
Towards the Completion of the Formal Semantics of OCL 2.0

Stephan Flake

C-LAB, Paderborn University
Fuerstenallee 11

33102 Paderborn, Germany
Email: flake@c-lab.de

Abstract

The Object Constraint Language (OCL) is part of the
Unified Modeling Language (UML) to specify restric-
tions on values of a given UML model. As part of the
UML 2.0 standardization process, a proposal for the
new version OCL 2.0 has recently been adopted by the
Object Management Group. This proposal provides
extensive semantic descriptions by both a metamodel-
based as well as a formal mathematical approach, but
these two semantics are currently neither consistent
nor complete. In particular, the formal semantics of
the OCL 2.0 proposal currently lacks descriptions of
ordered sets, global OCL variable definitions, UML
Statechart states, and OCL messages. This article
provides corresponding definitions to overcome these
deficiencies. We also define a notion of execution
traces that capture all system changes of a running
system that are necessary to be able to evaluate OCL
constraints.

Keywords: Object-Oriented Modeling, Object Con-
straint Language (OCL), Formal Semantics

1 Introduction

The Object Constraint Language (OCL) has been
part of the Unified Modeling Language (UML) since
UML version 1.3. OCL is an expression language that
enables modelers to formulate constraints in the con-
text of a given UML model. It is used to specify
invariants of classes, pre- and postconditions of oper-
ations, and conditions of state transitions (Warmer &
Kleppe 1999).

A proposal for a new version called OCL 2.0 has
recently been adopted by the Object Management
Group (Ivner, Högström, Johnston, Knox & Riv-
ett 2003). Compared to the previous version, some
new concepts are introduced in OCL 2.0, i.e.,

• a metamodel to better integrate into UML,

• mathematical tuples and operations on tuples,

• ordered sets in addition to the already existing
kinds of collections (sets, sequences, and bags),

• nesting of collections (so far, all collections were
automatically flattened), and

• access to messages sent during operation execu-
tion (referred to as OCL messages).

Copyright c©2004, Australian Computer Society, Inc. This
paper appeared at 27th Australasian Computer Science Con-
ference (ACSC2004), The University of Otago, Dunedin, New
Zealand. Conferences in Research and Practice in Information
Technology, Vol. 26. V. Estivill-Castro, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

The OCL 2.0 proposal provides two semantic de-
scriptions. The first semantics is described by a
metamodel-based approach, i.e., the semantics of an
OCL expression is given by associating each value de-
fined in the semantic domain with a type defined in
the abstract syntax (i.e., the metamodel), and by as-
sociating each evaluation with an expression of the
abstract syntax. Given a snapshot of a running sys-
tem, these associations allow to yield a unique value
for an OCL expression, which determines the result
value of expression evaluation.

Secondly, a formal semantics is defined by a set-
theoretic mathematical approach called object model
(Ivner et al. 2003, Appendix A) based on work by
Richters (2001). An object model is a tuple

M =
〈
CLASS,ATT,OP,ASSOC,≺,
associates, roles,multiplicities

〉
with a set CLASS of classes, a set ATT of attributes,
a set OP of operations, a set ASSOC of associa-
tions, a generalization hierarchy ≺ over classes, and
functions associates, roles, and multiplicities that
give for each as ∈ ASSOC its dedicated classes, the
classes’ role names, and multiplicities, respectively.

In this article, we call a particular instantiation
of an object model a system. A system changes over
time, i.e., the (number of) objects, their attribute val-
ues, and other characteristics change during system
execution. The information that is needed to evaluate
OCL expressions is stored in system states which rep-
resent snapshots of the running system. In the OCL
2.0 proposal, a system state σ(M) is formally defined
as a triple σ(M) = 〈ΣCLASS ,ΣATT ,ΣASSOC〉, con-
sisting of a set ΣCLASS of currently existing objects, a
set ΣATT of attribute values of the objects, and a set
ΣASSOC of currently established links that connect
the objects.

The formal semantics of OCL expressions is de-
fined over system states. However, this informa-
tion is not sufficient to evaluate expressions that rea-
son about currently activated Statechart states or
messages that have been sent. We already inte-
grated Statecharts to OCL by a formal notion of ac-
tive state configurations, such that a semantics for
state-related operations is already available (Flake &
Mueller 2003). This article now further extends that
work w.r.t. OCL messages.

The remainder of this article is structured as fol-
lows. In Section 2, we explain the concepts of OCL.
Section 3 extends the formal definition of object mod-
els by additional components that capture Statechart
states and OCL messages. In Section 4, we then ex-
tend the formal semantics of the OCL 2.0 proposal.
Section 5 introduces traces for OCL, i.e., sequences
of system states that capture all changes of a running
system relevant for the evaluation of OCL constraints.
Section 6 concludes this article.



1: hasReturned() : Boolean
2: -- Returns true if the template parameter denotes an operation and if the invoked operation has already returned.
3:
4: result() : <<The return type of the invoked operation>>
5: -- Returns the result of the invoked operation if the template parameter denotes an operation and the invoked
6: -- operation has already returned. Otherwise OclUndefined is returned.
7:
8: isSignalSent