> state:=wait_[[sigEvt_m_r(m)]]

Based on the chosen event, each I/O-Interval Structure for composite states checks whether
it has to execute a transition. A transition mapping to establish this behavior is detailly described
in the next section.

5.4.2 Transition Mapping

Some more definitions are necessary to prepare the transition mapping. Basically, each tran-
sition tr € TR must be mapped to a set of transitions, i.e., one new transition is generated
for each composite state that is affected by transitiowe divide the composite states of sets
EzxitStates,, and EnterStates,, into the three following distinct sets.

ExitEnter,. = {x € Composite | substates(x) N ExitStates,. # & N
substates(x) N EnterStates,, # @}

EzitOnly, = {x € Composite | substates(x) N ExitStates;, # @& N
(x) N EnterStates;, = @}

EnterOnlyy,. = {x € Composite | substates(x) N ExitStates, = & N
substates(x) N EnterStates,, # @}

substates

In Exit Enter,,., we find composite states that have (potentially several) exited as well as an
entered substate w.r.t. transition The other two sets comprise of composite states that either
have exited substates or an entered substate.

As actions in 1/O-Interval Structures can only be associated to transitions (and not to states
as in UML State Diagrams), entry and exit actions of State Diagram states must be attached to
corresponding transitions in I/O-Interval Structures. Unfortunately, we cannot allow interdepen-
dencies among these actions, as they are executed in a single step when running the 1/0O-Interval
Structures. Nevertheless, we here keep the order of actions, as this might be useful for future
approaches that can consider sequential execution of actions and interdependencies.

For each state that is left, we collect exit actions of all left states and entry actions of all
entered states and sort them according to the state hierarchy. The final sequence of actions
associated with transitiohis then

actionsy. = ((exit(xy), ..., exit(z,), tra(tr), enter(yy), . .., enter(ym))),

wheren = |EzitEntery, U ExitOnly,.|, m = |ExitEnter,, U EnterOnly,,|, and actions
exit(xy), ..., exit(z,) are sorted from lowest to uppermost state, i.e.,

U x; = ExitEnter,. U ExitOnly,, AN Vi€ {1,...,n— 1} : x; € substates(z;11),

i=1...n

and actiongnter(y,), ..., enter(y,,) are sorted from uppermost to lowest state, i.e.,

U y; = ExitEntery,. U EnterOnly,, N Yi € {1,...,m — 1} :y; = parent(y;41).

i=1l...m

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 137

Transitions with and without Elapsed Time Event. In the following, we distinguish be-
tween transitions with and without elapsed time events.

elapsedTimeT R = {tr € TR | trey,(tr) ="after tm’, with tm > 1},
commonT R =TR\ elapsedTimeTR

First, we are going to translate all transitionscofnmonT R. A corresponding mapping of
transitions with elapsed time events is presented in a separate subsection thereafter.

5.4.2.1 Mapping of Common Transitions
For eachir € commonT R, we add transitions to all affected I/O-Interval Structufés (with

x € ExitEnter, U ExitOnly;, U EnterOnly,, C Composite) as follows.

Transition Source State. If the transition source state,,.(tr) does not have a specified
timed activity, we add the following transition to the parent state parent(trm(tr)) We
introduce a transition = (a, b, condV ars) to the set of transition®' in 1.5,, Wheré

a = ((state = [[trs.c(tr)]]), (activated = true)),

dest = substates(x) N EnterStatesy,,

; _ { ((state = [[dest]]), (activated = true)) if dest # @
((state = [[trsc(tr)]]), (activated = false)) otherwise,

condVars = {input_[[tre.(tr)]], grdV alue_[[tr]]}.

To complete the definition of transitianwe set

ity ={1},
Linput(t) = fire_[[tr]],
Tossgn(t) = ((done_[[tr]] := true)).

If the transition source state,,.(tr) is a simple state that has a specified timed activity with
timing interval [ninTime,maxTime], the transition is — due to our syntactical restrictions —
a triggerless transition without any further annotations (i.e., no condition and action). We can
thus handle the activity duration simply like an elapsed time extdr [minTime,maxTime]
attached to the transition Note here that we aIIow a timing interval for elapsed time events,

..............

Remark. Assume for the moment that all transitiansc TR, have already been considered.
For eachir € TR, with a specified event trigger-...(tr), we still have to reset variables,

i.e., settinglone_[[tr]] := false, by assignment actions in the respective subsequent transitions
(defined forb above), i.e., those transitions that start in the respective destination states. A
detailed formal description is left out here.

3Note here that in our restricted version of State Diagrams, we alwaysthav® or in this context.
“Note that for Xor-states, it holds0 < |substates(z) N EnterStates,| < 1, such that the destination state
b can uniquely be determined.

138 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Transition Actions. For the actions imctions,,., we have to add some more new output sig-
nals to I/O-Interval StructuréS,. These output signals guarantee that in the corresponding
I/O-Interval StructureV arlSy;;4 for variables and actions, an appropriate transition is syn-
chronously taken that reflects the variable assignment or sending of a call event, respectively.

Assignments. We extract the subsequeneesignments,, that includes all variable assign-
ments ofactions,. and make some extensions to I/O-Interval Structtse.S,;;;4 as follows.

1. Add a new input signalassigns_of_[[tr]] = [[15.]]-fire_[[tr]]) tOo Set Pri,y. of
VCLT’[SObj[d.

2. Add a new transitioth = (a, b, condV ars) to setl’ in VarlS,;1q4, where

a = (state = ok), I(t) = {1},
b = (state = ok), Linput(t) = [[1S:]]. fire_[[tr]],
condVars = &, Tossgn(t) = [[assignments,,]|.

In the end, I/O-Interval Structur€arlS,,;;4 manages all variables and all assignments of
all transitions. In RIL codeV arlSy;;q4 has the following form.

Module VarIS_[[objId]]
STATES state : { ok }
// var_1 to var_m are attribute names of class c
[[var_11]1 : { [[Value(var_1)]1] %}

[[var_m]] : { [[Value(var_m)]] %

INPUTS // triggers to execute a particular transition with assignments
// (i.e., variable update triggers)
assigns_of _[[tr_1]1] := [[IS_x]].fire_[[tr_1]]

éééigns_of_[[tr_n]] := [[IS_x]].fire_[[tr_nl]

DEFINE // conditions over variables that are used in other modules
grdValue_[[tr_1]] := [[tr_grd(tr_1)]1]

grdValue_[[tr_n]l] := [[tr_grd(tr_n)]]
INIT state=ok

TRANS
|- state=ok -- assigns_of_[[tr_1]] --> state:=ok; [[assignments_tr_1]]

-- assigns_of_[[tr_n]] --> state:=ok; [[assignments_tr_n]]
|-> state:=ok

Input signalsassigns_of [[tr_i]] are synchronously set to true when the corresponding
transitiontr_i is fired. Thus, the transitions specified in TRANS compartment ensure that all
necessary assignments are done in the same step as the corresponding transition

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 139

Signal Call Actions. Different syntactical styles for signal call actions can be found in the
literature, e.g./send targetObj.signalName Or /targetObj. signalName. But basically,

a signal call actiosigAct € actions,,. comprises of a target objeetrgetObj and a signal
namesignalName. If a signal call action is to be executed as part of the action sequence
actionsy,., a corresponding signal in the Interval Structure that simulates the event queue of the
target object has to be made.

For each signal call actiosigAct € actions,,, if not yet defined, add a new output signal
sent_[[signal N ame|([targetObj|] := fire_[[tr]] to VarlSy,4. These output signals guaran-
tee that in the corresponding I/O-Interval Structsig.[[signal N amel][targetObj]|[objld]]
that simulates the event queue, a transition is made to the internalsiateng. As signals are
asynchronous, no reply has to be waited for (as opposed to operation calls).

Operation Call Actions. In our version of State Diagrams, we abstract from local operation
calls as actions, as they are assumed to take no additional time. Note that local operation calls
with a specified time greater than 1 as well as synchronous operation calls to other objects are
considered aactivities and their mapping is addressed in the corresponding sections.

After the described procedure has been performed for all transitiansohonT R, all trig-
ger events, all conditions, and all actions are translated and corresponding 1/O-Interval Struc-
tures for all variables and all events have been generated. But for each transitioff' R,
we still have to establish synchronization of the ‘transition parent’ state with the other affected
states determined by the dét:it Enter,. U ExitOnly,, U EnterOnlyy,. \ {parent(trg..(tr))}.
We present this step by step with several cases.

Transitions both Exiting and Entering direct Substates. We first consider all Xor-states
x € ExitEntery. N Xor \ {parent(trs..(tr))}. Forallval € substates(x) N ExitStates,,
we add transitions,,; = (.., b, condV ars) to the set of transitiong' in 1.5, where

Ayal = ((state = [[val]]), (activated = true)),
b = ((state = [[substates(x) N EnterStates,,]]), (activated = true)), and
condVars = {[[parent(trg..(tr))]]. fire_[[tr]]}.

For all these transitions,,;, we set

I<tval> - {1}7
Linput(tvar) = ([[parent(trs..(tr))]]. fire_[[tr]] = true),
Tassgn (tval) = 5act~

For And-states € Exit Enter,.NAnd (by definition, these cannot bearent(trs,..(tr))),
we add a transition = (a, b, condV ars) to the set of transition®' in 1.5, where

a = ((activated = true)),
b = ((activated = true)),
{

condVars = {[[parent(trg..(tr))]]. fire_[[tr]]} U {][[s]].state | s € substates(x)}.

140 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

The latter set is necessary to keep track of the status of all (Xor-)subst@tesnd’, ., (¢)
are defined as above, wherdas,.(t) must be defined considering the completion event:

Linput(t) = ([[parent(try..(tr))]]. fire_[[tr]] = true) A
Nsesubstates(z) ([[s]]-state = [[final(s)]]), ([[s]].activated = true)).

Transitions only Exiting a Direct Substate. For Xor-statesr € FEzitOnly, N Xor \
{parent(trg..(tr))} and for allval € substates(x) N ExitStates,, we add transitions
tvar = (@yar, b, condV ars) to the set of transitiong' in 1.5, where

Ayal = ((state = [[vall]), (activated = true)),

b = ((state = [[vall]), (activated = false)), and
condVars = {[[parent(trg..(tr))]]. fire_[[tr]]}.
Note here that the current value of variablate is retained. This information might be

useful when re-entering the exited state via a history state — however, history states are not yet
regarded in this translatighAs before, we set

](tval) = {1}7
Linput(tva) = ([[parent(trs..(tr))]]. fire_[[tr]] = true),
Tassgn (t'ual> = fact-

For And-states: € FxitOnly,. N And, we take the same approach as above for And-states
€ Exit Entery., but now replace the value of variahletivated by ((activated = false)) for
the destination state

Transitions only Entering a Direct Substate. For Xor-states: € EnterOnly,, N Xor®and
forall val € substates(x), we add transitions,,; = (.., b, condV ars) to the set of transitions
Tin IS,, where

Ayal ((state = [[val]]), (activated = false)),

b ((state = [[substates(x) N EnterStates;.||), (activated = true)), and

condVars = {[[parent(trs..(tr))]]. fire_[[tr]]}.

We set
I<tval> = {1}7
Linput(tvar) = ([[parent(trs..(tr))]]. fire_[[tr]] = true),
Tassgn(tval) = fact-

5The main challenge here is to determine the different cases of history states in combination with default
transitions and other common transitions. These cases have all to be treated differently, which makes the mapping
to 1/0O-Interval Structures more complex. However, as there are already dedicated states in the target I1/O-Interval
Structures that indicate whether a state is activated, no additional states have to be introduced to the 1/O Interval
Structures when history states are considered.

®Note that by definition for alk € EnterOnly,, it holdsz # parent(trg..(tr)).

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 141

For And-states: € EnterOnly,. N And, we add a transition = (a, b, condV ars) to the
set of transitiond” in 1S, wherea = ((activated = false)), b = ((activated = true)), and
condVars = Var(tre,:(tr)) U Var(trgq(tr)). Finally, we set

ity ={1},
Linput(t) = ([[parent(trs..(tr))]]. fire_[[tr]] = true),
Tassgn (t> - gact-

5.4.2.2 Mapping of Transitions with Elapsed Time Events

Transitions with elapsed time events do not have conditions and actions. The UML stan-
dard syntax isafter tm’, where tm iS a non-negative natural number greater than 1. As
we handle local do-activities of simple states by elapsed time events of theafbtar
[minTime,maxTime], the syntax is extended, such that timing intervals are now allowed in
contrast to standard UML. As we abstract from physical time units, it is importantihist
specified in relation to the basic time unit that is assumed for performing a run-to-completion
step. For example, if the basic time unit is millisecond®,er 1000 refers to an elapsed time

of 1 second.

Fortr € elapsedTimeT R, letminTime,, andmaxTime,, be the specified timing interval
values intr..(tr). The I/O-Interval StructurésS, with x = parent(trs,..(tr)) gets an additional
counter variable for counting the number of steps passed since entering stéte). Note that
each 1/O-Interval Structure does only need at most as many counter variables as the number of
concurrent substates, even if several transitions with an elapsed time event are specified. In
particular, forz € Xor, at most one counter variable is necessary. I/O-Interval Structures for
composite stateg € ExitStates;, U EnterStates,, that are indirectly affected by transitions
with elapsed time events (i.ey,# parent(trg..(tr))) get an additional input variable to syn-
chronize withl S,.

In the remainder, we concentrate on mapping transitions:fa Xor. A mapping for
x € And can be easily derived by iterating through all concurrent substates.

e Introducing counter variables. For all z € Xor, if there is a transitiontr €
elapsedTimeT R with tr,..(tr) € substates(x), we add a new variableount to Pr
in 1.5, with

count : RANGFE|0..maxTm,|,

wheremaxT'm, is the maximum of all specified timing values of transitions with elapsed
time events relevant for, i.e.,

maxTm, = max{maxTime,. | tr € elapsedTimeT R N
Jy € substates(x) with y = trg..(tr)}.
Variablecount is initialized by adding-ount to s, i.€.,s9 := so A (count = 0).

e Adding input variables. For all transitionstr € elapsedTimeT R and for all states
y € ExitEnter;. U ExitOnly,. U EnterOnly,. with y # parent(trs..(tr)), we add an
input variable][parent(trg..(tr))]].count t0 Pripp, in I.S,,.

142 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

We can now add transitions to the 1/O-Interval Structures, using the variables defined above.
For alltr € elapsedTimeT R, we add the following transitions.

e For stater = parent(trg,.(tr)), we add four transitions , t», t3, t4 to the sefl” of transi-
tionsiniS,. Leta = ((state = [[trg..(tr)]]), (activated = true)) denote the transition
source state, and= ((state = [[trqs(tr)]]), (activated = true)) the destination state.

We set
t1 = {a,a, {count}), ty = (a,a,{count}),

ts = (a, b, {count}) t4 = {(a,b,{count}).

and the corresponding transition-related function values

I(ty) = {1}, I(tz) = {1},
Linput(t1) = (count < [[minTimes,]]), linpur(t2) = ((count >= [[minTime,,]])

A (count < [[maxTime]])),
Tassgn(t1) = ((count := count + 1)), Tyssgn(ta) = ((count := count + 1)),

I(ts) = {1}, I(ts) = {1},
Linput(t3) = ((count >= [[minTimey,|]) Linput(ts) = (count = [[maxTimey,]]),
A (count < [[mazxTimes]])),

Tussgn(ts) = actionsy,; ((count := 0)), Toussgn(ts) = actionsy,; ((count := 0)).

Transitiont; simply increments the counter variable while remaining in the source state
until the minimal time is reached. Then, it can non-deterministically be chosen between
firing t, or t3. Transitiont; remains in the source state and increments the counter, while
t3 changes to the target state and resets the counter to 0. Tramgigoarantees that the
targetstate is entered when the maximum ealpsed time is reached.

e For all statest € FEuxitEnter, \ {parent(try.(tr))} and for all substatesal &
substates(x) N ExitStates,., we add transitions,,; = (aya, b, condVars) to the set
of transitionsI" in 1S, where

Uyl = ((state = [[val]]), (activated = true)),
b = ((state = [[substates(x) N EnterStatesy,|]), (activated = true)), and
condVars = Var(tre,(tr)) U Var(trg.q(tr)).

We set the following transition-related function values

[(tval) = {1}7

Linput(tvar) = ([[parent(trs.(tr))]].count == mazxTimey,),

Tassgn (tval) — éact .

5.4. TRANSLATION TO I/O-INTERVAL STRUCTURES 143

e For all statest € ExitOnly, \ {parent(trs.(tr))} and for all substatesal €
substates(x) N ExitStates,., we add transitions,,; = (aua, b, condVars) to the set
of transitionsI" in 1S,, where

Ayal = ((state = [[vall]), (activated = true)),
b = ((state = [[vall]), (activated = false)), and
condVars = Var(tre,:(tr)) U Var(trg.q(tr)).

As before, we set
](tval) = {1}7 Iinput(tval) - (trevt(tr> A trgrd(tr))u Tassgn@val) - fact'

e For all statest € EnterOnly,. and for allval € substates(x), we add transitions
tvar = (@yar, b, condVars) to the set of transitiong' in 1.5, where

Ayal = ((state = [[val]]), (activated = false)),
b = ((state = [[substates(x) N EnterStates,,]]), (activated = true)), and
condVars = Var(tre,(tr)) U Var(trg.q(tr)).

We set
[(tval) - {1}7 [input(tval) = (trevt(tr) A trgrd(tr))a Tassgn<tval) = gact'

Assume for the moment that all transitions foare yet defined in all I/O-Interval Structures
15, with a counter variableount as introduced above. In all these structures, we have to add
the assignmentount := 0 to reset the counter in all transitions that change states, i.e., for all
te{reT | r[1] # r[2] AN (count := count + 1) & Tyss0n(r)}, We addl sy, (t) =
Tassgn(t) +appenda ((count = 0)),

5.4.2.3 Conflicting Transitions

Conflicting Transitions might occur, when there are two activated ancestrally related states, say
s1 ands,, which each have an outgoing transition with the same triggering evemind valid
conditions (i.e., the transition guards both evaluate to true). In this case, the UML standard
specifies that the transition with th@wver source statbas precedence and is taken. However,
this does not yet solve the case= s,. Fors; = s,, we simply assume non-deterministic
behavior, i.e., a non-deterministic choice is made.

But for s; # s9, we have to add some additional conditions in our generated 1/O-Interval
Structures to follow the precedence concept of UML State Diagrams. First, for a given event
e € EVT we define the help sets

transe = {tr € TR | e = treu(tr)},
sourceStates, = {trg..(tr) € S|tr € trans.}, and

parentStates. s = sourceStates, N parents™(s)for eachs € sourceStates,.

144 CHAPTER 5. A TIMED UML STATE DIAGRAM VARIANT

Functionparents™(s) gives the transitive superstates of a statexcludings. For each
evente and states with parentStates, , # @, the corresponding transition conditiofig-e;[tr]]
of all s € parentStates(e, s) have to be equipped with an additional negated condition, i.e.,
fire(tr]] == fire([tr]] N —[[trgq(s)]], to prevent the superstates from firing their transitions.

5.5 Contributions of the Chapter

In this chapter, a UML State Diagram variant has been defined that restricts on a subset of stan-
dard UML State Diagram model elements. In particular, rarely used pseudostates and critical
interlevel transitions are omitted.

The regarded subset of UML State Diagrams has then been extended in the sense that timing
specifications attached to operations — as specified in Class Diagrams — are considered as esti-
mated activity times in State Diagrams. The execution semantics of this timed State Diagram
variant is defined by a translation to 1/0O-Interval Structures over discrete time.

Chapter 6

Modeling Manufacturing Systems with
MFERT

As complexity rises,
precise statements lose meaning,
and meaningful statements lose precision.
—Lotfi Zadeh

MFERT constitutes a generic approach for specification and implementation of planning and
different projects with industrial partners and received the German science award of logistics.
Basically, MFERT builts upon concepts of Petri Nets, i.e., the structure of an MFERT model is

a bipartite graph of nodes that represent either production processes or storages for production
elementsProduction Element NodéBPENS) are used to model logical storages of material and
resources. The can be compared with places in Petri Neetgluction Process NodgBPPNSs)
represent logical locations where material is transformed. PPNs are comparable to transitions
in Petri Nets.Directed edgebetween nodes denote the flow of production elements.

.......

......

RawEngines andRawShafts. Corresponding processes are used to supply these production
items into PEN%nginesSupplied andShaftsSupplied.

Different processes model the transformation of production items in the statitdndrill ,
andwash i.e.,Milling, Drilling, andWashing. Input and output buffers of stations are
modeled by PENs naméad emsBeforeMill, ItemsAfterMill, ItemsBeforeDrill, Items-
AfterDrill, ItemsBeforeWash, andItemsAfterWash.

Transports between stations are modeled by transporting processesTham&sbrting-

ToMill, TransportingToDrill, andTransportingToWash. A fourth transporting process

is used to take production items to the output station. To perform a transport, an item and an
automated guided vehicle (AGV) is needed as an input. In the example, AGVs are modeled as a
production resource by means of a PEN. For performing a transport, the corresponding process
allocates an AGV from that PEN (i.e., it takes one AGV from that PEN), and after the process
has finished, it vacates that AGV (i.e., the AGV is re-entering the PEN).

145

146 CHAPTER 6. MFERT

#\ﬁﬁ

RawEngines SupplyingEngines EnginesSupplied TransportingToMill EnginesBeforeMill

Milling EnginesAfterMill : j
TransportlngToDrlII ltemsBeforeDrill

RawShafts SupplyingShafts ShaftsSupplied

?

-

AGVs

—

Drilling ItemsAfterDrill TransportingToWash ltemsBeforeWash

Washing ltemsAfterWash TransportingToOutput OutputQueue

Figure 6.1: MFERT Graph of the Case Study

Thedynamicsf an MFERT model is defined by local functions associated with the nodes.
These local functions are also callledal managersr agents An instantiation of an MFERT
model is therefore seen as a distributed system of interacting ‘agents’. Different approaches
are suitable to define local functions in this context, for instance, Quintanilla formally defines
a graphical notation callethteraction diagramgQuiO%]. However, timing aspects are not
regarded in that approach.

We focus in this thesis on finite state machines (FSMs) and the timed UML State Diagram
variant that was introduced in Chaptér 5 to define the local functionality of MFERT nodes —
more specifically, we employ additional restrictions on the set of actions and activities defined
in the timed UML State Diagram variant. In the context of MFERT, we only regard actions and
activities that denote (a) requests of PPNs to put and get elements to and from PENSs, (b) actual
transfers of production items between MFERT nodes, and (c) local transformation activities that
have a notable duration.

that such a transport requests a resource (i.e., an AGV) and an item to transport, i.e., either
a shaft or an engine. Additionally, the local activity of transporting an item is required to be
executed within 20 to 40 time units. This might be a well-known duration derived from the
concrete setting of the physical system or an estimated duration that is only assumed at time of
modeling. If we checked system properties based on this assumption, they are only valid if the

6.1. MFERT GRAPHS 147

estimated duration is really met in the running system.

In contrast to PPNs that actually control the production flow via their associated functions,
PENSs are organized in are rather passive and wait for requests to react on. A PEN is mainly
used to store incoming and outgoing production elements in queues and shifts elements from
the input to the output queue with a certain delay.

In the following three sections, we describe the graphical notation, the formal model, and

.......

.........

models. This profile is the basis for applying OCL constraints to UML-based MFERT models,
which will be presented in Chapter 8.

6.1 MFERT Graphs

Graphically, two types of nodes are distinguished. An annotated triangle represents a PEN, an
annotated rectangle stands for a PPN. The annotation indicates the unique name of the node.
Directed edges from PENs to PPNs denote a material or resource input into a production pro-
cess, while directed edges from PPNs to PENs represent the output flow after completion of
production processes.

Edges are only allowed between nodes of different types (i.e. triangles and rectangles), so
that the resulting MFERT graph is bipartite. MFERT graphs show both a static and a dynamic
view of a manufacturing system. On the one hand, the nodes statically represent the participat-
ing production processes and element storages. On the other hand, edges represent the dynamic
flow of production elements (i.e., material and resources) within the manufacturing system.

In the original work on MFERT, annotations by meandgiofe barsare attached to PENs
and PPNs to illustrate incoming and outgoing events. In terms of UML, this basically conforms
to an interface specification of operations and signals that can be handled by a PEN or PPN,
respectively. The particular events drawn on the arrows only informally show possible in- and
outputs, i.e., they do not put any restrictions on their order. Therefore, we omit the graphical
element of time bars in our description of MFERT and instead assume that the interface of PPNs
and PENSs is specified in a manner similar to UML. This is an important aspect when we are

........

6.2 Formal MFERT Model

The type system used in our MFERT definition is similar to the one of Coloured Petri Nets
(CP-nets)i[Jen91]. The tokens that are running through the system are production elements of a
certain data type. A data tyge is a tuple of value sets. For instance, a data tpgineOrder

may be defined by tuples of form

(kind, kw, turbo, id) C {petrol,diesel} x {40,56,70} x Boolean x Integer .

We assume that standard types, suchasger or Boolean, together with their common oper-
ations are well-defined. In the following, |&tT" refer to the set of all data types defined in the
system.

148 CHAPTER 6. MFERT

Expressions, Variables, and Sequencesin general, complex expressions are combined from
primitives (i.e., variables or constants) and subexpressions by use of functions and operations.
We do not give a concrete expression syntax here; we just assume that such a syntax exists
together with a well-defined semantics, such that it is possible to talk about

e the type of a variable, denoted byl"ype(v),
¢ the value of a variable, denoted by alue(v),
e the type of an expressianpr, denoted byl'ype(expr),

e the set of variables in an expressiarpr, denoted by ar(expr). This set only contains
the free variables, i.e., variables that are not bound internalbtim, e.g., by a local
definition.

A sequence over a data typé € DT is a function
qe{f|f:N—=DuU{e},De DT}.

We denote a sequengéby an enumeration = ({(aq, as, ...)), with a; € D. We can stop the
enumeration if there in an indexsuch that all following sequence elements are equal to the
empty worde. We denote the set of all well-defined sequences by

Seqp ={f | f: N=>DU{e},Vie N: (f(i)=¢)=Vj>i: f(j) =¢€}.

We assume that the common operations on sequences are well-known, e.g., concatenation of
sequences, accessing the i-th element, deleting at i-th position, etc. In particular, we denote by
Type(q) the unique data typ® € DT over which a sequencgs defined. In the following, let

Seqpr = U Seqp .

DeDT

With these preliminaries, we can define the static structure of an MFERT model as follows.

Definition 6.1 An MFERT model is a tuple

¢ (PE,PP E,DT,C,In,Out, Capn, Capou,

Time, FSM, Mpgy, Initr,, Initoy),

where
() PFE is afinite set of ProductionElementNodes,
(i) PP is afinite set of ProductionProcessNod&? N PE = &.

(i) £ C (PP xPE)U(PE x PP)is afinite set of directed edges between PENs and PPNs.
The edges represent the element flow between nodes.

6.2. FORMAL MFERT MODEL 149

(iv) DT is a finite set of Data Types. A data type= (VSp1,VSpa,...,VSp,) € DT is
a tuple of — possibly infinite — value sétsp ; # @,1 < i < n.

(v) C: PE — DT is the mapping that gives eaph € PFE a data type.

(vi) In: PE — Seqpr is the mapping that associates an input sequence togaechPFE. It
holdsVpe € PE : Type(In(pe)) = C(pe). Inthe following, letinpr = ,.cpp In(pe).

(vii) Out : PE — Seqpr is the mapping that associates an output sequence to gaeh
PE. It holdsVpe € PE : Type(Out(pe)) = C(pe). In the following, letOutpr =

UpeEPE OUt (pe) .

(viii) Capr,, Capow: : PE — N give each input and output sequence a maximal capacity.
(ix) Time : PE — Ny is the mapping that associates a delay time to gach PFE.

(X) FSM = U, ,epp fsm,, is a set of finite state machingg,SM| = |PP|.
In order to be able to talk about particular elements of FSMs, we give a structural defini-
an fsm € FSM-,"'é‘I'enoted bYW T AT ES ., Which is taken to describe the current status
of an FSM. In the following, le$T' AT ESrsay = U nersy STATESsm.

Restrictions: Note that we restrict the type of actions in state transitions of FSMs; actions
that consume and actions that produce elements must not appear in the same transition.

(xi) Mrsy : PP — FSM is the bijective mapping that associates a finite state machine
fsm € F'SM to each production process € PP.

(xi)) Init;, : PE — Seqgpr IS an initialization function that represents the initial marking of
the input sequence of eapgh € PE. Inity, is defined fromP E into Sequences such that

Vpe € PE : Type(Initr,(pe)) = C(pe) A Var(Init,(pe)) = & .

(xiii) Inito, : PE — Seqpr is an initialization function that represents the initial marking of
the output sequences of PENsit o, is defined fromP E into Sequences such that

Vpe € PE : Type(Initou(pe)) = C(pe) A Var(Initou(pe)) = @ .

a UML Profile for the domain-specific structural elements of MFERT, i.e., sets PP, PE, and E,
to have a graphical notation for modeling purposes. Additionally, we employ the timed UML
State Diagram notation as introduced in Chapter 5 for the FSMs in MFERT.

We define the overall runtime status of an instantiated MFERT model by means of the
configurationthe current values in the input and output sequences of PENs and the state con-
figurations of FSMs as follows.

Though, that definition does not prescribe a finite state machine formalism with a particular execution seman-
tics, as this general MFERT definition abstracts from internal behavior of PPNs.

150 CHAPTER 6. MFERT

Definition 6.2 In an MFERT model with the finite se®&F, PP, andF'SM, let
con figuration : FSM — P(STATESpsu)

be the function that returns the current configuration of a finite state machineMRPBERT
configurationis described by a tuple

<OutpE,]an, U configuration(fsm)> :
fsmeFSM

6.3 Dynamic Semantics of MFERT

Concerning the micro view semantics, i.e., the execution semantics of single processes, the gen-
eral MFERT definition ini[Sch96] makes no particular assumptions. Also the general MFERT
to describe the behavior of production processes, but for an executable or verifiable model, we
need a particular execution semantics. We therefore take the timed UML State Diagram vari-
ant as the FSM formalism for MFERT. Recall that we have defined a mapping to I/O-Interval
Structures for these timed UML State Diagrams, such that the execution semantics is given by

............

Concerning the macro view of communication between different MFERT nodes, there are
different execution semantics of MFERT identified, i.e., synchronous, asynchronous, and sim-
ulation semantics. As we focus on synchronous semantics in the remainder, we briefly discuss
the other two in Sectici 6.3.5.

The dynamic semantics afynchronousMFERT models is best described by an abstract
interpreter for PPNs and PENSs, respectively. For PPNs, an interpreter controls the execution of
the FSMs. For PENSs, the corresponding interpreter is cyclically shifting production elements
from input to output sequences.

6.3.1 Production Process Nodes

We assume that each PPN has its own thread of control and runs independently of a global
Each interpreter cycle starts with selection of an applicable transition. After the selection phase,
first some checks on adjacent PENs are necessary. Note here, that some actions associated with
the selected state transition have an effect on adjacent PENSs, e.g., by consuming production
elements from preceding nodes. It must be ensured that this is a valid operation. Finally, the
transition is fired and a new state is entered after the delay time determined by the selected tran-
sition. A delay time greater than 1 usually represents the time that is necessary for a particular
production step.

Given a state of an FSM,DetermineTransition(s) chooses a transitione 7' out of the
set of applicable transitions. We do not specify how this transition is going to be chosen, as this
is defined in the dynamic semantics of the underlying state machine model, but we assume that
Conditions(t) evaluates to true at the time of chosing

6.3. DYNAMIC SEMANTICS OF MFERT 151

currentState = I sq is the initial state of the FSM
while true{
t = DetermineTransition(currentState)T'r U {e} /I selection phase
if (t#£¢€){
grant = true
parallel do{ Il checking phase

C={(D,i)|Yv € Var(ConsumeActions(t)) : D = Type(v) N i = Value(v)}
if (C # @) { grant = SendConsumeRequestst

HIA
P ={(D,i)|Yv € Var(ProduceActions(t)) : D = Type(v) N i = Value(v)}
if (P # @) { grant = SendProduceReque#ts{

}

if (grany {
Execute(Actiong(, Delay() - 1) I/ execution phase
currentState = NextStatg(

}
}
}

Figure 6.2: Abstract Interpreter for PPNs

.....

P is empty in each cycleSendConsumeRequests(C) andSendProduceRequests(P) takeC'

resp.P to send request messages to all corresponding adjacent PENs. These messages are sent
as a multicast with the same time stamp. We further require that these request messages are
sent synchronously, i.e., the interpreter waits until all replies are received. In the following, we
assume that all requests can be immediately answered by all PENs in one time step.

Replies are either acknowledgments or denigdsidConsumeRequests(C) andSendPro-
duceRequests(P) return a Boolean value, indicating whether access to all corresponding adja-
cent PENSs is granted or not. Only if all requested PENs have replied with an acknowledgement,
Execute (Actions(t), Delay(?) -1) is called. That function executes the actions associated
with ¢ and returns aftebelay(t) - 1 time units to proceed.

Concerning the current state configuration, we have to consider the evolution of time. We
therefore define the following timing restrictions for the interpreter cycle of PPNs.

1. The selection phase takes no time.

2. The checks for valid actions take one time step (send now and receive answers one step
later).

3. The execution phase takes as many time steps as specified in the selected transition, minus
one time step due to the checks. This means, that the new state is actually entered after
the corresponding number of time steps has passed.

The latter condition implies that the FSM remains in its current configuration up to the end
of the delay time and enters the new configuration exactly at that time when the specified time
steps have passed.

152 CHAPTER 6. MFERT

6.3.2 Production Element Nodes

The dynamic semantics of a PEN € PFE is described by the following abstract interpreter
For shifting elements, we require exclusive accesBi@e) andOut(pe), as it is indicated
by the function8lock () andUnblock(). Queries and manipulations dn(pe) andOut(pe)
invoked by messages from PPNs are handled independently of the main cycle, but are also
performed with exclusive access to avoid conflicts.

while true{
Wait(Time(pe) - 1)
Block(Out(pe)) /I exclusive access while shifting elements
Block(In(pe))
Out(pe) = Concat{n(pe), Out(pe)) /1 shifting
In(pe) =&
Unblock(n(pe))
Unblock©Out(pe))

Figure 6.3: Abstract Interpreter for PENs

Concerning the current state configuration, we here only have to define the timing restriction
that blocking, unblocking, and shifting takes place within 1 time step. This implies that the PEN
remains in its current configuration up to the end ofthet () command and enters the new
configuration exactly after the specified tifiéme(pe) has passed.

6.3.3 Message Passing

Due to the required implicit multicast message passing mechanism in the PPN interpreter cycle,
conflicts like dead- or livelocks might occur when different PPNs send messages to common
PENSs at the same point of time. In order to avoid such conflicts, we need to define an input
channelM sgQueue,. for eachpe € PEN that takes incoming messages from adjacent PPNs.
Formally, M sgQueue,. is a sequence over a data tyjpksg that is defined by

Msg = PPN, x {reqCons,reqProd, consume, produce} x Ng x DT x Ny .

sender message type timel D content

In the following, we may also writd/sg(pp, pe, timestamp) for an element of\/ sg, as
the parametergsp € PP andtimestamp € Ny uniquely determine an incoming message for
pe € PE. The message type can be derived, as only one message may be sent at each point
of time from pp to pe, and DT x N, denotes the actual message content, i.e., the number of
production elements that are to be consumed or produced. The following assumptions are of
particular importance for the message passing model:

1. We require that there is at most one action in each state transition that invokes a message.

6.3. DYNAMIC SEMANTICS OF MFERT 153

2. PPNs send synchronous messages to PENSs, i.e., each PPN waits for corresponding
replies.

3. Messages sent from PPNs immediately appear in each of the PEN’s input message queue
M sgQueue,., pe € PE.

4. We assume that all incoming messages are handled immediately after they are inserted
into M sgQueue,., i.€., an answer to a request (for consumption or production), consume,
or produce message is sent back exactly one time step later. Note that it can happen that
shifting and replying to messages must happen in the same step. We therefore define a

It follows that at each point of time there can be at most one message from each adjacent
PPN in eachV sgQueue,.. This limits the sizg M sgQueue,.| of the message queues to the
number of adjacent PPNs.

6.3.4 Conflict Resolution in PENs

Assuming that messages are immediately answered by PENSs, several actions might have to be
handled at a single point of time. Among these actions, we have to define a priority in order to
have a well-defined execution semantics. We define for a given point oftime

1. If at the current time point the executionwfit(Time(pe) -1) ends, shifting elements
from the input queue to the output queue has highest priority and is executed first.

2. Then, if there are produce messagesfingQueue,., these messages are handled in an
arbitrary order.

3. Then, if there are consume message&/isyQueue,., these messages are handled in an
arbitrary order.

4. Then, if there are request messages for productiad $pQueue,., these messages are
handled in an arbitrary order.

5. Then, if there are request messages for consumptidfsigQueue,., these messages are
handled in an arbitrary order.

6.3.5 Simulation Implementation

The simulation implementationf MFERT focuses on supervision of the capacities in PENs
[Zah03]. Though no formal semantics are defined, the models are executed in a very similar
way. The nodes act on a global signal, i.e., all nodes select a transition and communicate at the
same time with their adjacent nodes.

A visual interface for specification and simulation of MFERT models is presented in

ferent layers of abstraction. This means that a rectangle does not only represent a PPN, but

154 CHAPTER 6. MFERT

can also be seen as a placeholder for another MFERT (sub)model with particular in- and output

restrictions.
In the simulation environment, active transitions are marked red in each step, and underflow

......

[mfert =100 x|
Program Edit Worksheet Execute View

@ -To] B o@Al[alx

= root |sten 4

© [Inputtation
gl

[Holane
[fertige Motoren
[matorreq

[InputBufrer
[} Maschine
[0y outputBumier ||
(M REQUEST ||
[IN Requ ‘
[stueck Annahme |
[Stueck Ausgabe | |

Oy H_Fa_w

DY H_F1_F2

Oy HonCF

O3 How_ouT

@ 3 Qutputstation

Messages:

ritert runiing

Loading X\mfert_editoriexamplesthalon.miert gz into Gheet "roat"
o

o5 n
Needed: {D75ms | Farced : Oms < —g— ||l

Figure 6.4: Simulation of an MFERT Model

6.4 A UML Profile for MFERT

Modeling the static and dynamic aspects w.r.t. material and resource flow of manufacturing
systems can be done by UML Class Diagrams. We here introduce stereotypes that represent

.........

where

1. aProductionDataType defines a tuple of data types. Only query and constructor oper-
ations are allowed for production data types, which may only aggregate or be composed
of DataTypesS OrProductionDataTypes.

2. TheElementList Stereotype represents a parameterized interface that provides certain
operations to manage lists with elements of a cetatductionDataType. We assume
that appropriate operations for lists are specified.

3. MFERTNode is the abstract superclass BfoductionProcessNode andProduction-
ElementNode. MFERT nodes may only inherit from other MFERT nodes of the same
kind. Associations between two MFERT nodes have to be modeled BséigntFlow
associations. There is at most one relationship between each pair of MFERT nodes,
which is either a generalization or @l ementFlow association. If the relationship is
a generalization, the participating MFERTNodes must be of the same subclass, i.e. either
ProductionProcessNodes or ProductionElementNodes.

6.4. A UML PROFILE FOR MFERT 155

4. An MFERTNode may not have an association among itself.
5. We do not allow aggregation and composition of MFERTNodes.

6. ProductionProcessNodes (PPNs) consume from and send production elements to
ProductionElementNodeS. Each PPN has its own thread of control, i.e., the instances
are active objects.

7. ProductionElementNodes (PENS) store production elements for further processing by
subsequent PPNs. Two lists with production elemefitenfentListS) are managed by
a PEN; one for incoming, one for outgoing production elements. The two lists are stor-
ing elements of a certaiRroductionDataType that is specified by the tagged value
elementType.

8. ElementFlow represents a restricted association between MFERT nodes. For brevity rea-
sons, the tagged valusurce is set to the classifier that is identified via the participant
association of the first element in the ordered list of AssociationEnds. The tagged value
target is set to the classifier that is identified via the participant association of the second
element in the ordered list of AssociationEnds. The tagged watge identifies a Pro-
ductionDataType. It represents the type of instances that may be exchanged between the
connected MFERTNodes from the source towards the target end. The main constraints of
ElementFlow are: They are only allowed between two concrete MFERT nodes. Tagged
valuessource andtarget refer to the two classifiers that are determined by the as-
sociation ends oElementFlow. ElementFlow associations are only allowed between
concrete subclasses of MFERTNodes of different types, i.e., between ProductionProcess-
Nodes and ProductionElementNodes. We restrict multiplicity of these association ends
to 1, as arElementFlow association shall indicate a relationship between two instances
of MFERT nodes. Though it is allowed to navigateEirementFlow associations in both
ways, we graphically represent these associations as directed edges towards the target
end to indicate the direction of element flow. ElementFlow associations neither specify
aggregation nor composition relationships. Qualifying attributes are not considered for
ElementFlows.

This is only a summary of the model-inherent restrictions defined by the profile. For a
profile is given including OCL constraints, thé.f.dffnal MFERT model, and a mapping to 1/O-
Interval Structures.

The official UML 1.5 specification suggests a graphical notation for stereotypes. [OMG03d,
Sections 3.17, 3.18, 3.35 and 4.3]. Based on this notation, we present an overview of the

.........

navigable in both ways, we dendi@ementFlow associations as directed edges towards the
target end to indicate the direction of production element flow. The multiplicities are omitted,

156 CHAPTER 6. MFERT

<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
Relationship Class Interface Comment
0\ 0\ 0\ N N
:<<stereotype>> <<stereotype>>: :<<stereotype>> <<stereotype>>: <<stere|btype>>
<<stereotype>> > <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
ElementFlow <<tagge§iVaIue>> MfertNode ProductionDataType ElementList Declaration
source
—————— s Tags

expr : Expression [1]

<<taggedValue>>

target [1] /E\ /E\ f:\ N
I <<taggedValue>> 1 |
i inputSequence [1] 1 1
1 1 1
| <<taggedValue>> | <<taggedValue>> <<ta'gedVaIue>>
! elementType [1] ! outplutSequence [1] declaration [1]
1
! P !
1
<<stereotype>> <<stereotype>> 1
ProductionProcessNode ProductionElementNode i
1
Tags i
time : Integer(ty [T T=
inputCapacity : Integer [1]
outputCapacity : Integer [1]

Figure 6.5: MFERT Stereotypes

asElementFlow associations represent 1:1 relations. Annotation of the association name is

6.4.2 Validation Constraints

In the previous section, we already restricted the standard UML State Diagram notation. But in
order to be able to perform a mapping of MFERT designs to I/O-Interval Structures vis the UML
Profile for MFERT and the timed UML State Diagram variant, we have to make the following
additional restrictions.

1. We require that each concrete MFERT node is complete in the sense that its behavior
description is given in form of a single timed UML State Diagram.

2. Use, composition and generalization relationships between two classes are taken into
account for verification iff the two classes are (subclasses of) MFERT nodes.

3. As already mentioned, data exchanges between two MFERT nodes are necessarily per-
formed usingElementFlow associations.

4. An MFERT node may communicate with a non MFERT node by operation call, signal or
attribute modification, but these communications are not further considered.

5. Variables must have a finite value range to be applicable for the translation of timed UML
State Diagrams to I/O-Interval Structures, i.e., attributes can only be enumerations or
finite non-negative subsets of type Integer.

6.4. A UML PROFILE FOR MFERT 157

Common Stereotyped UML Notation Alternative MFERT Notation
«ProductionElementNode»
Engines
«ProductionProcessNode»
Transport Transport
Let A be a source PPN and B the target PEN
A «ElementFlow» B A
1 1

Figure 6.6: MFERT Notation Samples

6.4.3 Mapping to the Formal MFERT Model

In this section, we map the UML Class Diagram elements for MFERT as introduced in the
previous sections to the corresponding elements of the formal MFERT definition as described
take the following approach.

We extract instances of a particular UML model by means of OCL expressions and assign
the results from evaluating these OCL expressions to the corresponding elements of the formal
MFERT model.

As standard OCL expressions cannot result in a mathematical function definition, we
here introduce a new type call@d1Function and an operation callegsFunction() de-
fined for0clAny. The new typedclFunction is introduced for technical reasons to indicate
that a mathematical function is built from a given set of tuples. BasicaliyFunction is
has attributesiefinitionSet:Set (OclAny) andtargetSet:Set(0clAny) and an opera-
tion f (arf:0clAny) :0clAny that constitutes the actual function. A definition of operation
asFunction() is given by the following declaration.

obj->asFunction(): OclFunction
pre: obj.oclIsKindOf (Set(Tuple(OclAny,0clAny)))
pre: obj->collect(elem : Tuple(OclAny,OclAny) | elem.at(1))
->isUnique (name)
post: result.definitionSet = obj->collect(elem | elem.at(1))->asSet()
post: result.targetSet = obj->collect(elem | elem.at(2))->asSet()
post: obj->forAll(elem | result.f(elem.at(1l)) = elem.at(2))

This operation can be applied to finite collections of tuples with 2 elements each. The first
elements of the tuples form the definition set of the function, the second elements form the target
set. The result is a function with a definition and a target set and a mapping that can be accessed
via operationf (). In order to provide a total function, we implicitly se¢sult.f (elem) =

158 CHAPTER 6. MFERT

OclUndefined for all elements of the definition set type that do not appear in the regarded set
of tuples.

With this help function, the structural elements of a UML model that complies to the vali-
dation constraints for MFERT can be mapped to the components of the formal MFERT model.

...................

Concerning the set'SM of finite state machines, we here simply substitute the general
notion of 'S M s by the timed UML State Diagram variant. Note that this notation allows more
general behavior of MFERT nodes than the abstract interpreter functionality defined in Sections

..........................

.....

6.5 Contributions of the Chapter

This chapter addressed the following issues:

¢ In this chapter, a set-theoretic formal model of MFERT is defined. Basically, it is a sim-
plified version of the general functional MFERT description scheme by Uta Schneider
[5ch96]. In particular, certain kinds of actions and activities are identified for MFERT
nodes, i.e, requests for putting and getting production elements, actual transfers of pro-
duction items between MFERT nodes, and transformation activities with a notable dura-
tion.

e The dynamic semantics of MFERT is defined by means of abstract interpreters that are
local to each node.

e For a concrete notation of the behavior of MFERT nodes, FSMs in form of the timed
UML State Diagram variant of Chaptér 5 are employed. Note that further restrictions on
the set of actions and activities are employed.

e A UML Profile for the structural elements of MFERT is defined. This allows to associate
OCL constraints to MFERT nodes, as MFERT nodes are interpreted as stereotypes of
classes. For UML classes, in turn, OCL constraints in form of invariants can be applied

6.5.

CONTRIBUTIONS OF THE CHAPTER

Table 6.1: Mapping to Formal MFERT

PE

PP

DT

In

Out

Cap In

CapOut

Time

FSM

Mpswm

I’I’Litjn

I’I’Litout

:= ProductionElementNode->allInstances()
:= ProductionProcessNode->allInstances()

:= ElementFlow->allInstances()
->collect(e:ElementFlow | Sequence{e.source, e.targetl})
->asSet ()

:= ProductionDataType->allInstances()
->collect(pdt:ProductionDataType |
pdt.allAttributes()->collect (type)->sortedBy(name))
->asSet ()

:= ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.elementTypel})->asFunction()

:= ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.inputSequence})->asFunction()

:= ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.outputSequence})->asFunction()

:= ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.inputCapacity})->asFunction()

:= ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.outputCapacity})->asFunction()

:= ProductionElementNode->allInstances()
->collect(p | Sequence{p, p.time})->asFunction()

:= ProductionProcessNode->allInstances ()
->collect(p | p.behavior) —-- ’behavior’ is a link to
->asSet () -- a timed UML State Diagram

:= ProductionProcessNode->allInstances()
->collect(p | Sequence{p, p.behavior})->asFunction()

:= ProductionElementNode->allInstances ()
->collect(p |
Sequence{p, p.inputDeclaration.expr.oclAsType(String)})
—>asFunction()

:= ProductionElementNode->allInstances ()
->collect(p |
Sequence{p, p.outputDeclaration.expr.oclAsType(String)})
—>asFunction()

159

160 CHAPTER 6. MFERT

Chapter 7

Real-Time Properties with OCL

Professional Engineers are expected to use discipline, science, and
mathematics to assure that their products are reliable and robust.
We should expect no less of anyone who produces programs professionally.

In the domain of database systems, different typeseafiantic integrity constraintre distin-
guished {[ENQD]. Static constraintslefine required properties on nontransient system states,
i.e., static properties within one system stafeansition constraintsleal with system changes
between two subsequent states. In real-time systems design, additiengtigral constraints

are identified that consider sequences of state transitions in combination with timing bounds.
While static and transition constraints can already be expressed with OCL, it currently lacks
means to express temporal constraints.

To overcome this, we introduce temporal OCL operations that enable modelers to specify
state-oriented behavior. The proposed OCL extension reasons about future object states, since
we define the semantics based on a future oriented tree temporal logic without loss of generality.
Accordingly, OCL can also be easily extended for specification of past-oriented constraints.
This work has evolved through the recent years. Due to a missing OCL metamodel in the current
UML 1.5 specification, we first took the OCL type metamodel presented by Baar amalé4
[BHO0] and performed a rather heavyweight extension by directly extending that metamodel
for adoption by the Analysis and Design Platform Task Force of the OMG.[OMGO03a]. With the
official adoption of OCL 2.0 in October 200:3 [OMGQO3b], we can now develop a ‘lightweight’
extension by means of a UML Profile for our temporal OCL extension.

There are other works concerning temporal extensions of OCL. We will discuss them at the
end of this chapter. As a guideline for developing a consistent and successful OCL extension,
we here formulate some requirements to fulfill:

Requirement 7.1 An OCL extension that enables to specify temporal requirements should
reuse existing OCL concepts and keep the common syntax of OCL to keep the learning curve
low for OCL users.

Requirement 7.2 With the resulting OCL extension, it must be possible to express all patterns

.............

161

162 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

As timing issues are not covered at all in the pattern system, it is necessary to additionally pro-
vide corresponding time-related specification means for the domain of real-time systems. For
the context of this thesis, we therefore additionally consider the following additional, domain-
specific requirement.

Requirement 7.3 In order to be able to express real-time constraints, explicit timing annota-
tions and timing intervals must be supported in the resulting OCL extension. The corresponding
temporal OCL expressions must have a formal semantics.

7.1 UML Profile for Real-Time Constraints with OCL

The integration of State Diagram states into the formal model for OCL expressions allows
to extend OCL towards specification of constraints that regardttte-related behavioof a
model.

For example, consider again the manufacturing scenario with clissesne andInput-
Buffer. Assume that clasenputBuffer has an associated State Diagram in which state con-
figurationSet{Loading} represents that an item is currently being loaded into the buffer. In
such simple cases, we allow to omit the set-notation and may simply speeidyng to denote
a configuration.

To ensure production progress, we require that items have to periodically arrive at the input
buffer within 400 time units. With other words, stateading is always reached again within
400 time units. In our temporal OCL extension, a corresponding OCL constraint is

context InputBuffer inv:
self@post(1,400)->forAll(trace | trace->includes(Loading))

Operatiornpost (a,b) basically returns the set of all possible traces of state configurations start-

ing in the current system state. Parameteasidb are timing delimiters that specify the timing
interval to consider. In the example, this is the next 400 time unitspbet, (1,400) returns a

set of traces, where each trace is a sequence of 400 elements. The elements of a trace in turn are
state configurations (formally, we restrict on the compoi&niy of traceo (M) as defined in

we can aﬁﬁl%»includes(Loading) to require that trace must include state configuration
Loading.

Further examples can be found in Chapter 8. In the remainder of this section, we define a
corresponding language extension based on the adopted OCL 2.0 specification by the following
approach.

Syntactically, we first extend the abstract OCL syntax by stereotypes for temporal expres-
operations have additionally to be defined for this extension on layer M1 of the UML 4-layer
architecture. Therefore, we add some new production rules to the concrete syntax grammar of

.............

M1 layer in an OCL Profile, since OCL predefines types and operations on that level. As the
concrete OCL syntax only partly provides the operations that are defined in OCL expressions,

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 163

.............

Semantically, our proposed state-based temporal OCL extension makes use of the notion of
time-based tracethat are also defined in that subsection.

7.1.1 OCL Metamodel Extensions
The OCL 2.0 specification distinguishes two subpackages for its metamodel paskage

types and affiliated UML type‘g,m\'/vhile tl@CL expression metamodid#scribes the structure of
OCL expressions.

States in OCL. In the OCL type metamodel, the metaclass for State Diagram states is
OclModelElementType. Generally, the metaclaSs1lModelElementType represents the types

of elements that andodel1Elements in the UML metamodel. In that particular case, the model
elements are states (or more precisely, instances of a concrete subclass of the abstract meta-
classState), and the corresponding instance@flModelElementType on layer M1 is the
predefined OCL typ@clState.

For each state, there implicitly exists a corresponding enumeration litetali®tate,
i.e.,0clState is seen as an enumeration type on the M1 layer, accumulating the state names
of all State Diagrams. As there is no particular information provided how these enumeration
literals are syntactically defined, we require here that the complete path — excluding the top

.........

In anticipation of the concrete syntax changes to be introduced, we identify final State Diagram
states by the new OCL keywoFRdnalState.

4 s N\
4 X N\
Al
o—{J P k(] |

0—>_ ___________ Y
B—I C e,

M NS
\\ d Y,

Figure 7.1: Concurrent State Diagram

Configurations. The building blocks of State Diagrams are hierarchically ordered states.
Note that we do not regard pseudo states (like synch, stub, or history states) in this context
and recall that a&aomposite statés known as a state that has a set of substates and can be
concurrent i.e., consisting of orthogonal regions which in turn are (composite) stSiayple

164 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

statesare non-pseudo, non-composite states. To uniquely identify an active state configuration,
it is sufficient to list the comprising simple states, which we denotelsssic configurationn
accordance with Definitiofi 4.14.

However, several other notions are imaginable in this context and can be easily adapted,
e.g., the approach of UML 1.5 that takes the whole state tree as a configuration. For explicit
specification purposes, we might also allow tmderspecified configuratioris represent sets

.........

configuration specification in the sense that it denotes the set of configurations

{ Set{X::A::J,X::B::M}, Set{X::A::J,X::B::N}, Set{X::A::J,X::B::FinalState} } .

+appliedProperty
0.1

PropertyCallExp

0..1] +source
0..n {ordered}

OclExpression
+arguments

Operation
(from Core)

OperationCallExp 1 | +referredOperation

I
<<stereotype>>

TemporalExp

PastTemporalExp FutureTemporalExp

Figure 7.2: Stereotypes for Temporal Expressions

Temporal Expressions. In the OCL expression metamodel, we introduce a new kind of
operation call, i.e., stereotypeemporalExp represents a temporal expression that refers to
PastTemporalExp for past-oriented ané‘ﬂ%ﬁreTemporalExp for future-oriented temporal
expressions, respectively. We need these two stereotypes in order to define a semantics for

...........

.............

metamodel are marked by gray boxes.

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 165

CollectionLiteralExp <<stereotype>> TraceLiteralExp

kind : CollectionKind

+parts | 0..n {ordered}

Classifier +type

(from Core) CollectionLiteralPart

——

<<enumeration>> T 7 <<stereotype>>| TraceLiteralPart
CollectionKind CollectionRange Collectionltem AR

Collection
Set +first|, 1 +last|, 1

OrderedSet i +item
Bag OclExpression

Sequence N A

1
1 <<taggedValue>> upperBound[1]

<<taggedValue>> lowerBound[1] 1

Figure 7.3: Parts of the OCL Expression Metamodel with Stereotypes for Traces

Trace Literals. As we want to reason about traces by means of states and configurations,
we also need a mechanism to explicitly specify traces with annotated timing intervals by lit-
erals. We therefore define stereotyfeaceliteralExp and TraceLiteralPart as illus-

formedness rules by means of OCL for reasons of brevity.
1. The collection kind of stereotyf®aceLiteralExp iS CollectionKind: : Sequence.

2. The type associated with raceLiteralPart must beSet (0OclState). Note that
we do not require explicit specification of a set when a state configuration can already
be specified by one state only. In this case, t@p@State is implicitly casted to
Set(0OclState).

3. EachTraceLiteralPart has a lower bound and an upper bound.
4. Lower bounds must evaluate to non-negative Integer values.

5. Upper bounds must evaluate to non-negative Integer values or to the Sttifigfor
infinity). In the first case, the upper bound value must be greater or equal to the corre-
sponding lower bound value.

7.1.2 Concrete Syntax Changes

Having defined new classes for temporal expressions on the abstract syntax level, modelers are
not yet able to use these extensions, as they specify OCL expressions by means of a concrete
syntax. In Chapter 4 of the OCL 2.0 specification, a concrete syntax is given that is compliant
with the current OCL standard. The new concrete syntax is defined by an attributed grammar

166 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

with production rules in EBNF that are annotated with synthesized and inherited attributes as
well as disambiguating rulednherited attributesare defined for elements on the right hand
side of production rules. Their values are derived from attributes defined for the left hand
side of the corresponding production rule. For instance, each production rule has an inherited
attributeenv (environment) that represents the rule’s namesp&ymthesized attributesre
used to keep results from evaluating the right hand sides of production rules. For instance, each
production rule has a synthesized attribage (abstract syntax tree) that constitutes the formal
mapping from concrete to abstract syntBxsambiguating rulesllow to uniquely determine a
production rule if there are syntactically ambiguous production rules to choose from.

In the following, we present some additional production rules for the concrete syntax of the
OCL 2.0 specification. A mapping to the extended abstract OCL syntax is provided for each
new production rule.

OperationCallExpCS?

Eight different forms of operation calls are already defined in the OCL 2.0 concrete syntax. In
particular, it is distinguished between infix and unary operations, operation calls on collections,
and operation calls on objects (with or without ‘@pre’ annotation) or whole classes. We ad-
ditionally introduce rule [J] for temporal operation calls and list the synthesized and inherited
attributes for syntax [J] below. Disambiguating rules for syntax [J] are defined in the specific
rules for temporal expressions.

[A] OperationCallExpCS ::= OclExpressionCS[1] simpleNameCS OclExpressionCS[2]
[B] OperationCallExpCS ::= OclExpressionCS ’->’ simpleNameCS ’(’ argumentsCS? ’)’
[C] OperationCallExpCS ::= OclExpressionCS ’.’ simpleNameCS ’(’ argumentsCS? ’)’
[J] OperationCallExpCS ::= TemporalExpCS

Abstract Syntax Mapping:

-- (Re)type the abstract syntax tree variable ’ast’

OperationCallExpCS.ast : OperationCallExp
Synthesized Attributes:

-- Build the abstract syntax tree

[J] OperationCallExpCS.ast = TemporalExpCS.ast
Inherited Attributes:

-- Derive the namespace stored in variable ’env’

[J] TemporalExpCS.env = OperationCallExpCS.env

TemporalExpCS
A temporal expression is either a past- or future-oriented temporal expression.

[A] TemporalExpCS ::
[B] TemporalExpCS ::

PastTemporalExpCS
FutureTemporalExpCS

We leave out the rather simple attribute definitions here. Basically, the abstract syntax mapping
definesTemporalExpCS.ast to be of typeTemporalExp, the synthesized attributest is built
from the right hand sides, and the inherited attribiite is derived fronTTemporalExpCS.

2All non-terminals are postfixed by ‘CS’ (short f@oncrete Syntgxto better distinguish between concrete
syntax elements and their abstract syntax counterparts.

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 167

FutureTemporalExpCS

A future-oriented temporal expression is a kind of operation call. We additionally have to
introduce the operator ‘@’ to indicate a subsequent temporal operation. Note that an operation
call in the abstract syntax has a source, a referred operation, and operation arguments, so the
abstract syntax treest must be built with corresponding synthesized attributes.

FutureTemporalExpCS ::= OclExpressionCS ’@’ simpleNameCS ’(’ argumentsCS? ’)°

Abstract Syntax Mapping:
FutureTemporalExpCS.ast : FutureTemporalExp
Synthesized Attributes:
FutureTemporalExpCS.ast.source = OclExpressionCS.ast
FutureTemporalExpCS.ast.arguments = argumentsCS.ast
FutureTemporalExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation(simpleNameCS.ast,
if argumentsCS->notEmpty() then
argumentsCS.ast->collect (type)
else
Sequence{}
endif)
Inherited Attributes:
OclExpressionCS.env = FutureTemporalExpCS.env
argumentsCS.env FutureTemporalExpCS.env
Disambiguating Rules:
-- Operation name must be a (future-oriented) temporal operator.
[1] Set{’post’}->includes(simpleNameCS.ast)
-- The operation signature must be valid.
[2] not FutureTemporalExpCS.ast.referredOperation.oclIsUndefined()

If other temporal operations than @st(a,b) need to be introduced at a later point of
time, only disambiguating rule [1] has to be modified correspondingly. For instange()
might be introduced as a shortcut fasst (1,1), or post () without any parameters could be
the shortcut fopost (1,’inf?).

A corresponding extension to past temporal operations can be easily introduced, e.g., by
means of the operation nampee (). In the remainder, we only focus GtutureTemporal-
ExpCS. Note thatpre andpost as operation names cannot be mixed up with pre- and postcon-
dition labels or the @re time marker, because operations require subsequent brackets.

TracelLiteralExpCS

Trace literal expressions are a special form of collection literal expressions, as they represent
sequences of explicitly specified configurations. In order to allow interval definitions for trace
specifications, we have to specify some new production rules. We first introduce a new chain
production rule to provide an alternative to common collection literal expressions.

[A] CollectionLiteralExpCS ::= CollectionTypeldentifierCS
’{> CollectionLiteralPartsCS? ’}’
TraceLiteralExpCS

[B] CollectionLiteralExpCS ::

Abstract Syntax Mapping:
CollectionLiteralExpCS : CollectionLiteralExp

168 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

Synthesized Attributes:

[B] CollectionLiteralExpCS.ast.parts
[B] CollectionLiteralExpCS.ast.kind
Inherited Attributes:

TracelLiteralExpCS.ast.parts
TraceLiteralExpCS.ast.kind

[B] TraceLiteralExpCS.env = CollectionLiteralExpCS.env

In syntax [A], CollectionTypeldentifierCS distinguishes between literals for collections

(Set, OrderedSet, Sequence, andBag), and production rul€ollectionLiteralPartsCS
collects a number of expressions. Option [B] is added to provide a notation for traces. The
collection kind of traces iSollectionKind: : Sequence by default, as specified below.

TraceLiteralExpCS ::= ’Trace’ ’{’ TraceLiteralPartsCS ’}’

Abstract Syntax Mapping:
TraceLiteralExpCS.ast : TraceLiteralExp
Synthesized Attributes:
TraceLiteralExpCS.ast.parts = TracelLiteralPartsCS.ast
TraceLiteralExpCS.ast.kind CollectionKind: :Sequence
Inherited Attributes:
TraceLiteralPartsCS.env = TraceLiteralExpCS.env

We here introduce the new keywdrdace to denote trace specifications, but note that no new
kind of collection type is necessary on the metalevel, as we treat traces simply as sequences.

TraceLiteralPartCS

The production rul@raceLiteralPartsCS assembles the individual elements of a trace spec-
ification. It is defined correspondingly to the already existing production rule for collection
literal parts, such that definitions at andenv are left out for reasons of brevity.

TraceLiteralPartsCS[1] ::= TracelLiteralPartCS (’,’ TraceLiteralPartsCS[2])7

For each trace literal part, a timing interval may be associated, which specifies how long a
configuration is active. Intervals are of the syntactical fdrmb], with a evaluating to a non-
negative Integer, and either a non-negative Integer with> a or the String inf’ (cf. well-
is taken as the upper bound, and the lower time bound is implicitly set to zero. If no interval is
specified at all, the bounds are implicitly setfi®, >inf’]. The corresponding grammar rule
is as follows.

TracelLiteralPartCS ::= OclExpressionCS[1]
([’ (OclExpressionCS[2] ’,’)7?
(OclExpressionCS[3] | ’inf’) ’]°
)7

Abstract Syntax Mapping:

TracelLiteralPartCS.ast : TracelLiteralPart
Synthesized Attributes:

TraceLiteralPartCS.ast.item = OclExpressionCS[1].ast

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 169

TraceLiteralPartCS.ast.lowerBound = if OclExpressionCS[2]->notEmpty() then
OclExpressionCS[2] .ast
else
70)
endif
TracelLiteralPartCS.ast.upperBound = if OclExpressionCS[3]->notEmpty() then
OclExpressionCS[3] .ast
else
’inf’
endif
Inherited Attributes:
OclExpressionCS[1] .env
OclExpressionCS[2] .env
OclExpressionCS[3] .env

TraceLiteralPartCS.env
TraceLiteralPartCS.env
TracelLiteralPartCS.env

CollectionTypeCS

To allow trace specifications as part of variable definitions and provide a means for explicit
typing on the concrete syntax level, we need to add a rulexpilicitreferencing to a type called
Trace. We therefore add an alternative production rule in the contexddfectionTypeCS.

[A] collectionTypeCS ::
[B] collectionTypeCS ::

collectionTypeIldentifierCS ’(’ typeCS ’)’
’Trace’

Abstract Syntax Mapping:
typeCS.ast : CollectionType
Synthesized Attributes:

[B] collectionTypeCS.ast.oclIsKindOf (SequenceType)

[B] collectionTypeCS.ast.elementType.oclIsKindOf (SetType)

[B] collectionTypeCS.ast.elementType.elementType.oclIsKind0f{0clState)
Inherited Attributes:

-- none for [B]

7.1.3 Standard Library Operations

In our previous work:[FM0Zc], we introduced two new built-in types calledConfigura-

tion and0clPath on the M1 layer to handle temporal expressions. We present an alternative
approach that avoids to introduce new types and instead operates on the already existing OCL
collection types.

Configuration Operations. For configurations as a special form of sets of states, we have to
elaborate on operations applicable to sets that return collections since the resulting collection
can be an invalid configuration with an arbitrary set of states. Nevertheless, most of the existing
general collection operations [OMG03b, Section 11.7] can be directly applied to configurations.
These are=, <>, size(), count(), isEmpty(), notEmpty(), includes(), includesAll(), excludes(),
and excludesAll(). In addition, iterator operations exists(), forAll(), any(), one() are applica-
ble as well [OMGO3b, Section 11.9.1]. Other OCL set operations applied to configurations,

170 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

e.g., union() and intersection(), might result in arbitrary sets of states rather than in valid con-
figurations. We allow such operations, but explicitly mention that they have to be used with
care.

Trace Operations. Similar to configurations, many of the existing OCL sequence operations
can immediately be applied to traces of configurations. These operations ates, size(),
iIsEmpty(), notEmpty(), includes(), includesAll(), excludes(), excludesAll(), subSequence(),
prepend(), first(), at(), exists(), forAll(), any(), one(). Operations last() and append() can be
applied to traces of finite length only. Note that some sequence operations may result in invalid
traces, e.g., select() and collect().

Additional Operations for OclAny. We introduce an operatiosic1InConf () that checks
for an active configuration. Given a system staté), an objecbid € ¢ ass.., and a set of
states:fg € I,,,.(Set(OclState)), the semantics of operati@elInConf () is then defined by
function

I[oclInConf : OclAny x Set(OclState) — Boolean]|(oid, cfg) =
true, if oid € Yacrive. Ncfg € B,
Acfg = oconr.(oid),
false, if oid € Yacrivee/Ncfg € B,
N cfg # oconre(oid),
1, if oid & Yacrivee V cfg =1
V (0id € Xacrivee Ncfg & B U{L}).

\

In the definition aboveB. denotes the set of basic configurations of State Diagtaih

..........

.............

plete formal semantics. First, we additionally define thelgetler Speci fied. of valid un-
derspecified configurations for a given State Diagréay.. Then, we provide a mapping
basicConfs. : UnderSpecified. — B, that gives for each underspecified configuration the
corresponding set of basic configurations. Finally, the conditions of the formal semantics are
adjusted, e.gl/nderSpeci fied, replacesB, and condition:fg = oconr.(0id) is replaced by
the conditionvd € basicConfs.(cfg) : b € oconr.(0id).

We also introduce operatigriost (a,b) as a new temporal operation @1Any and allow
the @-operator to be used only for such temporal operationpo&®(a,b) returnsa set of
possible future tracem the interval [a,b]. First, all possible traces that start with the current
configuration are regarded, and then the timing interval [a,b] determines the subtraces that have
to be returned by the operation. The result has to Isetaf traces, as there are typically
different orders of executions possible in the future steps of a State Diagram. Note that in an
actual execution of a State Diagram there is of course only exactly one of the possible traces
selected. An informal semantics pést (a,b) is given as follows.

7.1. UML PROFILE FOR REAL-TIME CONSTRAINTS WITH OCL 171

OclAny.post(a:Integer,b:0clAny) : Set(Sequence(Set(0OclState)))
pre: a >= 0 and ((b.oclIsTypeOf (Integer) and b >= a) or
(b.oclIsTypeOf (String) and b = ’inf’))

-- The operation returns a set of possible future state configuration traces
-- in the interval [a,b] including the configurations of time points a and b.

Additional operations, such as@st(a:Integer) or @next(), can be easily added

7.1.4 Semantics of Temporal Expressions

In this subsection, we define a formal semantics of operaiian (a,b). We make use of the

nested collection typ& RACE “ Sequence(Set(OclState)).

When UML State Diagrams are equipped with time, system state traces as given by Defi-
Profile for Scheduling, Performance and Tiprevides a variety of timing concepts.JOMG03c,
Chapter 5]. In particular, timing mechanisms by means of a sterestyfielock> can be
introduced together with appropriate tagged values, BTg.gsolution. Progress of time is
usually measured by counting the number of expired cycles of a strictly pereddrence clock
This results in a discretization of time, i.e., distinct physical instants might be associated with
the same clock instant when they are temporally ‘too close’ to each other. Therefore, a sufficient
resolution of the reference clock must be chosen for the particular model under investigation.

We assume in the following that a system-wide reference clock is defined together with a
known resolution. The duration between two time instants is referred to asmemenit This
leads to an Integer-based notion of unit time delay, i.e., each time instant can be represented by
an Integer value (in contrast to dense time, where time instants are represented by Real values).
A trace in such a timed model is then defined as follows.

Definition 7.1 (Time-based Trace)
Atime-based tractor an instantiation of an extended object modélis an (infinite) sequence
of system states,

trace(M) < ({ o(M)g, (M), ..., a(M)a, ...)),

where eaclv (M)}, i € Ny, represents the system statime units after start of execution. In
particular, o(M);o denotes the initial system state.

Note that we still require the same properties as in common traces, in particular, only one
operation call per object is permitted in consecutive elements of the trace. This can be guaran-
teed by assuming that execution of an operation takes at least one time unit. System states of
time-based traces can be compareddcked statesf runsfor Interval Structures as described

g e S
Given a system state(M)}, at time instant, an objectoid € Xcrass,., an integer value
a € Iyype(Integer), and a valué € I,,,.(Integer) U {oc}. For parameteb, we assume here

172 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

that the stringinf’ defined in the concrete syntax is directly mappeddioFor the symbobo,
it holds that
VieNyg:i<oo Al+00=00 A 17— 00=00.

A tracetraceyidap i) € lype(TRACE)) for objectoid that starts at time + « and ends at
timei + b — a is then defined by

de . .
tracegidap i lef (cfgo,---,cfgp—a), whereVj € {0,...,b—a}:cfg; € oconr(0id)}it).

Eachtraceyqqp i) 1S interpreted as aossiblefuture execution path. It is just a possible
trace, as is is not determined at tim&hethercfg;, j € {1,...,b — a}, will be reached at the
later point of timez + ;.

In the case thal = oo, a tracetrace,iqq ;) 1S Of infinite length. An explicit instantiation
of such traces as part of the model is therefore not intended. However, it is possible to give
corresponding formal specifications by means of temporal logics, as illustrated below. Temporal
logics specifications can then be directly used by model checkers.

Denoting the set of all possible future execution pathg®yice,iqaq i) }, the semantics of
operationpost (a,b) is then defined by

I[[post : OclAny x Integer x OclAny — Set(TRACE)]|(oid, a,b) w
{tracegigap 1 }, if 0id € Yacrive,
Aa>0 A b>a,
1, if oid & XacTivE.,
4, if a<0Va=L1
Vb<a Vb=_L1.

\

7.2 EXxpressing Specification Patterns

In this section, we demonstrate how to express patterns of the pattern system presented in Sec-

It turns out that only some minor extensions are necessary to cover all property patterns.
Firstly, a new operation needs to be introduced that is particularly applicable to traces, i.e., op-
erationstartsWith(Sequence(Set (OclState)) :Boolean that checks for a matching sub-
sequence of configurations. And secondly, specification means for trace literal parts have to be
extended. A trace literal part becomes a logical expression with configurations as operands and
unary and binary operators (suchmas, and, or) as connectives.

We here take the absence pattern as an example and provide corresponding temporal OCL

plain their semantics in the remainder.

We apply the patterns in terms sfate configurationsi.e., the set of states that uniquely
determines the currently active states in a UML State Diagram. Consequently, in contrast to the
original patternsp, Q, andR denote configurations in the remainder. Nevertheless, note that in
the simplest case a configuration consists of one state. As configurations uniquely determine

7.2. EXPRESSING SPECIFICATION PATTERNS 173

.........

Pis false. ..

.. globally inv: not self.oclInConf (P)

.. beforer init: self@post()->forAll(g | g->startsWith(Sequence{not P, R}))

.. afterqQ inv: self.oclInConf(Q) implies self@post()->forAll(g | g->excludes(P))

inv: self.oclInConf(Q) implies

- betweerq andr self@post ()->forAll(g | g->startsWith(Sequence{not P, R}))

inv: self.oclInConf(Q) implies

-~ afterquntil R not self@post()->exists(g | g->startsWith(Sequence{not R, P}))

the current state-related status of an object, conditions of fBramd not Q' are equal to the
simple formula P’, as two distinct configurations of a State Diagram can by definition never
occur at the same time.

The following concepts and operations have been newly introduced to OCL to be able to
express the specification patterns. Note that we keep compliant with the existing standard OCL
syntax and reuse as often as possible existing collection operatiorta kel (), exists (),
includes (), andexcludes ().

1. The only state-related operation of the current OCL standard as well as the new OCL
2.0 specification is calledc1InState (s:0clState). Itis defined over objects of user-
defined classes that have an associated State Diagram. OpexatiniState (s:0cl-
State) returns true if state is currently active.

Additionally, we define and make use of operatan InConf (c:Set (OclState)) for
State Diagram configurations. This operation returns true if the object is in configuration
c at time of evaluation.

2. In addition to OCL invariants declared by the keyward;, we introduce a new clause
calledinit. In contrast to an invariant over an objeetj that has to hold each time after
obj’s status has changed, the expression afirt-clause has to hold only at the starting
point of execution. Nevertheless, note that the expression afrtive-clause may be a
temporal OCL expression.

3. Temporal OCL expressions are a new concept introduced to enable specification of dy-
namic, behavioral constraints. In our approach, temporal OCL expressions make use of a
speciatemporal operatiomwith signaturepost (a: Integer,b:0clAny). To further em-
phasize that this is a temporal operation, we make use of a leading se@aratmad of
the common dot-notation. The operation can be applied to objects of user-defined classes
that have an associated State Diagram.

When@post (a,b) is evaluated at a certain point of time we obtain the set of possi-
ble configuration sequences in the timing interiata, t+b]. If parametersa andb are
omitted, we sets = 1 andb = ’inf’ (short for infinity to cover infinite future execu-
tions).

174

CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

4. We have defined an extended syntax for explicit specification of configuration sequences.

This syntax is particularly tailored to the needs for formulating general execution paths
that may be subject to some additional conditions. Basically, we allow that logical unary
For the real-time domain, we also allow explicit timing intervals in this context, but note
that these are not required for the general patterns we investigate in this thesis. E.g., the
sequence specification

Sequence{ not P [1,100], P [1,’inf’], Q }

means that configuratidnmust not be true until within 100 time units configuratiors
reached, and afterwards configuratimust eventually become true. When the timing
interval for one of the firsikh — 1 sequence elements is left out, it is implicitly set to
[1,’inf’], but note that consecutive configuration specifications must still eventually
become true (so-callestrong untilsemantics).

. We newly introduce the boolean operatiartsWith (g: Sequence (T)), which can be

applied to sequences of objects of some typ&hat operation checks whether a given
sequence starts with a sequence specified by parameter

In particular, wherT is equal to typeSet (0c1lState) and the elements af denote state
configurations, we can make use of operati@artsWith() to formulate restrictions

over State Diagram execution paths, using the syntax for configuration sequences as il-
lustrated under item 4.

Using operatiorstartsWith() is similar to selecting a subsequence with the standard
OCL operatiorsubSequence (a: Integer,b: Integer) and then matching the extracted
subsequence wity But unfortunately, we cannot a priori provide an upper bobfrdm

our particular viewpoint of possibly infinite execution runs, such that we cannot make use
of existing OCL operations.

...

sponding temporal OCL expressions for the other main property specification patterns.

Expressing Assumptions with OCL. To capture the additional assumptions we make con-
cerning the occurrence of scope delimiters, different approaches are imaginable. One idea uses
only standard OCL language concepts. The expression

if <assumption> then

<pattern>
else

OclUndefined
endif

makes use of the three-valued logic of OCL that includesindefined as the third logical
value. For example, the complete OCL invariant for patteris false after Q'is defined
as follows.

7.3. MAPPING TO THE TEMPORAL LOGICS CCTL 175

inv: if @post()->forAll(g | g->includes(Q)) then
self.oclInConf (Q)
implies
self@post()->forAll(g | g->excludes(P))
else
OclUndefined
endif

Note that OCL has a three-valued logic, i.e., OCL type Boolean actually comprises the
valuestrue, false, andOclUndefined. In the expression above¢lUndefined is returned
when the if-condition does not hold. Unfortunately, such an expression cannot directly be
mapped to a temporal logic like CTL or LTL due to a missing third logical value.

Another idea is to extend OCL and introduce a dedicated new clause, e.g., aamed,
to express an assumption in the same manner as a precondition of an operation. For instance,
the assumptiorR becomes true on all paths’ canthen be expressed by

assume: @post()->forAll(g | g->includes(R)) .

Similarly, it has already been suggested by other authors to introduce means to foexcégte

We can make use of such an approach to specify a corresponding exception for each assump-
tion simply by negating the assumption expression. When the exception evaluates to true, the
assumption does not hold, and the respective pattern cannot be validated.

The advantage of this approach is that such assumption and exception expressions can di-
rectly be mapped to temporal logic formulae for further usage in verification tools.

7.3 Mapping to the Temporal Logics CCTL

In this section, we provide a mapping from instanceFwfureTemporalExpCS to tempo-

.........

also possible to derive similar mappings to other future-oriented temporal logic formulae, e.g.,
dense-time TCTL or timed LTL formulae. The mapping of temporal OCL constraints to tem-
poral logics depends on the formal underlying model. As we consider 1/O-Interval Structures
as the formal model in the context of this thesis, we map temporal OCL constraints to the cor-
responding temporal logics CCTL. The relation of CCTL and I/O-Interval Structures is defined

Representation of OCL states in CCTL. For a state specification in OCL, a corresponding
representation of that state in CCTL has to be given. In this context, we have to consider how
anactivatedOCL state of a State Diagram is represented in I/O-Interval Structures. Recall that
composite OCL states of objectsobjectId are translated into separate I/O-Interval Struc-
that an additional internal boolean variable caltativatedis introduced to that [/O-Interval
Structure to indicate whether the composite state is currently activated or not.

Given a state specificatiattateName for an objectobjId within an OCL expression, the
corresponding CCTL formula is

176 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

((IS_[[objIdl]_[[parent(stateName)]].state = [[stateNamell)
& (IS_[[objIdl]_[[parent(stateName)]].activated = true)) .

In this formula, [[parent (stateName)]] denotes the direct composite superstate of
stateName. If [[parent(stateName)]] is the topmost state, this is the corresponding class
name ofobjId.

A complete state configuration is then built by conjunction of all corresponding CCTL state
formulae.

Mapping of Temporal OCL Expressions. By definition, OCL invariants for a given class

must be true for all its instances at any time.[OMGO03b, Section 7.3.3]. In the context of (time-
based) traces, this means that the invariant expression must be true on all possible traces at
each position. Consequently, corresponding CCTL formulae have to start witls thygerator

(‘On All pathsGlobally’), i.e., the expression followingG must be true on all possible future
execution paths at all times.

denotes a Boolean OCL expressiartlExpr is the equivalent Boolean expression in CCTL
syntax. cfg denotes a valid configuration ardt1Cfg is the corresponding set of states in
CCTL syntax.p andc are iterator variables for traces and configurations, respectively.

......

.........

inv: obj@post(1,100)->forAll(trace | trace->includes(Set{X::A::L,X::B::N}))

We read that formula as: At any time, given the current configuration of the State Diagram

associated to objectbj, all future tracesp starting from the current configuration reach —

at a certain point of time within the next 100 time units — the configuration represented by

Set{X::A::L,X::B::N}.

tent’ active objects, i.e., corresponding objects must exist from the initial system state onwards

during the complete execution time. Otherwise, we have to determine the maximal number of

created objects for a model advance Only then we are able to build a corresponding set of

communicating finite state machines by means of I/O-Interval Structures for each object.
Dynamic object creation and deletion is not addressed in this work. However, an idea to rep-

resent this feature is to introduce additional variables within the according 1/O-Interval Struc-

tures, e.g., by a Boolean variahlej1.isAlive for an objectobj1. The value of that variable

is then additionally checked in the CCTL formulae of the mapping. E.g., in the example above,

the resulting CCTL formula is

AG(objl.isAlive —
A(objl.isAlive Uy 10q
('objl.isAlive | (objl.isAlive &
objl1.S XA =1L &
obj1.SXB = N)
)))

7.4. TEMPORAL OCL QUERIES 177

For mapping trace literal expressions, lete,,...,e, be the trace literal parts of
TraceLiteralExpCS with timing intervals fi;,0;], 1 < i < n — 1. The temporal OCL ex-
pression

inv: obj@post(a,b)-> includes (Sequence{e;[ay, bi], eafaz, bs,. .., en})

maps to CCTL applying thstrong untiltemporal operator (i.ecxpri Uy,) expro requires that
expr; must be true betweenandb time units untilexpr, becomes true) as follows:

AGp, EF(E(e Ulay b1] E(es Ula,bo] EC... E(e,pq Ulan_1,bn_1] en)...))))

Note here that the path quantifier, which is applied to each sequence element, depends on the
preceding operations. Though we have given only some examples here, more complex formulae
can be easily derived from the above.
table,expr is an OCL expression anthnfiguration is a set of OCL states that denote a state
configuration. The table gives a translation by templates and can easily be applied to form more
complex expressions as well.

Table 7.2: Mapping Temporal OCL Expressions to CCTL Formulae

Temporal OCL Expression CCTL Formula
inv: obj@post(a,b)-exists(p| p—forAli(c | expr)) | AG EG) (cctiExpr)
inv: obj@post(a,b)-exists(p| p—exists(c| expr)) | AG EFy(cctiExpr)
inv: obj@post(a,b)-exists(p| p—includes(cfg)) | AG EF, (cctiCfg)
inv: obj@post(a,b)-forAll(p | p—forAll(c | expr)) | AG AG, ;(cctiExpr)
inv: obj@post(a,b)-forAll(p | p—exists(c| expr)) | AG AF,(cctiExpr)
inv: obj@post(a,b)-forAll(p | p—includes(cfg)) | AG AF,;(cctlCfg)

7.4 Temporal OCL Queries

Corresponding to the recently introduced notion of OCL 2.0 as a general expression and query
language, we can also investigate objects in a model under the aspects of execution times needed
(at least or at most) to get from one configuration to another. We here only provide an informal
description of the proposed OCL operations. They can directly be mapped to the corresponding

.............

OclAny: :minStableTime(cfg:Set(OclState)) : Integer
-- Returns the minimal time during which the corresponding State Diagram remains
-- in the given configuration cfg.
-— Returns O if never configuration cfg is never entered.
—-- Returns OclUndefined if the configuration is entered only once at remains
-- forever in that configuration.

178 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

This operation refers to the RAVEN analysis qu#@N STABLE TIME OF (x), wherex
represents the state configuratiaiy in CCTL syntax. For maximal stable times, the operation
signature is very similar:

OclAny: :maxStableTime(cfg:Set (OclState)) :Integer
—-- Returns the maximal time during which the corresponding State Diagram remains
-- in the given configuration cfg.
-- Returns O if the configuration is never entered.
-- Returns OclUndefined if the State Diagram can remain infinitely long in the
-- configuration cfg.

Finally, the two following operations represent analysis queries that extract the minimal
and maximal transition times between two configurations. Again, they can directly be mapped
to RAVEN analysis queries of the forMIN TIME OF FROM (x) TO (y) andMAX TIME OF
FROM (x) TO (y), respectively.

OclAny: :minTransitionTime(cfgl:Set(0OclState), cfg2:Set(0clState)) : Integer
-- Returns the minimal time of getting from configuration cfgl to configuration
-- cfg2.
-— Returns O if the configuration cfgl is never entered.
-- Returns OclUndefined if configuration cfg2 is never entered.

OclAny: :maxTransitionTime(cfgl:Set(0OclState), cfg2:Set(0OclState)) : Integer
—-- Returns the maximal time of getting from configuration cfgl to configuration
-- cfg2.
-- Returns 0 if the configuration cfgl is never entered.
-- Returns OclUndefined if configuration cfg2 is never entered.

7.5 Related Work

In this section, we give an overview on proposals that either extend OCL to enable spec-
ification of temporal constraints or find another way to express real-time constraints in the
context of UML. A more detailed comparison of temporal OCL extensions can be found in
[EMO2¢ . Fla03b].

Ramakrishnan et ak, JRM98, RM00] extend OCL by additional rules with unary and binary
temporal operators, e.calways andnever to specify safety and liveness properties. A very
similar approach in the area of business modeling that also considers past temporal operators is
are allowed in the temporal expressions of these works, whereas in standard OCL, only query
operations may be used. Moreover, the resulting syntax of these works does not combine well
with standard OCL, as temporal expressions appear to be similar to temporal logics formulae.

Kleppe and Warmer [KWQO0] introduce a so-called action clause to OCL. Basically, ac-
tion clauses enable modelers to specify required (synchronous or asynchronous) executions of
operations or dispatching of events. Similarly, the OCL 2.0 specification introduces message
expressions [OMG03b].

Distefano et al.:;JDKR00] define BOTL (Object-Based Temporal Logic) in order to facili-
tate the specification of static and dynamic properties. BOTL is not directly an extension of

7.5. RELATED WORK 179

OCL,; it rather maps a subset of OCL into object-oriented Computational Tree Logic (CTL).
Syntactically, BOTL looks very similar to temporal logics formulae in common CTL.

Bradfield et al.;[BKS02] extend OCL by useful causality-based templates for dynamic con-
straints. Basically, a template consists of clauses, the cause and the consequence. The cause
clause starts with the keywosddter, followed by a boolean expression, while the consequence
is one ofeventually, immediately, infinitegtc., followed by an OCL expression. The templates
are formally defined by a mapping into observational mu-calculus, a two-level temporal logic,
using OCL as the lower level logic.

Ziemann and Gogolla [ZG02, Z(G03] present an OCL extension, in which future-oriented
temporal development of attribute values and existence of objects and links can be restricted.
Similar to other approaches, temporal operators dikeays, next, andsometime are intro-
duced. For defining a formal semantics, they build upon the set-theoretic OCL semantics de-
employs a high-level notion of the development of a running system with only that information
which is necessary to evaluate OCL expressions.

Note that none of the approaches mentioned so far considers real-time constraints. Besides

.......

ticular, time expressions attached as comments without semantics), we know of the following
approaches.

The work presented by Roubtsova et al. [RvVIdR01, RT01] defines a UML profile with
stereotyped classes for dense time as well as parameterized specification templates for dead-
lines, counters, and state sequences. Each of these templates has a structural-equivalent dense-
time temporal logics formula in TCTL (Timed Computation Tree Logic). Roubtsova et al. do
not extend OCL on purpose, as they argue thatOCL has no path notion. Any extension of
OCL to present properties of computation paths breaks the idea of the language and makes it
eclectic”. In contrast to this, we think that the notion of execution paths can be introduced to
OCL, as shown in the next sections.

Sendall and Strohmeiei [$8071, $502b] introduce timing constraints on state transitions in
the context of a restricted form of UML protocol statemachines called SIP (System Interface
Protocol). A SIP defines the temporal ordering between operations. Five time-based attributes
on state transitions are proposed, e.g., (absolute) completion time, duration time or frequency of
state transitions. Using these attributes, one can then relate actions to timing constraint failures
in an extended form of transition condition (or, in UML terms: transition guard).
operatorsalways and sometime over event occurrences. These can be used for specifying
deadlines and timeouts of operations and reactions on received signals. On the metamodel,
events are equipped with time stamps by introducing a metatlagswith attributenow to
refer to the time unit at which an event occurs. In turn, each instance can access the set of
current associated events at each point of time, i.e., at®etem state
this thesis is based upon.

Those approaches, for which a formal semantics is provided, all have formal verification
by model checking in mind. Formal verification by theorem proving using OCL is investigated
in the KeY project. That approach aims to facilitate the use of formal verification for software

180 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

Table 7.3: Temporal OCL Extensions and Real-Time Specification

Approach Syntax Formal Semantics| Real-Time
Ramakrishnan et al, [RM9®9] | OCL + temp. operators - no
Conrad/Turowski [CT0Q, CT01] OCL + temp. operators - no
Kleppe/Warmer:[KW00] OCL + action clause - no
Distefano et al :[DKR(0] CTL + OCL subset BOTL no
Bradfield et al.;[BKS02] OCL + template clauses Observational no

mu-calculus

Ziemann/Gogolla 202, ZG03] OCL + temp. operators Trace semantics no
Roubtsova et al.

TR0 SRTOA] Stereotyped classes TCTL yes
Sendall/Strohmeief [S501] OCL consistent - yes
Cengarle/Knapg.JCKQ2] OCL + temp. operators Trace semantics yes
Flake/Mueller [FMO2t. FM0Zd]| OCL consistent CCTL yes

design patterns. As standard OCL currently has no formal semantics, this approach translates
OCL specifications to dynamic logic (DL), an extension of Hoare Iqgic. [Hoa69]. DL is used as
input for formal verification by theorem proving.

7.6 Implementation

The temporal extensions as presented here are integrated into a prototype OCL parser and type

visual capture loads and edits OCL types, model descriptions, and OCL constraints in parallel.
The parsers are implemented with Javﬁf(b@sed on an early implementation of OCL Version
State Diagrams are currently modeled by textual means. For this, we have implemented a
system to parse textual descriptions of class models and State Diagrams.

7.7 Contributions of the Chapter

This chapter provides the following contributions:

e A UML Profile for an extension of OCL is developed that allows to specify state-oriented
real-time constraints. The profile builts upon the OCL 2.0 metamodel. Existing OCL
concepts, such as invariants, sets, sequences, states, are re-used whenever possible. This

.........

Shttp:www.webgain.com

7.7. CONTRIBUTIONS OF THE CHAPTER 181

E%DEL Editor - constraint file: "'K:"-.,ucl—parser"\,exanmhsﬁiﬁmﬁ ariants.of -0 x|
File Edit View Import Parse TypeCheck CCTL Help

D= B o o B | &2

[Classifiers *||(oCL Types | UML Model | Constraints

D SlateType
@ [FactoryUnit

let waiting= Set{zelf:Running:Buffer: Valid:Acceptor:WaitingForCrder, =

D AGY self:Running:Buffer:Valid:Loader.any}
Stati
= S;“?n i let idle = Sef{self:Running: Buffer:Valid:Acceptor:WaitingFarOrder,
REING zelf:Running::Buffer:Valid:Loader:Idle}
[} nputStorage
D OutputStarage let lnadingSequence = Sequencefloading[20], idle}
& [Buffer
D Position

@ o — iny i1 self@postl 1 00]-=forAll{path:OclPath | path-=includesAlll Setfidle loading} J 3
enetic Types

@ [Collection(T)
§ [Basic Types
D QclExpression

iny i2 selfi@postl,100]-=forAll{path: OclPath | path-=includes(idle)
and path-=includes{loading)

@ [Oclény inv i3 self@postl,100}-=exists(path:OclPath | path-=countiloading) = 50)
D OclMaType
@ Real inw 14 self@postl 500=includes{ Sequence{idlie loading[20,40],idle}
[string o) i
D . iny iS5 selfi@postl,100}=includes(oadingSequence)
O oclstate inv i6 - self@post=farsllipath:0clPath | path-=includes(loading[20)
[} ooiconfiguratio until path-=includes(acceptorden) |+
[y oclPath ~| [| ¥

‘Messages |Parser Qutput |

hodel Parser, Parsing UML model description..
Madel Parser Impoarted file is parsed, no errors found. Imported 16 types.

| »

Canstraint Parser: Parsing OCL constraints...
Caonstraint Parser: Imported file is parsed, no errors found.

B

Saved ¥ocl-parser'exampleshms-temporal-Invariants.ocl

Figure 7.4: OCL Parser and Type Checker

Syntactically, the temporal OCL extension builts upon the concrete syntax of the OCL
2.0 specification. Semantically, the main new concept is the temporal expression that is
modeled as a special kind of operation call.

A separate section illustrates that the proposed OCL extension has the expressive power
to express all kinds of specifications that are regarded as relevant in practice, based upon

Additionally, a mapping of state-oriented real-time constraints to formulae of the time-
annotated temporal logics CCTL is given. The CCTL formulas are built w.r.t. the mapping

Some new useful OCL operations are proposed, in particular operations that reason about
minimal and maximal times between state configurations.

For further application, these operations can directly be mapped and applied in the model
checker RAVEN.

182 CHAPTER 7. REAL-TIME PROPERTIES WITH OCL

Chapter 8

Manufacturing Case Study

The oldest, shortest words — yes and no —
are those which require the most thought.
— Pythagoras

This chapter addresses the translation of an MFERT model in the context of the manufacturing

........

opment and abstract from specific implementation issues, such as bidding among stations and
AGVs (Automated Guided Vehicles) to select the most appropriate AGV for a transport. Re-
call that the formal MFERT model as presented in Ché&pter 6 represents production elements
(i.e., material and resources) as data elements within PENs (Production Element Nodes) and
PPNs (Production Process Nodes), such that production elements, e.g., AGVs, do not have an
own thread of control in the context of MFEE_‘E‘IThe MFERT model presented in this chapter
focuses on the time-constrained production progress of PPNs, and we abstract from

e the grid of positions along which the AGVs are moving,
¢ the bidding scheme that determines the most appropriate AGV for a transport, and
¢ unique identifiers for production items and resources.

One effect of these abstractions is that we cannot reason about the time a specific production
item, e.g., an engine, needs from entering the manufacturing system until it is fully processed.
In subsequent stages of system development, such parameters have to be included in the model,
but formal analysis and verification then of course becomes more complex, if not too com-
plex for formal verification tools like model checkers. Experiences with MFERT models and
I/O-Interval Structures that also capture information about the grid positions are described in

antee collision-free AGV movements in the context of the case study.

In contrast, the holonic manufacturing systems (HMS) apprda¢h [WHS94] interprets AGVs — among other
parts of manufacturing systems —laglons Holons are originally seen as autonomous and cooperative entities
with fixed rules and flexible strategiés[Koé67]. In the HMS approach, holons are redefined to be autonomous and
cooperative production units consisting of a software-based information processing component and a physical part

Dee03].

183

184 CHAPTER 8. MANUFACTURING CASE STUDY

Nevertheless, the MFERT model presented in the remainder makes use of the timed State
Diagram notation of Chapté 5 and is appropriate to demonstrate the applicability of the time-
bounded state-oriented OCL extension of Chajpter 7. The remainder of this chapter is divided
into two sections. In Subsectipn 8.1, the case study-based MFERT model is shown and its trans-
lation to I/O-Interval Structures is outlined. Though the translation has been performed by hand,
the provided code should demonstrate that an automated translation is possible. In this context,

a graphical MFERT editor has recently been developed that maps very similar MFERT models

.............

nite state machines by means of rule tables. The tool is mainly used for simulation and analysis
purposes, and property specification means to support formal verification by model checking

.........

8.1 The MFERT Model

Though the timed State Diagram variant that has been presented in GHapter 5 is employed for
modeling the timed behavior of PPNs, the general mapping to I/O-Interval Structures is simpli-
fied here w.r.t. the input queues of waiting signals and operations. This can be done because of
the syntactical restrictions in MFERT models, i.e., the bipartite structure that demands that all
nodes a PPN communicates with are PENs. PENSs, in turn, immediately process their incoming

.............

determine their next actions based on these replies, they ‘know’ what incoming messages to
wait for. l.e., all communications between PPNs and PENSs take place as a pair of a request and
a corresponding reply (which is either a grant for access or denial). This allows to omit explicit
input queues in the 1/O-Interval Structures of MFERT models.

Many parts of the mapping of MFERT nodes to I/O-Interval Structures result in very similar
RIL code (RAVEN Input Language code), such that we only list the code of representative (parts
of) 1/O Interval Structures here. For example, the PPNsSigiplyingEngines, Milling,
Drilling, andWashing mainly differ in the times that represent the processing of an item,
such that it is sufficient to describe one PPN, e5gpplyingEngines, in more detail. Figure

.........

are now annotated with
e concrete values for their shifting intervals,
¢ the size of input and output sequences, and

e initial values when appropriate.

2However, in other modeling domains, the input queue of the timed UML State Diagram variant is essential.

already make use of this work in the context of a shuttle railway system.

8.1. THE MFERT MODEL 185

SupplyingEngines

[1,1] putEngine()

EnginesSupplied
Tags:
time:=1
inputCapacity:=1
outputCapacity:=1

L—p
! %’ ﬁ/\
TransportingToMill EnginessBeforeMill Milling EnginesAfterMill
Tags: Tags:
time:=5 time:=5
inputCapacity:=1 inputCapacity:=1
™ outputCapacity:=3 outputCapacity:=3
TransportingToDril|
<<Declaration>>
/\\' outputSequence := Sequence{agv1,agv2,agv3}
—
AGVs
Tags:
time:=1
inputCapacity:=3
outputCapacity:=3
Ly
TransportingToWash
TransportingToOutput

For example, PEMGVs is initialized with 3 AGVs available for transports. If not explicitly
specified, the sequences of PENs are initially empty by default. Moreover, the operations on
PPN SupplyingEngines are shown, but operations of the other PPNs are hidden to remain
concise.

PPNs to Process Items. First of all, PPNSupplyingEngines is used as a generator to fill

the PENEnginesSupplied each time a production item is taken out of the output sequence of
that PEN, i.e., the input storage that keeps the items that are to be processed will never become
I/O-Interval Structure that is derived from that State Diagram is shown below. Note that due
to the simple structure of the State Diagram there is no need to take care about activation and
deactivation of composite substates. We also abstract from a timed activity to physically get an

186 CHAPTER 8. MANUFACTURING CASE STUDY

SupplyingEngines

Gettin
Empty N g N
Uo/ RawEngines.requestGetEngine() J

Unloading r Reloading \
do/ putEngine() Uo/ EnginesSupplied.requestPutEngine() J

Figure 8.2: PPN SupplyingEngines

item from PENRawEngines, i.e., after an acknowledgement RywEngines . ackGetEngine,

we immediately shift that item to the subsequent PEN. The activity to physically put an item
into the input sequence of the subsequent BaginesSupplied is assumed to be performed

in one time unit. The synchronous UML operation calls to the surrounding REN&S\gines
andEnginesSupplied are mapped to request signals and corresponding reply signals in the
I/O-Interval Structure, as shown below.

MODULE SupplyingEngines

SIGNAL
state : { empty getting reloading unloading }
INPUT
ackGetEngine := RawEngines.ackGetEngine
ackPutEngine := EnginesSupplied.ackPutEngine
DEFINES
requestGetEngine := (state==getting)
requestPutEngine := (state==reloading)
INIT
(state==empty)
TRANS
|- (state==empty) - --> state:=getting
|- (state==getting) -- ackGetEngine --> state:=reloading
1-> state:=getting
|- (state==reloading) -- ackPutEngine --> state:=unloading
!-> state:=reloading
|- (state==unloading) -- :1 --> state:=empty
END

PPNsMilling, Drilling, andWashing are modeled in a very similar way, such that the
resulting 1/0O-Interval Structures do not differ much from the one shown above. The main dif-
ference is an additional state calkeskrking. That additional state is equipped with an activity
to model the time to physically process (e.g., wash) the current item.

Transporting PPNs. A State Diagram for PPN'ransportingToMill is shown in Figure

.........

time-dependent activities of an AGV object. The activities are initiated by operation calls and
refer to the occupied AGV, such asve(), load(), andunload(). Recall that we allow to

8.1. THE MFERT MODEL 187

TransportingToMill

[10,20] unload()
[10,20] load()
[20,50] move()

TransportingToMill

° { Idle [I—

/Qo/ EnginesBeforeMiII.requestPutEngine())

(Requesting w

Qo/ EnginesSuppIied.requestGetEngineQ

Performing
([GettingAGV D
Ldo/ AGVs.getAGV() J
(" Unloading U
(MovingToLoad w
do/ unload()
Ldo/ move() J
MovingToUnload \L
[(Loading w
‘ do/ move() bo/ load() J

Figure 8.3: PPN TransportingToMill and its State Diagram

..................

the physical topology of the manufacturing system, such as the speed of the machines/AGVs
to process/transport an item and the distances between the stations to deliver items. In the case
study example, activities initiated by operatidnsd () andunload() take between 10 and 20

time units, while the activity initiated byove () take between 20 and 50 time units, depending

on the distances and the need of detours to avoid collisions.

ting an own I/O-Interval Structure and the interlevel transitions must be coordinated among
the two 1/O-Interval Structures to be generated. For our mapping;rietbe the name of

the transition with source stakequesting and target stat@ettingAGV, and lettr2 denote

the transition with source statmloading and target statédle. The outermost state named
after its PPNTransportingToMill comprises the three direct substaté3e, requesting,
andperforming. When entering th@erforming state, output signadxecuted trl is set

to indicate that the I/O-Interval Structure that models the sub$t@t€orming has to be
‘activated’, i.e., the according internal variabdetivated has to be set to true. In turn,
TransportingToMill leaves its stateperforming, when the input signafire tr2 be-
comes true. That signal is initiated by the 1/0O-Interval Structure that models composite state
Performing.

188 CHAPTER 8. MANUFACTURING CASE STUDY

MODULE TransportingToMill
SIGNAL
state : { idle requesting performing }
INPUT
ackRequestGetEngine := EnginesSupplied.ackRequestGetEngine
ackRequestPutEngine := EnginesBeforeMill.emptyInputBuffer

fire_tr2 = TransportingToMill_performing.executed_tr2
DEFINES
executed_trl = (state==requesting) & ackRequestGetEngine
requestPutEngine := (state==idle)
requestGetEngine := (state==requesting)
INIT
(state==idle)
TRANS
|- (state==idle) -- ackRequestPutEngine --> state:=requesting
I-> state:=idle
|- (state==requesting) -- ackRequestGetEngine --> state:=performing
I-> state:=requesting
|- (state==performing) -- fire_tr2 --> state:=idle

I-> state:=performing
END

For the composite substakerforming, we here list the resulting I/O-Interval Structure,
but we omit the transitions for the cas€state==loading) & (activated==true) and
(state==movingToUnload) & (activated==true), as they are very similar to the other
two cases with statemloading andmovingToLoad. Note the non-deterministic transitions in
the following code, e.g., the ones with conditiGtiount>=20) & (count<50). At any time
between the minimal and maximal time bound, the transition to the next state can be taken. This
reflects the timing intervals specified for the operations.

MODULE TransportingToMill_performing

SIGNAL
state : { gettingAGV loading unloading movingToLoad movingToUnload }
activated : BOOL
count : RANGE[0,50]
movingToLoad_finished : BOOL // additional variables to synchronize with
loading_finished : BOOL // PENs and the parent state
movingToUnload_finished : BOOL
unloading_finished : BOOL
INPUT
ackGetAGV := AGVs.ack_transportingToMill
fire_tril = TransportingToMill.executed_trl
DEFINES
requestGetAgv := (state==gettingAGV) & (activated==true)
requestPutAgv := (unloading_finished) & (activated==true)
getEngine = (loading_finished) & (activated==true)
putEngine = (unloading_finished) & (activated==true)
executed_tr2 := (unloading_finished) & (activated==true)
INIT

(state==gettingAGV) & (activated==false) & (count==0)

8.1. THE MFERT MODEL 189

& (movingToLoad_finished==false) & (loading_finished==false)
& (movingToUnload_finished==false) & (unloading_finished==false)

TRANS
|- (activated==false) -- fire_trl --> state:=gettingAGV; activated:=true;
movingToUnload_finished:=false
1-> state:=state; activated:=false;
movingToUnload_finished:=false
|- (state==gettingAGV) & (activated==true)
-- ackGetAGV --> state:=movingToload; activated:=true; count:=0
I-> state:=gettingAGV; activated:=true
|- (state==movingToLoad) & (activated==true)
—-- (count<20) --> state:=movingTolLoad; count:=count+1
-- (count>=20) & (count<50) --> state:=movingToLoad; count:=count+1
-- (count>=20) & (count<50) --> state:=loading; count:=0;
movingToLoad_finished:=true
-- (count==50) --> state:=loading; count:=0;
movingToLoad_finished:=true
|- (state==unloading) & (activated==true)
-- (count<10) --> state:=unloading; count:=count+1;
movingToUnload_finished:=false
-- (count>=10) & (count<20) --> state:=unloading; count:=count+1
-- (count>=10) & (count<20) --> state:=unloading; activated:=false; count:=0;
unloading_finished:=true
-- (count==20) --> state:=unloading; activated:=false; count:=0;
unloading_finished:=true
END

PEN for Automated Guided Vehicles. The PENAGVs does not make a difference between
input and output sequence, as the specified shifting time is 1, such that the waiting time between
shifts is zero (determined byait (1-1) according to the semantics of PENS). This means that
each AGV resource that is released can immediately be accessed for another transport in this
case. As a consequence, the most complex structure of this case study is built for theVREN

as shifting items might have to be performed at the same point of time as different inputs from
associated PPNs for transports occur.

The mapping of requests and actions for producing items or releasing resources (indicated
by prefixput in the code below) follows the following approach: Prior to actually putting an
item into a PENp, the preceding PPN checks whether there is space in the input sequence of
Thus, no input buffer overflows should occur. However, to verify this formally, a correspond-
ing internal boolean variablerror is used as a monitor w.r.t. the size of the input sequence.
The variableerror becomes true when mogaits occur than there is space left in the input
sequence. It can easily be checked by a dedicated safety formula that no overflow occurs. For
example, the corresponding CTL safety constraint for RERs is: AG ! (AGVs.error).

When a PPN requests to put an item into the input sequence of a PEN and there is currently
no space in that sequence, the PPN is waiting until the input buffer has an available position.
In the corresponding I/O-Interval Structure, this synchronization is achieved by mapping the
synchronous UML operation call to repeated sendings of a signal until a positive reply signal is

190 CHAPTER 8. MANUFACTURING CASE STUDY

received.

Mapping of requests and actions to consume items or occupy resources is indicated by prefix
get in the code below and follows the same approach.

For PENAGVs, basically2® = 256 combinations for 8 potentially parallel input signals
(4 transporting PPNs, each with two kinds of requests) have to be considered over O up to 3
potentially available AGVs. Most of these combinations (to be precise, 806) are not valid, as
getting and putting an AGV by the same PPN at the same point of time is not allowed. There
remain 218 transitions to consider; we list only some typical examples in the code and the
omitted lines are indicated by dots.

MODULE AGVs

SIGNAL
count : RANGE[O, 3] // at most 3 available AGVs
error : BOOL // internal error variable
ack_1 : BOOL ack_2 : BOOL // acknowledgement signals
ack_3 : BOOL ack_4 : BOOL

INPUT

// input signals to release AGVs after performing a transport:
putAgv_1 := TransportingToMill.putAgv

putAgv_2 := TransportingToDrill.putAgv

putAgv_3 := TransportingToWash.putAgv

putAgv_4 := TransportingToOutput.putAgv

// input signals to request AGVs for transports:

getAgv_1 := TransportingToMill.getAgv

DEFINES

ack_TransportingToMill := ack_1 // output signals that grant requests
ack_TransportingToDrill = ack_2
ack_TransportingToWash = ack_3
ack_TransportingToOutput := ack_4
INIT
// initially, 3 AGVs are available, all other signals are false:
(count == 3) & (error==false)
& (ack_1l==false) & (ack_2==false) & (ack_3==false) & (ack_4==false)
TRANS

|- (count==0) & (error==false)
-- !putAgv_1 & !putAgv_2 & 'putAgv_3 & !'putAgv_4
& getAgv_1 & getAgv_2 & getAgv_3 & !getAgv_4
—--> count:=count; ack_1:=false; ack_2:=false; ack_3:=false; ack_4:=false
-- lputAgv_1 & putAgv_2 & putAgv_3 & putAgv_4
& getAgv_1 & 'getAgv_2 & 'getAgv_3 & !'getAgv_4
--> count:=count+2; ack_1:=true; ack_2:=false; ack_3:=false; ack_4:=false

|- (count==3) & (error==false)
-- lputAgv_1 & !'putAgv_2 & !putAgv_3 & !'putAgv_4
& 'getAgv_1 & 'getAgv_2 & getAgv_3 & getAgv_4
—--> count:=count-2; ack_1:=false; ack_2:=false; ack_3:=true; ack_4:=true

END

8.2. REAL-TIME OCL CONSTRAINTS AND CCTL FORMULAE 191

8.2 Real-Time OCL Constraints and CCTL Formulae

In this subsection, we provide some typical time-bounded constraints that are applicable to
the MFERT model described in the previous section. Although we here focus on the PPN
TransportingToMill, several similar constraints are employed for other PPNs. Note that we
have not modeled concurrent State Diagrams in the case study and can therefore simply refer to
single states instead of complex set-based state configurations.

1. WhenTransportingToMill is in stateIdle, we require that it gets a grant to put an
engine into the subsequent PEhginesBeforeMill within the next 100 time units.

// time-bounded state-oriented OCL constraint:
context TransportingToMill inv:
self.oclInState(TransportingToMill: :Idle)
implies
self@post(1,100)->forAll(p:Sequence(0OclState) |
p—>includes(TransportingToMill: :Requesting))

// CCTL formula:
AG ((TransportingToMill.state==TransportingToMill.idle)
-> AF[1,100] (TransportingToMill.state==TransportingToMill.requesting))

A corresponding constraint can also be formulated to require a transition from state
Requesting to Performing.

2. A performed transport — once started after the acknowledgements have been received —
has to be completed within 300 time units.

// time-bounded state-oriented OCL constraint:
context TransportingToMill inv:
self.oclInState(TransportingToMill: :Performing)
implies
self@post(1,300)->forAll(p:Sequence(OclState) |
p—>exists(s:0clState |
s = TransportingToMill::Idle))

// CCTL formula:
AG ((TransportingToMill.state==TransportingToMill.performing)
-> AF[1,300] (TransportingToMill.state<>TransportingToMill.performing))

3. An acknowledgement for an available AGV within composite StatensportingTo-
Mill::Performing must be received within 150 time units.

// time-bounded state-oriented OCL constraint:

context TransportingToMill inv:
self.oclInState(TransportingToMill: :Performing: :GettingAGV)
implies
self@post(1,150)->forAll (p:Sequence(OclState) |

192 CHAPTER 8. MANUFACTURING CASE STUDY

p—>exists(s:0clState |
s <> TransportingToMill: :Performing: :GettingAGV))

// CCTL formula:
AG (((TransportingToMill_performing.state==
TransportingToMill_performing.gettingAGV)
& (TransportingToMill_performing.activated==true))
-> AF[1,150] ((TransportingToMill_performing.state==
TransportingToMill_performing.movingToLoad)
& TransportingToMill_performing.activated

Note here that the activation of composite subskteforming has to be considered

.........

4. Production progress is ensured by requiring that a transport to station mill can always
again be performed, i.e., at each point of time, skatef orming will eventually be en-
tered, and at each point of time, stati e will eventually be entered. (The latter condi-
tion guarantees that staRerforming is also eventually left again.)

// temporal state-oriented OCL constraint:
context TransportingToMill inv:
self@post ()->forAll(p:Sequence(0clState) |
p—>includes(TransportingToMill: :Performing))
and
self@post ()->forAll(p:Sequence(0OclState) |
p—>includes(TransportingToMill::Idle))

// (C)CTL formula:

AG AF (TransportingToMill.state==TransportingToMill.performing)
&

AG AF (TransportingToMill.state==TransportingToMill.idle)

State-oriented OCL Specifications over Concurrent State Diagrams. For more complex

.............

We want to specify that an AGV must never be in an accepting state in the negotia-
tion part while it is performing a transport. This can be expressed by excluding that states
WaitingForAcknowledgement and certain substates Dfansport are both active at the same
time.

// state-oriented OCL constraint:
context AGV inv:
not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,
Transport: :MovingToLoad})
and
not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,
Transport: :MovingToLoad})

8.2. REAL-TIME OCL CONSTRAINTS AND CCTL FORMULAE 193

and

not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,
Transport: :MovingToLoad})

and

not self.oclInConf(Set{Negotiator::WaitingForAcknowledgement,
Transport: :MovingToLoad})

// CCTL formula:
AG '(((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)
& (AGV_transport.state==AGV_transport.movingToLoad))
| ((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)
& (AGV_transport.state==AGV_transport.loading))
| ¢ (AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)
& (AGV_transport.state==AGV_transport.movingToUnload))
| ((AGV_negotiator.state==AGV_negotiator.waitingForAcknowledgement)
& (AGV_transport.state==AGV_transport.unloading))

To ensure production progress, we require that an AGV object is not idle for too long, e.qg.,
after at most 400 time units it has to again load an item. Note here that it is not sufficient to
specify that stat&dle will eventually be left within 400 time units, as leaving statde may
also be due to a movement to vacate a position. Thus, a corresponding OCL constraint is, e.g.,

context AGV inv:
self@post (1,400)->forAll(trace:Sequence(Set(0clState)) |
trace->exists(conf:Set(0clState) |
conf->includes (AGV: : Transport: :Loading)))

Further examples of time-bounded state-oriented OCL constraints in the context of other

.................... o,

state-oriented OCL extension.

194 CHAPTER 8. MANUFACTURING CASE STUDY

Chapter 9

Conclusion

A book is never finished, it is only published.
— Derick Wood

This thesis presented a state-oriented real-time extension of the Object Constraint Language
OCL and its application in the area of modeling manufacturing systems with a UML-based
variant of MFERT. Some preliminaries were necessary to be able to define a formal semantics
of this OCL extension. This mainly concerns an existing formal model for parts of OCL and
the introduction of a notion of time to UML State Diagrams. The results of this thesis can be
summarized as follows.

Extended Object Models. Currently, there is no official formal semantics of OCL in UML,

defined and a semantics is given by a formal description of Class Diagrams in fornoljean
modeland a meaning function that maps OCL expressions to a semantic domain, i.e., objects
and basic data values. Nevertheless, there are still deficiencies w.r.t. the integration of UML
State Diagrams. Although there is a standard operation cadieThState (s:0clState), NO
corresponding semantics has been defined yet, i.e., the formal object model lacks of a State
Diagram description with states and active state configurations. We therefore first formally in-
tegrated relevant UML State Diagram concepts into OCL. We extended the fobpeat model

by a notion of state configurations, such that a formal relationship of UML State Diagrams and
state-oriented OCL constraints is well-defined.

Timed UML State Diagrams. OCL constraints do not make sense without a given user model
to refer to. When time-bounded constraints are specified, the behavioral description of the cor-
responding user model must be equipped a notion of time as well. We therefore introduced a
timed variant of UML State Diagrams for behavioral modeling with explicit timing assump-
tions of activities. We identified which of the UML State Diagram concepts can be omitted
and applied further restrictions that are appropriate for the regarded domain of this thesis, i.e.,
modeling of manufacturing systems. A formal semantics with discrete time has been defined

195

196 CHAPTER 9. CONCLUSION

by a mapping of the chosen State Diagram concepts to RIL, which is the input language of the
RAVEN model checker and corresponds to the formal language of I/O-Interval Structures.

Modeling of Manufacturing Systems. The chosen application domain in this thesis is the
modeling of manufacturing systems. In this context, we employed the graphical MFERT nota-
tion and defined UML stereotypes for the structural elements of MFERT graphs, i.e., Production
Process Nodes, Production Element Nodes, and links between them that represent production
element flow. Moreover, the presented timed UML State Diagram variant is used to model the
behavior of MFERT nodes. UML-based MFERT models that comply to a number of identified
structural validation constraints can be mapped to RIL (or I/O-Interval Structures, respectively).

.........

that enables modelers to directly apply OCL constraints to MFERT models.

Source Domain UML| ;... Semantic Domain

g RIL (i.e., I/O-Interval Structures)\

M
RIOCL —> Clocked Computation Tree Logic (CCTL)

Class Diagrams and
timed State Diagram Variant

State-Oriented
Real-Time OCL Extension

(Informal) Semantics:

(Formal) Semantics:

Execution runs of 1/0-Interval Structures

and
Qﬁsfaction relation over CCTL formuly

Figure 9.1: Semantic Domain Mapping

Natural Language Descriptions

State-Oriented Real-Time OCL Extension. Independently, a number of extensions of OCL
have already been proposed to enable modelers to specify temporal properties, e.g., concerning
occurrences of events and their timing properties such as deadlines, delay times, and response
times [CK02; RVTdRU1]. However, state-related temporal properties have not yet been consid-
ered in the context of UML and OCL. The state-oriented real-time extension of OCL presented
in this thesis enables modelers to express time-bounded properties w.r.t. progress of system ex-
ecution by means of sequences of state configurations. The extension is introduced by means of
a UML Profile and is compliant with common OCL syntax and concepts. We have shown that
our state-oriented OCL extension has the expressive power to express the property specification
patterns identified by Dwyer et aj, [[JACS8a].

Based on the formal definition of execution traces of timed UML State Diagrams (i.e., runs
of 1/0O-Interval Structures), newly introduced OCL operations allow to extract possible future
execution paths of our timed UML State Diagram variant. Then, already existing OCL opera-
tions for sequences and sets can be applied to access and manipulate these traces.

The mapping of temporal OCL constraints to the temporal logics CCTL establishes a for-
mal relationship of UML-based MFERT models and state-oriented real-time OCL constraints.

.........

combination of UML-based MFERT notation and state-oriented real-time OCL constraints is

9.1. FUTURE WORK 197

then automatically derived, as the two formal target languages, i.e., I/O-Interval Structures and
CCTL, already have a well-defined formal relationship by the notion of runs and a satisfaction
relation.

As a next step, the real-time model checker RAVEN can be applied to verify whether a
model (given as a set of RIL modules or I/O-Interval Structures, respectively) satisfies properties
specified as CCTL formulae. However, note that the mappiig-rrr presented in this thesis
is not designed to build an efficient model representation for the model checker. Besides the
explicit times, especially the support of composite states with interlevel transitions leads to a
number of additional internal variables in the target language RIL that even expands the state
space. An approach to overcome this problem is mentioned in the outlook on future work below.

Formalizations of UML to perform model checking is also addressed by other authors, but
a mapping of a dense-time UML State Diagram variant to hierarchical timed automata, i.e.,
the input language of the real-time model checker UPPAAL, is presented. However, this ap-
proach only considers the UPPAAL specification language for property specifications, which is
a restricted form of Timed Computation Tree Logic (TCTL) dedicated to perform reachability
analysis over models with dense time. As a consequence, the property specification patterns of
Dwyer et al. [DAC98a] are not completely supported. This and other approaches that investigate
model checking of UML designs can benefit from the state-oriented real-time OCL extension
presented in this thesis, as it allows to abstract from temporal logic formulae, yet has sufficient
expressive power, and builds upon already existing concepts of standard UML.

9.1 Future Work

The work presented in this thesis directly leads to issues that can be investigated in future work.
We here give alist of ideas how to continue this work, without claiming that this list is complete.

e The formal semantics of OCL have to be completed. Extended object models still lack
of a formalization of tuples, ordered sets and the concept of OCL messages. As a first
That work enhances the extended object model and corresponding system states with
appropriate additional components, in particular to keep track of the history of messages
sent during operation execution.

e Applying the OCL extension to other timed variants of Statecharts or UML State Dia-
grams should be possible without too much effort. However, the semantics likely have to
be adjusted in each case.

e The mapping of our timed State Diagrams variant to 1/O-Interval Structures can be en-
hanced. For example, additional modeling elements such as history states can be in-
cluded.

e The UML-based MFERT models presented in this thesis were translated by hand to 1/0O-
Interval Structures. It should be investigated whether we can build upon the implemen-

198

CHAPTER 9. CONCLUSION

tation in [Zah03] to support automated translations of our timed UML State Diagram
variant to I/O-Interval Structures.

To cope with the state-explosion problem in model checking, additional techniques such
as decomposition or abstraction are necessary to efficiently perform model checking on

profiling to find optimal orderings of BDDs to perform model checking more efficiently.

Additional domain-specific assumptions might allow for a decomposition to be able to
perform model checking on submodels. A similar approach was taken in the domain of

Bibliography

[ABO1]

[ABB *00]

[ACD90]

David H. Akehurst and Behzad Bordbar. On Querying UML Data Models with OCL. In Gogolla and

Wolfgang Ahrendt, Thomas Baar, Bernd Beckert, Martin Giese, Elmar Habermalz, ReihateH
Wolfram Menzel, and Peter H. Schmitt. The KeY Approach: Integrating Object Oriented Design and
Formal Verification. In M. Ojeda-Aciego, |.P. de Guam G. Brewka, and L.M. Pereira, edito8h
European Workshop on Logics in Al (JELIA), Malaga, Spain, October 286l0me 1919 ot ecture
Notes in Computer Sciengeages 21-36. Springer, 2000.

Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model Checking for Real-Time Systeisih In
Annual Symposium on Logic in Computer Science, Philadelphia, PA, USA, June§86 414-425.
IEEE Computer Society Press, 1990.

[ADdSSLT01] Ludovic Apvrille, Pierre de Saqui-Sannes, Christophe Lohr, Patiécia8, and Jean-Pierre Couriat.

[Balo3]

[BCM+90]

[BCROO]

[Bec00]

[Bee94]

[BeeO1]

[Bee02]

[Bersg]

A new UML Profile for Real-Time System Formal Design and Validation. In Gogolla and Kobryn
[(GK01], pages 287-301.

Hermann Balsters. Modelling Database Views with Derived Classes in the UML/OCL-Framework.
In Stevens et al; [SWE®3], pages 295-309.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L.J. Hwang. Symbolic
Model Checking:10%° States and Beyond. Bth Annual Symposium on Logic in Computer Science,
Philadelphia, PA, USA, June 1990ages 1-33. IEEE Computer Society Press, 1990.

Egon Byrger, Alessandra Cavarra, and Elvinia Riccobene. Modeling the Dynamics of UML State
Machines. In Y. Gurevich, P.W. Kutter, M. Odersky, and L. Thiele, editAlstract State Machines,
Theory and Applications (ASM 2000), Monte MeriBwitzerland, March 20Q@olume 1912 ot ec-

ture Notes in Computer Scienqeages 223-241. Springer, 2000.

Kent Beck Extreme Programming Explained : Embrace Changddison-Wesley, 2000.

Michael von der Beeck. A Comparison of Statechart Variants. In H. Langmaack, W.-P. de Roever, and
J. VWytopil, editors Joint Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
Lubeck, Germany, September 199dlume 863 ofLecture Notes in Computer Sciengages 128—

148. Springer, 1994.

406-421.

Michael von der Beeck. A structured operational semantics for UML-Statechaofware and
Systems Modeling (SoSyM), Springd2):130-141, December 2002.

Gerard Berry. Real Time Programming: Special Purpose or General Purpose Languages. In G. Rit-
ter, editor,Information Processing 89, Proceedings of the IFIP 11th World Computer Congress, San
Francisco, CA, USA, August/September 198%es 11-17. North-Holland/IFIP, 1989.

199

200

[BFG+03]

[BEMWOO]

[BHOO]

BIBLIOGRAPHY

Sven Burmester, Stephan Flake, Holger Giese, Wilheln&féchand Matthias Tichy. Towards the
Compositional Verification of Real-Time UML Designs. In P. Inverardi and J. Paakki, edioirg,

9th European Software Engineering Conference (ESEC) and 11th ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (FSE-11), Helsinki, Finland, Septembger 2003
pages 38—-47. ACM Press, 2003.

Arnulf Braatz, Stephan Flake, WolfgangilMler, and Engelbert Westiknper. Prototyping einer
Fahrzeugsteuerung in virtueller 3D-Umgebung. In T. Schulze, P. Lorenz, and V. Hinz, efitors,
ulation und Visualisierung 2000, Magdeburg, Germany, March 2@2@es 319-332. SCS Europe
BVBA, Ghent, Belgium, 2000. (in German).

Thomas Baar and Reineié@Hnle. An Integrated Metamodel for OCL Types. In R. France, B. Rumpe,
J.-M. Bruel, A. Moreira, J. Whittle, and I. Ober, editoGOPSLA’2000 Workshop Refactoring the
UML.: In Search of the Core, Minneapolis, MN, US2000.

[BKPPTOO] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. Consistency Check-

FITTer

ing and Visualization of OCL Constraints. In Evans et:al.. [EKS00], pages 294-308.

[BKPPTO1] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. A Visualization of

[BKS02]

[BRJ9O]

[Bry86]

[Bur02]

[BWO2]

[CAB+98]

[CCMO7]

[CD94]

[CES81]

[CESS6]

[CGP99]

OCL Using Collaborations. In Gogolla and Kobryi [GKO01], pages 257-271.

Julian C. Bradfield, Julianaister Filipe, and Perdita Stevens. Enriching OCL Using Observational
Mu-Calculus. In R.-D. Kutsche and H. Weber, editd@t International Conference on Fundamental
Approaches to Software Engineering (FASE 2002). Part of the Joint European Conferences on Theory
and Practice of Software (ETAPS 2002), Grenoble, France, April 288i2me 2306 of_ecture Notes

in Computer Sciencgages 203—-217. Springer, 2002.

Grady Booch, James Rumbaugh, and Ivar Jacobsba.Unified Modeling Language User Guide
Addison-Wesley, 1999.

Randal E. Bryant. Graph-based algorithms for boolean function manipuldi&# Transactions on
ComputersC-35(8):677-691, 1986.

Sven Burmester. Generierung von Java Real-Time Ciadeeitbehaftete UML Modelle. Master’s
thesis, University of Paderborn, Paderborn, Germany, September 2002. (in German).

Achim D. Brucker and Burkhart Wolff. HOL-OCL: Experiences, Consequences and Design Choices.
In Jezequel et al.i[JHC(2], pages 196-211.

William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno, David Notkin,
and Jon D. Reese. Model checking large software specificatitifiSE Transactions on Software
Engineering 24(7):498-520, July 1998.

Sergio V.A. Campos, Edmund M. Clarke, and Marius Minea. The Verus Tool: A Quantitative Ap-
proach to the Formal Verification of Real-Time Systems. In O. Grumberg, efitointernational
Conference on Computer Aided Verification (CAV’97), Haifa, Israel, June, AM@8ime 1254 of ec-

ture Notes in Computer Scienqeages 452—-455. Springer, 1997.

Steve Cook and John DanieBesigning Object Systems: Object-oriented Modelling with Syntropy
Prentice-Hall, 1994.

Edmund M. Clarke and E. Allan Emerson. Design and Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic. Ihogic of Programs: Workshop, Yorktown Heights, NY, USA, May
1981 volume 131 ol ecture Notes in Computer Scienpages 52—71. Springer, 1981.

Edmund M. Clarke, E. Allan Emerson, and Aravinda Prasad Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specificati®f®M Transactions on Programming
Languages and Systen&?2):244-263, April 1986.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peléddel CheckingMIT Press, 1999.

BIBLIOGRAPHY 201

[CHRO1]

[CKO1]

[CKO02]

[CKM+99]

[CKM+02]

[CTOO]

[CTO1]

[CWO02]

[DAC98a]

[DAC98b]

[DAC99]

[DDF+02]

[Dee03]
[DJHPO8]

[DKO1]

Zhou Chaochen, C.A.R. Hoare, and Anders P. Ravn. A calculus of duratfonmation Processing
Letter, 40(5):269-276, 1991.

Maria V. Cengarle and Alexander Knapp. A Formal Semantics for OCL 1.4. In Gogolla and Kobryn
[(5K01, pages 118-133.

Maria V. Cengarle and Alexander Knapp. Towards OCL/RT. In L.-H. Eriksson and P.A. Lindsay,
editors, 11th International Symposium of Formal Methods Europe (FME 2002), Formal Methods:
Getting IT Right, Copenhagen, Denmark, July 200@lume 2391 ofLecture Notes in Computer
Sciencepages 389—-408. Springer, 2002.

Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer, and Alan Wills. The
Amsterdam Manifesto on OCL. Technical Report TUM-19925, Technische Unigengiinchen,
Munich, Germany, December 1999.

Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer, and Alan Wills. The

Stefan Conrad and Klaus Turowski. Vereinheitlichung der Spezifikation von Fachkomponenten
auf der Basis eines Notationsstandards. In J. Ebert and U. Frank, editodglle und Model-
lierungssprachen in Informatik und Wirtschaftsinformatik (Bigge des Workshops Modellierung
2000), St. Goar, Germany, April 200pages 179-194. Koblenzer Schriften zur Informatik, Band
15, Fdlbach-Verlag, Koblenz, Germany, 2000. (in German).

Stefan Conrad and Klaus Turowski. Temporal OCL: Meeting Specifications Demands for Business
Components. In K. Siau and T. Halpin, editotnified Modeling Language: Systems Analysis,
Design, and Development Issypages 151-165. IDEA Group Publishing, 2001.

Tony Clark and Jos Warmer, edito@bject Modeling with the OCL. The Rationale behind the Object
Constraint Languagevolume 2263 ot_ecture Notes in Computer Scien&pringer, 2002.

Matthiew B. Dwyer, George S. Avrunin, and James C. Corbett. A System of Specification Patterns,
1998. http://www.cis.ksu.edu/santos/spec-patterns (last visited on December 11th, 2003).

Matthiew B. Dwyer, George S. Avrunin, and James C. Corbett. Property Specification Patterns for
Finite-State Verification. In M. Ardis, edito§econd ACM Workshop on Formal Methods in Software
Practice, Clearwater Beach, FL, USA, March 1998ges 7—15. ACM Press, 1998.

Matthiew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property Specifications for
Finite-State Verification. Ir21st International Conference on Software Engineering (ICSE 99), Los
Angeles, CA, USA, May 1999ages 411-420. ACM Press, 1999.

Wilhelm Dangelmaier, Carsten Darnedde, Stephan Flake, WolfgankgiMUIrich Pape, and Hen-

ning Zabel. Graphische Spezifikation und Echtzeitverifikation von Produktionsautomatisierungssys-
temen. Ind. Paderborner Fihlingstagung, April 2002ALB-HNI-Verlagsschriftenreihe, Paderborn,
Germany, 2002. (in German).

S.M. Deen, editoAgent-Based Manufacturing. Advances in the Holonic Appro&ghinger, 2003.

Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli. A Compositional Real-Time Seman-
tics of STATEMATE Designs. In W.-P. de Roever, H. Langmaack, and A. Pnueli, ed@orspo-
sitionality: The Significant Difference, International Symposium (COMPOS’97), Malente, Germany,
September 199%olume 1536 of_ecture Notes in Computer Scienpages 186—238. Springer, 1998.

Werner Damm and Jochen Klose. Verification of a radio-based signaling system using the STATE-
MATE verification environmentFormal Methods in System Desidi9(2):121-141, 2001.

[DKM *94] Laura K. Dillon, George Kutty, Louise E. Moser, P. Michael Melliar-Smith, and Y.S. Ramakrish-

na. A graphical interval logic for specifying concurrent systerdCM Transactions on Software
Engineering and Methodolog®(2):131-165, 1994.

202

[DKROO]

[DLMO2]

[DMO1]

[DMY02]

[Dou00]

[DWO3]

[DW97]

[EC80]

[EE94]

[EKS00]

[EMSS92]

[ENOO]

[EW00]

[EW01]

[FGK96]

BIBLIOGRAPHY

Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. On a Temporal Logic for Object-Based
Systems. In S.F. Smith and C.L. Talcott, editd”P TC6/WG6.1 Fourth International Conference

on Formal Methods for Open Object-Based Distributed Systems (FMOODS 2000), Stanford, CA,
USA, September 200pages 305—-326. Kluwer Academic Publishers, 2000.

Vieri Del Bianco, Luigi Lavazza, and Marco Mauri. A Formalization of UML Statecharts for Real-
Time Software Modeling. In H. Ehrig, B.J. Emer, and A. Ertas, editor6th Biennial World Con-
ference on Integrated Design Process Technology (IDPT 2002), Session "Towards a rigorous UML”,
Pasadena, CA, USA, June 20@dciety for Design and Process Science, 2002.

Alexandre David and M. Oliver Nller. From HUPPAAL to UPPAAL. A Translation from Hierar-
chical Timed Automata to Flat Timed Automata. Technical Report RS-01-11, BRICS, Department of
Computer Science, University of Aarhus, Aarhus, Denmark, March 2001.

Alexandre David, M. Oliver Mller, and Wang Yi. Formal Verification of UML Statecharts with
Real-Time Extensions. In R.-D. Kutsche and H. Weber, edifitsinternational Conference on Fun-
damental Approaches to Software Engineering (FASE 2002). Part of the Joint European Conferences
on Theory and Practice of Software (ETAPS 2002), Grenoble, France, April, 2002me 2306 of
Lecture Notes in Computer Scienpages 218-232. Springer, 2002.

Bruce P. DouglassDoing Hard Time: Developing Real Time Systems with UML, Objects, Frame-
works, and PatternsAddison-Wesley, 2000.

Wilhelm Dangelmaier and Harald WiedenmaniModell der FertigungssteuerungBeuth Verlag
GmbH, Berlin, Wien, Zirich, 1st edition, 1993.

Wilhelm Dangelmaier and Hangkien WarneckeFertigungslenkung: Planung und Steuerung des
Ablaufs der diskreten Fertigungpringer, 1997.

E. Allan Emerson and Edmund M. Clarke. Characterizing Correctness Properties of Parallel Programs
using Fixpoints. In J.W. de Bakker and J. van Leeuwen, edifargymata, Languages, and Program-
ming. 7th Colloguium. Noordweijkerhout, The Netherlands, July 198@me 85 of_ecture Notes in
Computer Scienggages 169-181. Springer, 1980.

Jirgen Ebert and Gregor Engels. Observable or Invocable Behaviour: You have to Choose. Technical
report, Universiit Koblenz, Koblenz, Germany, 1994.

Andy Evans, Stuart Kent, and Bran Selic, editotdML 2000 — The Unified Modeling Language.
Advancing the Standard. Third International Conference. York, UK, October, 2@0@me 1939 of
Lecture Notes in Computer Scien&pringer, 2000.

E. Allan Emerson, Aloysius K. Mok, Aravinda Prasad Sistla, and Jai Srinivasan. Quantitative temporal
reasoningJournal of Real-Time Systen{4):331-352, 1992.

Ramez Elmasri and Shamkant B. Navathendamentals of Database Systeiddison-Wesley, 3rd
edition, 2000.

Rik Eshuis and Roel Wieringa. Requirements-Level Semantics for UML Statecharts. In S.F. Smith and
C.L. Talcott, editorsiFIP TC6/WG6.1 Fourth International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2000), Stanford, CA, USA, Septembh@a2@3d.21—

140. Kluwer Academic Publishers, 2000.

Rik Eshuis and Roel Wieringa. A Real-Time Execution Semantics for UML Activity Diagrams. In

H. HuBmann, editodth International Conference on Fundamental Approaches to Software Engineer-
ing (FASE 2001). Part of the Joint European Conferences on Theory and Practice of Software (ETAPS
2001), April 2001, Genova, Italwolume 2029 ol ecture Notes in Computer Sciengages 76—90.
Springer, 2001.

Jirgen Froessl, Joachim Gerlach, and Thomas Kropf. An Efficient Algorithm for Real-Time Symbolic
Model Checking. IrEuropean Design and Test Conference and Exhibition (EDTC’96), Paris, France,
March 1996 pages 15-21. IEEE Computer Society Press, 1996.

BIBLIOGRAPHY 203

[FGM*01] Stephan Flake, Christian Geiger, Wolfgandlidr, Volker Paelke, Waldemar Rosenbach, aindjén

[FHD*99]

[Fla03a]

[Fla03b]

[Flao4]

[FMO1]

[FM02a]
[FMO2b]
[FM02c]

[FM02d]

[FMO02e]

[FMO03a]

[FMO3b]

[FMO3c]

[FMO04]

Ruf. Customer-Oriented Systems Design through Virtual Prototypeltininternational Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’'01), Cambridge,
MA, USA, June 20QPages 263-268. IEEE Computer Society Press, 2001.

Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke, and Ursula Goltz. Timed Se-

645-660.

Stephan Flake. Modeling and Verification of Manufacturing Systems: A Domain-Specific Formaliza-
tion of UML. In M.H. Hamza, editor7th IASTED International Conference on Software Engineering
and Applications (SEA 2003), Los Angeles, CA, USA, November g868s 580-586. ACTA Press,
Calgary, Canada, 2003.

Stephan Flake. Temporal OCL Extensions for Specification of Real-Time Constraints. In S. Graf,
O. Haugen, I. Ober, and B. Selic, editotdML 2003 Workshop "Specification and Validation of
UML models for Real Time and Embedded Systems” (SVERTS'03), San Francisco, CA, USA, Oc-
tober 2003 2003. http://www-verimag.imag.fr/EVENTS/2003/SVERTS/PAPERS-WEB/12-Flake-
temporalOclExtensions.pdf (last visited on December 11th, 2003).

Stephan Flake. OclType — A Type or Metatype? In T. Baar, T. Clark, R. Franceghlé] H. HuR3-
mann, and P.H. Schmitt, editordML 2003 Workshop "OCL 2.0 — Industry Standard or Scientific
Playground?”, San Francisco, CA, USA, October 20&ectronic Notes in Theoretical Computer
Science. Elsevier, Amsterdam, The Netherlands, 2004.

Stephan Flake and WolfgangiMer. Schnittstellendefinition zur 3D-Animation eines holonischen
Fertigungssystems. Technical Report 09/2001, C-LAB, Paderborn, Germany, August 2001. (in Ger-
man).

Stephan Flake and Wolfgangliler. A UML Profile for MFERT. Technical Report 04/2002, C-LAB,
Paderborn, Germany, March 2002.

Stephan Flake and Wolfgangiiler. A UML Profile for Real-Time Constraints with the OCL. In
Jezequel et al {[JHC02], pages 179-195.

Stephan Flake and Wolfgangiiler. An OCL Extension for Real-Time Constraints. In Clark and
Warmer {CW0?2], pages 150-171.

Stephan Flake and WolfgangiMer. Specification of Real-Time Properties for UML Models. In
R.H. Sprague, Jr., editd35th Hawaii International Conference on System Sciences (HICSS-35), Big
Island, HI, USA, January 2002EEE Computer Society Press, 2002.

Stephan Flake and Wolfgangilter. Temporale Erweiterungen der OClUberblick und Aussichten.
In 2. Workshop "Ablaufmodellierung in ingenieurwissenschaftlichen Anwendungen”, Halle(Saale),
Germany April 2002. (in German).

Stephan Flake and Wolfgangiifer. Expressing Property Specification Patterns with OCLTHe
2003 International Conference on Software Engineering Research and Practice (SERP’03), Las Ve-
gas, NV, USA, June 200Bages 595-601. CSREA Press, Las Vegas, NV, USA, 2003.

Stephan Flake and WolfgangilMer. Formal semantics of static and temporal state-oriented OCL
constraints Software and Systems Modeling (SoSyM), Sprirf8):164—186, October 2003.

Stephan Flake and WolfgangilMler. Semantics of State-Oriented Expressions in the Object Con-
straint Language. 1d5th International Conference on Software Engineering and Knowledge Engi-
neering (SEKE 2003), San Francisco Bay, CA, USA, July 2088es 142-149. Knowledge Systems
Institute, Skokie, IL, USA, 2003.

Stephan Flake and WolfgangiMer. Formal Semantics of OCL Messages.URIL 2003 Workshop
"OCL 2.0 — Industry Standard or Scientific Playground?”, San Francisco, CA, USA, October, 2003
Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam, The Netherlands, 2004.

204

[FMPROO]

[FMPRO1]

[FMROO]

[FR99]

[FS99]

[Gaj97]

[GHK99]

[GKO1]

[GKC99]

[GR99]

[Har87]

[HKO3]

[HN96]

[Hoa69]

[Hoa78]

[Hol99]

[HPSS87]

BIBLIOGRAPHY

Stephan Flake, WolfgangiMer, Ulrich Pape, anditrgen Ruf. Modellpifung fir den Entwurf von
Fertigungssteuerungssystemen. In H. Schmidt, ediodellierung betrieblicher Informationssys-
teme, Proceedings der MoblS-Fachtagung 2000, Siegen, Germany, OctobeR20@brief der Gl-
Fachgruppe 5.10, 7. Jahrgang, Heft 1, pages 251-262, 2000. (in German).

Stephan Flake, WolfgangiMer, U. Pape, andifgen Ruf. Analyzing Timing Constraints in Flexible
Manufacturing Systems. Imternational NAISO Symposium on Information Science Innovations in
Intelligent Automated Manufacturing (IAM’2001), Dubai, United Arab Emirafesyes 1036—1042.
ICSC Academic Press, March 2001.

Stephan Flake, Wolfgang Mer, and dirgen Ruf. Structured English for Model Checking Specifi-
cation. In K. Waldschmidt and C. Grimm, editoMgthoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen, Frankfurt/M., Germany, February 2000
pages 251-262. VDE Verlag, Berlin, Germany, 2000.

Robert France and Bernhard Rumpe, editdy$iL’'99 — The Unified Modeling Language. Beyond
the Standard. Fort Collins, CO, US&olume 1723 ol ecture Notes in Computer Scien&pringer,
1999.

Martin Fowler and Kendall ScottUML Distilled : A Brief Guide to the Standard Object Modeling
Language Object Technology Series. Addison-Wesley, 1999.

Daniel D. GajskiPrinciples of Digital Design Prentice Hall, 1997.

Joseph Gil, John Howse, and Stuart Kent. Constraint Diagrams: A Step Beyond UNkcHnology
of Object-Oriented Languages and Systems. Delivering Quality Software (TOOLS USA’99), Santa
Barbara, CA, USA, August 199fages 453—-463. IEEE Computer Society Press, 1999.

Martin Gogolla and Chris Kobryn, editordJML 2001 — The Unified Modeling Language. Model-
ing Languages, Concepts, and Tools. 4th International Conference. Toronto, Canada. Octoher 2001
volume 2185 oL ecture Notes in Computer Scien&pringer, 2001.

Dimitra Giannakopoulou, Jeff Kramer, and Shing-Chi Cheung. Behaviour analysis of distributed
systems using the Tracta approaclournal of Automated Software Engineering, special issue on
Automated Analysis of Softwa(1):7-35, January 1999.

Martin Gogolla and Mark Richters. Transformation Rules for UML Class Diagrams. laziviB
and P.-A. Muller, editorsThe Unified Modeling Language, UML'98 — Beyond the Notation. First
International Workshop, Mulhouse, France, June 1998, Selected Raymtsne 1618 ofLecture
Notes in Computer Sciengeages 92—-106. Springer, 1999.

David Harel. Statecharts: A visual formalism for complex systeBtence of Computer Program-
ming 8(3):231-274, June 1987.

Martin Hitz and Gerti Kappel. UML@Work: Von der Analyse zur Realisierunglpunkt-Verlag,
Heidelberg, Germany, 2nd edition, 2003. (in German).

David Harel and Amnon Naamad. The STATEMATE semantics of Statechisl Transactions on
Software Engineering and Methodolo@4):292—333, 1996.

C.A.R. Hoare. An axiomatic basis for computer programmir@ommunications of the ACM
12(10):576-583, 1969.

C.A.R. Hoare. Communicating sequential proces€ssnmunications of the ACN21(8):666—677,
1978.

Ralf Holtkamp. Ein Rahmenwerkif die Fertigungslenkung PhD thesis, Heinz Nixdorf Institute,
HNI-Verlagsschriftenreihe, Band 51, Paderborn, Germany, 1999. (in German).

David Harel, Amir Pnueli, Jeanette P. Schmidt, and Rivi Sherman. On the Formal Semantics of
Statecharts. II$econd IEEE Symposium on Logic in Computer Science, Ithaca, NY, USA, June 1987
pages 54—-64. IEEE Computer Society Press, 1987.

BIBLIOGRAPHY 205

[HROO]

[IEE87]
[IHJT03]

[1SO96]

[1S002]

[JEJO2]

[Jen91l]

[JHCO2]

[IMM+99]

[JRB99]

[KHO2]
[KMRO2]

[Koe67]
[KP92]

[KTWO02]

[Kus01]

Michael R.A. Huth and Mark D. RyarLogic in Computer Science: Modelling and Reasoning about
SystemsCambridge University Press, 2000.

IEEE, The Institute of Electrical and Electronics Engineers. Software Engineering Standards, 1987.

Anders lvner, Jonas dfjstbm, Simon Johnston, David Knox, and Pete Rivett. Response to the
UML2.0 OCL RfP, Version 1.6 (Submitters: Boldsoft, Rational, IONA, Adaptive Ltd., et al.). OMG
Document ad/03-01-07, January 2003. ftp://ftp.omg.org/pub/docs/ad/03-01-07.pdf (last visited on
December 11th, 2003).

ISO International Standards Organization. Information Technology — Programming Languages, their
Environments and System Software Interfaces — Vienna Development Method — Specification Lan-
guage — Part 1: Base language. International Standard ISO/IEC 13817-1, December 1996.

ISO International Standards Organization. Information Technology — Z Formal Specification Notation
— Syntax, Type System and Semantics. International Standard ISO/IEC 13568, July 2002.

Yan Jin, Robert Esser, arid W. Janneck. Describing the Syntax and Semantics of UML Statecharts
in a Heterogeneous Modelling Environment. In M. Hegarty, B. Meyer, and N.H. Narayanan, editors,
Diagrams 2002 — Second International Conference on Theory and Application of Diagrams, April
2002, Callaway Gardens, GA, USyolume 2317 of_ecture Notes in Computer Scienpages 320—

334. Springer, 2002.

Kurt Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis. In
K. Jensen and G. Rozenberg, editdiggh-level Petri Nets, Theory and Applicatiopages 44-119.
Springer, 1991.

Jean-Marcékequel, Heinrich HuBmann, and Stephen Cook, editdML 2002 — The Unified Mod-

eling Language. Model Engineering, Languages, Concepts, and Tools. 5th International Conference.
Dresden, Germany, September/October 20@ume 2460 ofLecture Notes in Computer Science
Springer, 2002.

Wil Janssen, Radu Mateescu, Sjouke Mauw, Peter Fennema, and Petra van der Stappen. Model Check-
ing for Managers. In D. Dams, R. Gerth, S. Leue, and M. Massink, editbexretical and Practical

Aspects of SPIN Model Checking, 5th and 6th International SPIN Workshops, Trento, Italy, July 1999,
and Toulouse, France, September 19@8lume 1680 ofLecture Notes in Computer Sciengages

92-107. Springer, 1999.

Ivar Jacobson, James Rumbaugh, and Grady Bodtie. Unified Software Development Process
Object Technology Series. Addison-Wesley, 1999.

Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking Timed UML State Ma-
chines and Collaborations. In W. Damm and E.-R. Olderog, edifthdnternational Symposium on
Formal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT 2002), Oldenburg, September
2002 volume 2469 ot ecture Notes in Computer Scienpages 395-416. Springer, 2002.

Arthur Koestler.The Ghost in the Machind?’AN Books, London, UK, 1967.

Yonit Kesten and Amir Pnueli. Timed and Hybrid Statecharts and their Textual Representation. In
J. Vytopil, editor,Second International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT 1992), Nijmegen, The Netherlands, Januarywvt@@®e 571 ofLecture

Notes in Computer Scienggages 591-619. Springer, 1992.

Christiane Kiesner, Gabriele Taentzer, and Jessica Winkelmann. VisualOCL: A Visual Notation of the
Object Constraint Language. Technical Report 23, Computer Science Department of the Technical
University of Berlin, Berlin, Germany, 2002.

Sabine Kuske. A Formal Semantics of UML State Machines Based on Structured Graph Transforma-
tion. In Gogolla and KobryriJGK{01], pages 241-256.

206

[KWOO]

[KWO1]

[KW02]

[Kwo00]

[Lam77]

[Lam94]

[LamO00]

[LC96]

[Levo7]

[LMM99a]

[LMM99b]

[LP99]

[LQVO1]

[MC81]

[MC99]

[Mey97]

[Mil80]

BIBLIOGRAPHY

440-450.

Anneke Kleppe and Jos Warmer. Unification of Static and Dynamic Semantics of UML: a Study
in Redefining the Semantics of the UML Using the pUML OO Meta Modelling Approach, 2001.
http://www.klasse.nl/english/uml/uml-semantics.html (last visited on December 11th, 2003).

Anneke Kleppe and Jos Warmer. The Semantics of the OCL Action Clause. In Clark and Warmer
[CW02], pages 213-227.

Gihwon Kwon. Rewrite Rules and Operational Semantics for Model Checking UML Statecharts. In
Evans et al:JEKS0], pages 528-540.

Leslie Lamport. Proving the correctness of multiprocess progréstE Transactions on Software
Engineering 3(2):125-143, March 1977.

Leslie Lamport. The temporal logic of actionrSCM Transactions on Programming Languages and
Systemgsl6(3):872—923, May 1994.

Axel van Lamsweerde. Formal Specification: a Roadmap. In A. Finkelstein, @#itat|nternational
Conference on Software Engineering (ICSE 2000), Future of Software Engineering Track, June 2000,
Limerick, Ireland pages 147-159. ACM Press, 2000.

Karl R.P.H. Leung and Daniel K.C. Chan. Extending Statecharts with Duratior20tim Annual
International Computer Software and Application Conference (COMPSAC’96), Seoul, South Korea,
August 1996pages 246-251. IEEE Computer Society Press, 1996.

Francesca LevMerification of Temporal and Real-Time Properties of Statech&itd thesis, Dipar-
timento di Informatica, Universita di Pisa, Pisa, Italy, 1997.

Diego Latella, Istan Majzik, and Mieke Massink. Automatic verification of a behavioural subset of
UML Statechart Diagrams using the SPIN model-checkermal Aspects of Computin1(6):637—
664, 1999.

Diego Latella, Istéan Majzik, and Mieke Massink. Towards a Formal Operational Semantics of
UML Statechart Diagrams. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editei®, TC6/WG6.1

Third International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’99), Florence, Italy, February 199pages 331-347. Kluwer Academic Publishers, 1999.

Johan Lilius and Ivan Paltor. Formalising UML State Machines for Model Checking. In France and

Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Combining UML and Formal Notations
for Modelling Real-Time Systems. In V. Gruhn, editdnint 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE-9), Vienna, Austria, September 2p@ges 196-206. ACM Press, 2001.

Jayadev Misra and K. Mani Chandy. Proofs of networks of procetiSE& Transactions on Software
Engineering 7(4):417-426, 1981.

Luis Mandel and Mda V. Cengarle. On the Expressive Power of OCL. In J.M. Wing, J. Woodcock,
and J. Davies, editor§M’99 — Formal Methods. World Congress on Formal Methods in the Devel-
opment of Computing Systems, Toulouse, France, Septembend8@8e 1708 ol ecture Notes in
Computer Scieng@ages 854—-874. Springer, 1999.

Bertrand Meyer.Object-oriented Software ConstructiofPrentice-Hall International Editions, 2nd
edition, 1997.

Robin Milner. A Calculus of Communicating Systemrelume 92 ofLecture Notes in Computer
Science Springer, 1980.

BIBLIOGRAPHY 207

[IMP90]

IMP92]

[MP95]
[MSP96]

[Ml96]

[OMG]
[OMG99]

[OMGO00a]

[OMGOOb]

[OMGO1]

[OMG02]

[OMGO03a]

[OMGO3b]

[OMGO3c]

[OMGO03d]

[OMGO3€]

[OMGO3f]

Zohar Manna and Amir Pnueli. A Hierarchy of Temporal Propertie®thnrAnnual ACM Symposium
on Principles of Distributed Computing, Quebec City, Quebec, Canada, Augustdaigss 377-410.
ACM Press, 1990.

Zohar Manna and Amir PnueliChe Temporal Logic of Reactive and Concurrent Systems. Specifica-
tion. Springer, 1992.

Zohar Manna and Amir Pnuellemporal Verification of Reactive Systems. Safepyringer, 1995.

Andrea Maggiolo-Schettini and Adriano Peron. Retiming Techniques for Statecharts. In B. Jonsson
and J. Parrow, editorsormal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’96),
4th International Symposium, Uppsala, Sweden, September ¢8fne 1135 olecture Notes in
Computer Scienc@ages 55—-71. Springer, 1996.

Wolfgang Miller. Executable Graphics for VHDL-Based Systems DeditiD thesis, Department of
Mathematics and Computer Science, UnivétsttH Paderborn, Paderborn, Germany, 1996.

OMG, Object Management Group. http://www.omg.org.

OMG Analysis and Design Platform Task Force. White Paper on the Profile Mechanism, Version 1.0.
OMG Document ad/99-04-07, April 1999. ftp://ftp.omg.org/pub/docs/ad/99-04-07.pdf (last visited on
December 11th, 2003).

OMG, Object Management Group. UML 2.0 OCL Request For Proposal. OMG Document ad/00-
09-03, September 2000. ftp://ftp.omg.org/pub/docs/ad/00-09-03.pdf (last visited on December 11th,
2003).

OMG, Object Management Group. UML Profile for CORBA Specification. OMG Document ptc/00-
10-01, October 2000. ftp://ftp.omg.org/pub/docs/ptc/00-10-01.pdf (last visited on December 11th,
2003).

OMG, Object Management Group. Common Warehouse Metamodel (CWM) Specification. OMG
Documents formal/01-10-01 (main specification) and formal/01-10-27 (extensions), October 2001.
ftp://ftp.omg.org/pub/docs/formal/01-10-01.pdf (last visited on December 11th, 2003).

OMG, Object Management Group. Meta Object Facility Specification. OMG Doucument formal/02-
04-03, April 2002. ftp://ftp.omg.org/pub/docs/formal/02-04-03.pdf (last visited on December 11th,
2003).

OMG Analysis and Design Platform Task Force. UML 2.0 OCL RFP — Recommendation Vote Sta-
tus, May 2003. http://www.omg.org/techprocess/meetings/schedule/RlMMDCL_RFP.html (last
visited on December 11th, 2003).

OMG, Object Management Group. UML 2.0 OCL Final Adopted Specification. OMG Document
ptc/03-10-14, October 2003. ftp://ftp.omg.org/pub/docs/ptc/03-10-14.pdf (last visited on December
11th, 2003).

OMG, Object Management Group. UML Profile for Schedulability, Performance, and Time Specifi-
cation. OMG Document ptc/03-03-02, April 2003. ftp://ftp.omg.org/pub/docs/ptc/03-03-02.pdf (last
visited on December 11th, 2003).

OMG, Object Management Group. Unified Modeling Language 1.5 Specification. OMG Document
formal/03-03-01, March 2003. ftp://ftp.omg.org/pub/docs/formal/03-03-01.pdf (last visited on De-
cember 11th, 2003).

OMG, Object Management Group. Unified Modeling Language: Infrastructure, Version 2.0. Adopted
Specification, OMG Document ad/03-03-01, July 2003. ftp://ftp.omg.org/pub/docs/ad/03-03-01.pdf
(last visited on December 11th, 2003).

OMG, Object Management Group. Unified Modeling Language: Superstructure, Version 2.0. Final
Adopted Specification, OMG Document ptc/03-08-02, August 2003. ftp:/ftp.omg.org/pub/docs/ptc/-
03-08-02.pdf (last visited on December 11th, 2003).

208 BIBLIOGRAPHY

[Pad00] Peter Padawitz. Swinging UML — How to Make Class Diagrams and State Machines Amenable to
Constraint Solving and Proving. In Evans et g[..JEKS00], pages 162-177.

[Par95] David L. Parnas. Teaching Programming as Engineering. In J.P. Bowen and M.G. Hinchey, editors,
The Z Formal Specification Notation, 9th International Conference of Z Users (ZUM'95), Limerick,
Ireland, September 199%0lume 967 ofLecture Notes in Computer Scienpages 471-481. Sprin-
ger, 1995.

[Pnu80] Amir Pnueli. A temporal logic of concurrent progranheoretical Computer Scienc#3:45-60,
1980.

[PS91] Amir Pnueli and Michal Shalev. What is in a Step: On the Semantics of Statecharts. In T. Ito and A.R.
Meyer, editorsTheoretical Aspects of Computer Softwarelume 526 olecture Notes in Computer
Sciencepages 244-264. Springer, 1991.

[PS97] Jan Philipps and Peter Scholz. Compositional Specification of Embedded Systems with Statecharts.
In M. Bidoit and M. Dauchet, editor§APSOFT'97: Theory and Practice of Software Development.
7th International Joint Conference CAAP/FASE, Lille, France, April 198ume 1214 of_ecture
Notes in Computer Sciengeages 637—651. Springer, 1997.

[PU97] Carsta Petersohn and Luis Urbina. A Timed Semantics for the STATEMATE Implementation of
Statecharts. In J. Fitzgerald, C.B. Jones, and P. Lucas, editbrijternational Symposium of For-
mal Methods Europe (FME'97): Industrial Applications and Strengthened Foundations of Formal
Methods, Graz, Austria, September 1993lume 1313 of_ecture Notes in Computer Scienpages
553-572. Springer, 1997.

[Qui01] Julia Quintanilla de Simselk&in Verifikationsansatif eine netzbasierte Modellierungsmethoie f
FertigungssystemePhD thesis, Heinz Nixdorf Institute, HNI-Verlagsschriftenreihe, Band 87, Pader-
born, Germany, 2001. (in German).

[RACHO0] Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich HulBmann. Analysing UML Active
Classes and Associated State Machines — A Lightweight Formal Approach. In T. Maibaum, editor,
Third International Conference on Fundamental Approaches to Software Engineering (FASE 2000).
Part of the European Joint Conferences on the Theory and Practice of Software (ETAPS 2000), Berlin,
Germany, March 2000solume 1783 otLecture Notes in Computer Scien&pringer, 2000.

[RBPt91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and DesigRrentice-Hall International Editions, 1991.

[RG98] Mark Richters and Martin Gogolla. On Formalizing the UML Object Constraint Language OCL. In
T.W. Ling, S. Ram, and M.L. Lee, editor&7th International Conference on Conceptual Modeling
(ER98), Singapore, November 199%®Ilume 1507 of.ecture Notes in Computer Scienpages 449—
464. Springer, 1998.

[RG99] Mark Richters and Martin Gogolla. A Metamodel for OCL. In France and Ruinp€_fFR99], pages
156-171.

[Ric01] Mark Richters. A Precise Approach to Validating UML Models and OCL Constrair®sD thesis,
Universitt Bremen, Bremen, Germany, 2001.

[RIB98] James Rumbaugh, Ivar Jacobson, and Grady Bodtte Unified Modeling Language Reference
Manual Addison-Wesley, 1998.

[RK97] Jurgen Ruf and Thomas Kropf. Symbolic Model Checking for a Discrete Clocked Temporal Logic
with Intervals. In E. Cerny and D.K. Probst, editogrrect Hardware Design and Verification Meth-
ods (CHARME’97), 9th IFIP WG 10.5 Advanced Research Working Conference, Montreal, Canada,
October 1997pages 146-166. Chapman and Hall, 1997.

BIBLIOGRAPHY 209

[RK99]

[RM99]

[RMOO]

[RS01]

[RTO1]

[RUf0O]

[Rufo1]

[RUf02]

Jirgen Ruf and Thomas Kropf. Modeling and Checking Networks of Communicating Real-Time
Systems. In L. Pierre and T. Kropf, editoiGprrect Hardware Design and Verification Methods
(CHARME'99), 10th IFIP WG 10.5 Advanced Research Working Conference, Bad Herrenalb, Ger-
many, September 1998ages 265—-279. Springer, 1999.

Sita Ramakrishnan and John McGregor. Extending OCL to Support Temporal Operat@sst In
International Conference on Software Engineering (ICSE 99), Workshop on Testing Distributed
Component-Based Systems, Los Angeles, CA, M&A1999.

Sita Ramakrishnan and John McGregor. Modelling and Testing OO Distributed Systems with Tem-
poral Logic Formalisms. In M.H. Hamza, editdi8th IASTED International Conference on Applied
Informatics (AI'’2000), Innsbruck, Austria, February 20@0CTA Press, Calgary, Canada, 2000.

Bernhard Rumpe and Robert Sandner. UML — Unified Modeling Language im Einsatz. Teil 3. UML-
RT flr echtzeitkritische und eingebettete Systemt- Automatisierungstechnik, Reihe Theotie f
den Anwender, 11/2002001. (in German).

Ella E. Roubtsova and W.J. Toetenel. Specification of Real-Time Properties in UMA2nthIEEE
Real-Time Systems Symposium (RTSS), Work-In-Progress Section, Londbeceiber 2001.

Jirgen Ruf. Techniken zur Modellierung und Verifikation von EchtzeitsysterR@b thesis, Univer-
sitat Karlsruhe, Karlsruhe, Germany, March 2000. (in German).

Jirgen Ruf. RAVEN: Real-Time Analyzing and Verification Environmerdournal on Universal
Computer Science (J.UCS), Springéf1):89-104, February 2001.

Jirgen Ruf. Formal Verification of Timing Properties of a Holonic Material Transport System. Techni-
cal Report WSI-2002-03, Wilhelm-Schickard Institute, University dbihgen, Tibingen, Germany,
2002.

[RvTdRO1] Ella E. Roubtsova, Jan van Katwijk, W.J. Toetenel, and Ruud C.M. de Rooij. Real-Time Systems:

[Scho6]

[Sel9g]

[SF99]

[SimOO]

[SKMO1]

[SRO8]

[SS00]

Specification of Properties in UML. Ifith Annual Conference of the Advanced School for Computing
and Imaging (ASCI 2001), Het Heijderbos, Heijen, The Netherlands, May/June 28§ds 188-195,
2001.

Uta Schneider.Ein formales Modell und eine Klassifikatiofirfdie Fertigungssteuerung — Ein
Beitrag zur Systematisierung der FertigungssteueruRipD thesis, Heinz Nixdorf Institute, HNI-
Verlagsschriftenreihe, Band 16, Paderborn, Germany, 1996. (in German).

Bran Selic. Turning clockwise: Using UML in the real-time doma@ammunications of the ACM
42(10):46-54, October 1999.

Neelam Soundarajan and Stephen Fridella. Modeling Exceptional Behavior. In France and Rumpe

Anthony J.H. Simons. On the Compositional Properties of UML Statechart Diagraritedinonic
Workshops in Computing: Rigorous Object-Oriented Methods 2Bfitish Computer Society, 2000.

Timm Scléfer, Alexander Knapp, and Stephan Merz. Model Checking UML State Machines and
Collaborations. In S.D. Stoller and W. Visser, editoEectronic Notes in Theoretical Computer
Sciencevolume 55. Elsevier, Amsterdam, The Netherlands, 2001.

Bran Selic and James Rumbaugh. Using UML for Modeling Complex Real-Time Systems. White
Paper, 1998. http://www.rational.com/media/whitepapers/umirt.pdf (last visited on December 11th,
2003).

Markus Stumptner and Michael Schrefl. Behavior Consistent Inheritance in UML. In A.H.F. Laender
et al., editors]19th International Conference on Conceptual Modeling (ER 2000), Salt Lake City, UT,
USA, October 2000volume 1920 olecture Notes in Computer Sciengages 527-542. Springer,
2000.

210

[SS01]

[SS02a]

[SS02b]

[SWB03]

[War97]

[WHS94]

[Win93]

[Wit99]

[WK99]

[WKO3]

[Zab03]

[2G02]

[2G03]

BIBLIOGRAPHY

Shane Sendall and Alfred Strohmeier. Specifying Concurrent System Behavior and Timing Con-
straints Using OCL and UML. In Gogolla and Kobryji [GK01], pages 391-405.

Michael Schrefl and Markus Stumptner. Behavior consistent specialization of object life Agies.
Transactions of Software Engineering and Methodology (ACM TOSENM)):92-148, January 2002.

Shane Sendall and Alfred Strohmeier. Using OCL and UML to Specify System Behavior. In Clark
and Warmeri[CW(2], pages 250-279.

Perdita Stevens, Jon Whittle, and Grady Booch, editivi. 2003 — The Unified Modeling Language.
Modeling Languages and Applications. 6th International Conference. San Francisco, CA, USA. Oc-
tober 2003 volume 2863 of_ecture Notes in Computer Scien&pringer, 2003.

Jos Warmer. OCL Parser, Version 0.3, 1997. http://www-4.ibm.com/software/ad/library/standards/-
ocl-download.html (last visited on December 11th, 2003).

Engelbert Westkmper, Michael lapf, and Christoph Schaeffer. Holonic Manufacturing Systems
(HMS) — Test Case 5. IRroceedings of Holonic Manufacturing Systems, Lake Tahoe, CA, USA
February 1994.

Glynn Winskel. The Formal Semantics of Programming Languages: An IntroductMiT Press,
1993.

Gunnar Wittich. Ein problemorientierter Ansatz zum Nachweis von Realzeiteigenschaften eingebet-
teter SystemdPhD thesis, Carl von Ossietzky UniveiiOldenburg, Oldenburg, Germany, 1999. (in
German).

Jos Warmer and Anneke Kleppd&he Object Constraint Language: Precise Modeling with UML
Addison-Wesley, 1999.

Jos Warmer and Anneke Klepp&he Object Constraint Language — Getting Your Models Ready for
MDA. Object Technology Series. Addison-Wesley, 2nd edition, 2003.

Henning Zabel. Verfahren zur Codegenerieruingefne laufzeitoptimierte Analyse von Fertigungs-
planungsmodellen durch Modelchecking. Master’s thesis, UniérBaderborn, Paderborn, Ger-
many, September 2003. (in German).

Paul Ziemann and Martin Gogolla. An Extension of OCL with Temporal Logic. liigeds, M.V.
Cengarle, E.B. Fernandez, B. Rumpe, and R. Sandner, edidtigal Systems Development with
UML — Proceedings of the UML’'02 Workshggages 53—-62. Technische Univeasitinchen, Institut
fur Informatik, Munich, Germany, 2002.

Paul Ziemann and Martin Gogolla. An OCL Extension for Formulating Temporal Constraints. Tech-
nical Report 1/03, Fachbereich Mathematik und Informatik, University of Bremen, Bremen, Germany,
July 2003.

Appendix A

Timed Finite State Machines for PPNs

A timed finite state machingsm in the context of our formal MFERT definition is a tuple

<P7 S7 TT, SLab7 GE7 AE7 TTLa,ba 80>
where
e P is a set of atomic propositions.

S is a set of states.

e Tr C S x S is a state transition relation, such that every state has a successor state:
Vse S:3de S:(s,d)eTr.

e Sra: S — P(P)is a state labeling function.

e (GF is a set of guard expressions. We here assume that a languagexists with well-
defined syntax and semantics for the elementsBfand thatforaly € GE : Type(g) =
Bool.

e AL is a set of action expressions. We here assume that a landugagexists with a
well-defined syntax and semantics for the elements bf

o T'rra : Tr — P(GE) x P(N) x P(AFE) is a transition labeling function that defines a
set of condition expressions, a set of delay times, and a set of action expressions for each
transitiontr € T'r.

e sy € Sis the initial state of the finite state machine.

A.1 Help Functions

For technical reasons, we addltlonally define partlal mapplngs of the transition Iabellng function

...........

projections on tuple elements. A tuple element is taken Hf'ds specified at its correspondlng
index position.

YConsap and Prod s are defined in Subsection "Consumption and Production Actions” below.

211

212 APPENDIX A. TIMED FINITE STATE MACHINES FOR PPNS

Table A.1: Help Functions for Transitionsc T'r

Conditions(t) < Tria(®)|-) € P(GE)
Delay(1) Y Tra(®)] -4 EN
Actions(t) =4 Triap(t)|(- -+ € P(AE)
NeatState(t) Yl es

ConsumeActions(t) «f {ae € AE | ae € Actions(t)NConsag}
ProduceActions(t) et {ae € AE | ae € Actions(t)NProdag}

Count : AE — Ny Yae € AE : Count(ae) is the number of
production elements that are consumed or
produced when executing.

A.2 Operational Semantics

The operational semantics of finite state machines and their timed variants is usually defined by
runs, i.e., sequences of states over time, based on some given rules when transitions are applica-
ble and may fire. Sequence elements of these runs are usually specified with respect to elapsed
time and condition evaluation. But note that do not provide a particular execution semantics

for timed FSMdhere and simply assume that such a well-defined operational semantics exists
for the FSM defined above. We just assume that the following properties hold:

1. Lqr defines, among others, guard expressions that query the current status of PENs with-
out side effects.

2. L g defines expressions to reserve production elements in preceding PENSs for later con-
sumption as well as expressions to reserve sufficient space for production elements to be
placed in succeeding PENSs.

3. Evaluation of guard expressions may only affect local variables or adjacent PENSs.
4. Execution of action expressions may only manipulate local variables or adjacent PENSs.

5. Reserving production elements for consumption in a preceding PEN (or space for pro-
duction in a succeeding PEN, respectively) by evaluation of a guard expression and the
actual consumption (production) by means of execution of an action expression must not
be interfered, i.e., once a reservation is acknowledged by a PEN, the requesting PPN
immediately has to execute an action that consumes (produces) the corresponding pro-
duction elements.

A.3. CONSUMPTION AND PRODUCTION ACTIONS 213

A.3 Consumption and Production Actions

We are particularly interested in production element flow and often need to talk about manipula-
tions of PPNs with respect to their adjacent PENSs, i.e., consumption and production of elements
in PENs. We define the following sets:

Let Consap C AF be the set of action expressions that represent consumption of pro-
duction elements, i.e., actions that eliminate production elements from preceding PENSs.

Let Prod,r C AE be the set of action expressions that represent production of new
elements, i.e., actions that add production elements to succeeding PENS.

A.4 Restrictions

Note that the following restrictions on variable types must hold for guard and action expressions.

Free variables of guard expressions must be of a type that is defined in an adjacent PEN.
Type(Var(g)) € {C(pe) € DT'| Ipe € PE : (pe,pp) € EV (pp,pe) € E,with pp =
MFSMfl(fsm)}.

Data Types of consumption actions must be defined in preceding PENSs.

Vea € Consap : Type(ca) = void N Type(Var(ca)) C {C(pe) | Ipe € PE :
(pe,pp) € E,pp = Mpsy ™' (fsm)}.

Data Types of production actions must be defined in succeeding PENSs.

Vpa € Prodag : Type(pa) = void N Type(Var(pa)) € {C(pe) | Ipe € PE :
(pp,pe) € E,pp = Mpsy ' (fsm)}.

We further restrict the actions that may appear in transittoas7». We do not allow
both consumption and production actions in the same transition.

Vt € Tr : =(ConsumeActions(t) # @ and ProduceActions(t) # @)

A.5 Mapping to I/O-Interval Structures

A mapping of timed FSMs to I/O-Interval Structures can be easily performed for the compo-
nentsP, S, Tr, Trra, SrLa, andsyg. As we only make some basic assumptions about the
languaged.q and L 4 for guard and action expressions, a mapping of the compoxékits

and AF cannot be given here. Instead, we make use of the mapping of Timed State Diagrams

.............

guards, actions, and timing information) and synchronous event communication.

214 APPENDIX A. TIMED FINITE STATE MACHINES FOR PPNS

Appendix B

OCL Metalevel Operations for Classifiers

In this appendix, a list of some sample additional operations defined for the metaclass

pressions are adjusted to be compliant to the adopted OCL 2.0 specifi¢ation [OMGO03b].

e The operatiomrl1lFeatures () results in a set containing all features of the classifier
itself and all its inherited features.

allFeatures() : Set(Feature) =
self.feature
->union(self.parent.oclAsType(Classifier).allFeatures())

e The operatioral10perations () results in a set containing all operations of the classifier
itself and all its inherited operations.

allOperations() : Set(Operation) =
self.allFeatures()
->select(f:Feature | f.oclIsKindOf (Operation))

e The operatiorallAttributes () results in a set containing all attributes of the classifier
itself and all its inherited attributes.

allAttributes() : Set(Attribute) =
self.allFeatures()->select(f:Feature | f.oclIsKindOf (Attribute))

e The operatiomssociations () results in a set containing all associations of the classifier
itself.

associations() : Set(Association) =
self.association.association->asSet ()

e The operatiomrallAssociations() results in a set containing all associations of the
classifier itself and all its inherited associations.

215

216 APPENDIX B. OCL METALEVEL OPERATIONS FOR CLASSIFIERS

allAssociations() : Set(Association) =
self.associations()
->union(self.parent.oclAsType(Classifier).allAssociations())

e The operatiomppositeAssociationEnds () results in a set of all association ends that
are opposite to the classifier.

oppositeAssociationEnds() : Set(AssociationEnd) =
self.associations()
->select(a:Association |
a.connection->select(ae:AssociationEnd |
ae.participant = self).size() = 1)
->collect(a:Association |
a.connection->select(ae:AssociationEnd |
ae.participant <> self))
->union(self.associations()
->select(a:Association |
a.connection->select (ae:AssociationEnd |
ae.participant = self).size() > 1)
->collect(a:Association | a.connection))

e The operatioral10ppositeAssociationEnds () results in a set of all association ends
opposite to the classifier, including the inherited ones.

allOppositeAssociationEnds() : Set(AssociationEnd) =
self.oppositeAssociationEnds ()
->union(self.parent.allOppositeAssociationEnds())

Appendix C

Structural Constraints for MFERT Models

Similar to an approach that uses a UML Profile to restrict real-time system designs with UML

tion of MFERT as follows.

C.1 ProductionDataType

A Production Data Type defines a tuplef data types. The constraints feroductionData-
Type are:

1. All attributes must be of a kind of data type.

self.allAttributes()->forAll(attr:Attribute |
attr.type.oclIsKind0f (DataType))

2. Only query operations are allowed for Production Data Types. Constructor operations,
I. e., operations that have a name that is equal to the type name, are excluded.

self.allOperations()->forAll(op:0Operation |
op.name <> self.name implies op.isQuery = true)

3. Production Data Types are passive classes.
self.isActive = false

4. Production Data Types may only inherit from other Production Data Types.

self.allParents()->forAll(g:GeneralizableElement |
g.stereotype.name->includes (’ProductionDataType’))

5. A Production Data Type may not have an association among itself.

INote that the package UML::Foundation::Core declares attributes of classes as ordered.

217

218 APPENDIX C. STRUCTURAL CONSTRAINTS FOR MFERT MODELS

self.associations()
->select(a:Association |
a.connection->select (ae:AssociationEnd |
ae.participant = self)
->gize() > 1)
->isEmpty)

6. A Production Data Type may only aggregate or be composed of data types or Production
Data Types.

self.associations()
->select(a:Association |
a.connection->includes(ae:AssociationEnd |
(ae.aggregation = AggregationKind::aggregate or
ae.aggregation = AggregationKind::composite)
and ae.participant = self))
-- now get all AssociationEnds from selected Associations
->collect(a:Association | a.connection)
->forAll (ae:AssociationEnd |
ae.participant.stereotype.name->includes(’ProductionDataType’)
or ae.participant.oclIsKindOf (DataType))

C.2 ElementList

TheElementList stereotype represents a parameterized interface that provides certain opera-
tions dedicated to manage lists with elements of a certain Production Data Type. The elements
of such lists must all be of the same type which is given as a parameigetentList and
restricted to be a Production Data Type. The constrainid efientList are:

1. This constraint specifies the operations that must at least be provided by classes that are
compliant to theElementList interface. We implicitly assume that additional appro-
priate constructors are available and that the usual FIFO semantics are defined for the
operations.

let operationNames : Set(Name) =
Set{’getElementType’,’addElement’,’getElement’,’deleteElement’}
in

self.allOperations() .name->includesAll (operationNames)

2. The parameter must be a Production Data Type.

self.typedParameter->size() = 1 and
self.typedParameter.stereotype.name->includes (’ProductionDataType’)

3. Each Element List belongs to at most ®@ductionElementNode.

context ProductionElementNode inv:
ProductionElementNode.alllnstances
->forAll(x,y:ProductionElementNode |
(x <> y implies x.inputSequence <> y.inputSequence) and
(x <> y implies x.outputSequence <> y.outputSequence))

C.3. MFERTNODE 219

C.3 MFERTNode

MFERTNode is the abstract superclassRafoductionProcessNode andProductionElement-
Node. The constraints (fFERTNode are:

1. MFERT nodes are abstract.

self.isAbstract = true

2. MFERT nodes may only inherit from other MFERT nodes.

self.allParents()->forAll(g:GeneralizableElement |
g.stereotype.name->includesAll (self.stereotype.name)

3. Associations between two MFERT nodes are necessarily modeledRisingntFlow
associations.

MFERTNode.allInstances->forAll(m,n : MFERTNode |
m <> n implies
m.associationEnds ()
->intersection(n.oppositeAssociationEnds())
->collect(ae:AssociationEnd | ae.association)
->forAll(a:Association |
a.stereotype.name->includes(’ElementFlow’))

4. There is at most one relationship between each pair of MFERT nodes. It might be a gener-
alization or an association. The latter case is already partially handled. If the relationship
is a generalization, the participating MFERT nodes must be of the same subclass, i. e.
either Production Process Nodes or Production Element Nodes.

MFERTNode.allInstances->forAll(m,n : MFERTNode |
m <> n implies
(

(m.associationEnds ()
->intersection(n.oppositeAssociationEnds())->size() <= 1
and m.allParents()->excludes(n)
and n.allParents()->excludes(m)

xor
(m.allParents()->includes(n) or n.allParents()->includes(m))
and m.type = n.type

and m.associationEnds()
->intersection(n.oppositeAssociationEnds())->isEmpty()

5. An MFERT node may not have an association among itself.

220 APPENDIX C. STRUCTURAL CONSTRAINTS FOR MFERT MODELS

self.associations()
->select(a:Association |
a.connection->select (ae:AssociationEnd |
ae.participant = self)->size() > 1)
->isEmpty)

6. In MFERT designs, we do not allow aggregation and composition of MFERT nodes.

self.associations()
->select(a:Association |
a.connection->includes(ae:AssociationEnd |
(ae.aggregation = AggregationKind::aggregate
or ae.aggregation = AggregationKind::composite)
and ae.participant = self))
->isEmpty ()

C.4 ProductionProcessNode

Production Process Nodes are subclasses of MFERTNodes. They consume from and send pro-
duction elements to Production Element Nodes. The constrai®tsodiictionProcessNode
are:

1. Each Production Process Node has its own thread of control.

self.isActive = true

C.5 ProductionElementNode

Production Element Nodes are subclasses of MFERT nodes. They store production elements for
further processing by subsequent Production Process Nodes. The taggeeleakietType
determines the Production Data Type of the production elements that can be stored. Two
lists with production elements are managed by a Production Element Node (one is for in-
coming, the other for outgoing production elements). The tagged wailue is used to
specify a cyclic interval for shifting of elements between the two lists. The tagged values
inputCapacity andoutputCapacity specify the maximal capacity of the lists. The con-
straints ofProductionElementNode are:

1. Production Element Nodes are passive.

self.isActive = false

2. The two Element Lists are storing instances of the type that is specified by the tagged
valueelementType:

C.6. ELEMENTFLOW 221

self.inputList.getElementType() .oclIsTypeOf (self.elementType)) and
self.outputlList.getElementType () .0clIsTypeOf (self.elementType))

3. The value of the tagged valuesme, inputCapacity, andoutputCapacity must be
non-negative.

self.time > O and self.inputCapacity > O and self.outputCapacity > O

C.6 ElementFlow

ElementFlow represents a restricted association between MFERT nodes. For brevity rea-
sons, the tagged value source is set to the classifier that is identified via the participant as-
sociation of the first element in the ordered list of association ends (determined by metaclass
AssociationEnd. The tagged value target is set to the classifier that is identified via the partic-
ipant association of the second element in the ordered list of association ends. The tagged value
type identifies a Production Data Type. Only instances of this data type may be transferred
between the connected MFERT nodes from the source towards the target end. The constraints
of ElementFlow are:

1. Element Flow associations are only allowed between two concrete MFERT nodes:

self.connection->size() = 2 and
self.connection.participant
->forAll(c:Classifier | c.stereotype.name
->includes (’ProductionProcessNode’)
or c.stereotype.name
->includes (’ProductionElementNode’))

2. The two tagged valuesurce andtarget are equal to the two classifiers that are deter-
mined by the two association ends of the Element Flow:

self.source = self.connection->at(l).participant and
self.target = self.connection->at(2).participant

3. ElementFlow associations are only allowed between concrete subclasses of MFERT
nodes of different types, i. e., between Production Process Nodes and Production Ele-
ment Nodes:

(self.source.stereotype.name->includes (’ProductionElementNode’)

and

self.target.stereotype.name->includes (’ProductionProcessNode’))
xor

(self.source.stereotype.name->includes (’ProductionProcessNode’)

and

self.target.stereotype.name->includes (’ProductionElementNode’))

222

APPENDIX C. STRUCTURAL CONSTRAINTS FOR MFERT MODELS

4. Navigation alon@lementFlow associations is always possible in both directions, i. e., at-

tribute isNavigable is true, but only for directly involved classifiers, i. €i,sibility

is protected. We restrict multiplicity of association ends to 1, a8lamentFlow as-
sociation shall indicate a relationship between two instances of MFERT nodes. The
targetScope is the instance level (this is the default and does not need to be fixed), and
anordering does not need to be specified, as only one target end eRigiSentFlow
associations neither specify aggregation nor composition relationshipggsegation

is ‘none’. Qualifying attributes are not considered for Element Flows. The following
OCL formula summarizes these restrictions:

self.connection->forAll(ae:AssociationEnd |
ae.isNavigable = true
and ae.multiplicity 1
and ae.visibility VisibilityKind: :protected
and ae.aggregation = AggregationKind::none
and ae.qualifier->isEmpty())

EachElementFlow association is associated with a Production Data Type which is rep-
resented by the tagged valugpe. That tagged value must reference to the same type as
specified by the participating Production Element Node:

(self.source.stereotype.name
->includes (’ProductionElementNode’)
implies self.type = self.source.elementType)
and
(self.target.stereotype.name
—->includes (’ProductionElementNode’)
implies self.type = self.target.elementType)

Appendix D

Property Specification Patterns with OCL

P becomes true. .

.. globally init: self@post()->forAll(g | g->includes(P))
.. beforer init: self@post()->forAll(g | g->startsWith(Sequence{not R, P}))
.. afterq inv: self.oclInConf(Q) implies self@post()->forAll(g | g->includes(P))

inv: self.oclInConf (Q) implies

-~ betweerg andR self@post()->forAll(g | g->startsWith(Sequence{not R, P}))

inv: oclInConf(Q) implies

-~ afterq until R self@post () ->forAll(g | g->startsWith(Sequence{not R, P}))

Pistrue...

.. globally inv: self.oclInConf (P)

.. beforer init: self@post()->forAll(g | g->startsWith(Sequence{P, R}))
. afterg inv: self.oclInConf (Q) implies

self@post () ->forAll(g | g->forAll(conf | conf = P))

inv: self.oclInConf(Q) implies

-~ betweerg andr self@post () ->forAll(g | g->startsWith(Sequence{P, R}))

inv: self.oclInConf (Q) implies
.. afterQuntilR not self@post()->exists(g |
g->startsWith(Sequence{not R, not P and not R}))

223

224 APPENDIX D. PROPERTY SPECIFICATION PATTERNS WITH OCL

Table D.3: OCL Expressions for Precedence Pattern (Assumptions as in Table 3.2)

LT

S precede® ...

.. globally init: not self@post()->exists(g | g->startsWith(Sequence{not S, P}))
.. beforer init: self@post()->forAll(g | g->startsWith(Sequence{not P, S or P}))
. afterqg inv: self.oclInConf(Q) implies

self@post()->forAll(g | g->startsWith(Sequence{Q, not P, S}))

inv: self.oclInConf (Q) implies

-~ betweerg andr self@post () ->forAll(g | g->startsWith(Sequence{not P, S or R}))

inv: self.oclInConf(Q) implies

-~ afterquntil R not self@post()->exists(g | g->startsWith(Sequence{not S and not R, P}))

Srespondst® ...
... globally inv: self.oclInConf(P) implies self@post()->forAll(g | g->includes(S))

inv: self.oclInConf(P) implies

-+ beforer self@post () ->forAll(g | g->startsWith(Sequence{not R, S}))

inv: self.oclInConf (Q) implies

- afterq self@post () ->forAll(g | g->includes(Sequence{P, truel0,’inf’], S})

inv: self.oclInConf(Q) implies self@post()->forAll(g |

.- betweerf) andR g->includes(Sequence{P, not R [0,’inf’], S, not R [0,’inf’], R}))

inv: self.oclInConf (Q) implies self@post()->forAll(g |

.. afterquntil R g->startsWith(Sequence{not R, P, not R[0,’inf’], S}))

	1 Introduction
	1.1 Research Goals and Contributions
	1.2 Example: Manufacturing Case Study
	1.3 Outline

	2 Unified Modeling Language
	2.1 UML Language Definition
	2.2 Survey of UML Diagrams
	2.3 Details of Selected Parts of UML
	2.3.1 UML Class Diagrams
	2.3.2 UML State Diagrams
	2.3.3 Object Constraint Language
	2.3.4 UML Extension Mechanisms

	2.4 UML and Time
	2.4.1 Time and Timing Constraints in Standard UML
	2.4.2 Modeling Real-Time System Architectures with UML
	2.4.3 Time-Annotated State Diagrams

	2.5 Contributions of the Chapter

	3 Formal Verification
	3.1 Automata-Based Modeling Approaches
	3.2 Formal Specification
	3.2.1 Temporal Logics
	3.2.2 Property Specification Patterns

	3.3 Symbolic Model Checking
	3.4 Real-Time Model Checking
	3.5 Selection of a Real-Time Model Checking Tool
	3.6 RAVEN
	3.6.1 Interval Structures
	3.6.2 Clocked Computation Tree Logic
	3.6.3 RAVEN Input Language (RIL)
	3.6.4 Graphical User Interface

	3.7 Contributions of the Chapter

	4 Extended Object Model
	4.1 Syntax
	4.1.1 Types
	4.1.2 Classes and their Characteristics
	4.1.3 Abstract Syntax of State Diagrams
	4.1.4 Associations
	4.1.5 Generalization

	4.2 Semantics
	4.2.1 Objects
	4.2.2 A Note about State Diagram Inheritance
	4.2.3 State Configurations
	4.2.4 Links
	4.2.5 System State
	4.2.6 Semantics of Operation oclInState(statename:OclState)
	4.2.7 Traces

	4.3 Discussion
	4.4 Contributions of the Chapter

	5 A Timed UML State Diagram Variant
	5.1 Syntactical Restrictions
	5.2 Syntax
	5.3 Semantics
	5.4 Translation to I/O-Interval Structures
	5.4.1 Generating I/O-Interval Structures
	5.4.2 Transition Mapping

	5.5 Contributions of the Chapter

	6 MFERT
	6.1 MFERT Graphs
	6.2 Formal MFERT Model
	6.3 Dynamic Semantics of MFERT
	6.3.1 Production Process Nodes
	6.3.2 Production Element Nodes
	6.3.3 Message Passing
	6.3.4 Conflict Resolution in PENs
	6.3.5 Simulation Implementation

	6.4 A UML Profile for MFERT
	6.4.1 MFERT Graphical Notation in Class Diagrams
	6.4.2 Validation Constraints
	6.4.3 Mapping to the Formal MFERT Model

	6.5 Contributions of the Chapter

	7 Real-Time Properties with OCL
	7.1 UML Profile for Real-Time Constraints with OCL
	7.1.1 OCL Metamodel Extensions
	7.1.2 Concrete Syntax Changes
	7.1.3 Standard Library Operations
	7.1.4 Semantics of Temporal Expressions

	7.2 Expressing Specification Patterns
	7.3 Mapping to the Temporal Logics CCTL
	7.4 Temporal OCL Queries
	7.5 Related Work
	7.6 Implementation
	7.7 Contributions of the Chapter

	8 Manufacturing Case Study
	8.1 The MFERT Model
	8.2 Real-Time OCL Constraints and CCTL Formulae

	9 Conclusion
	9.1 Future Work

	Literature
	A Timed Finite State Machines for PPNs
	A.1 Help Functions
	A.2 Operational Semantics
	A.3 Consumption and Production Actions
	A.4 Restrictions
	A.5 Mapping to I/O-Interval Structures

	B OCL Metalevel Operations for Classifiers
	C Structural Constraints for MFERT Models
	C.1 ProductionDataType
	C.2 ElementList
	C.3 MFERTNode
	C.4 ProductionProcessNode
	C.5 ProductionElementNode
	C.6 ElementFlow

	D Property Specification Patterns with OCL

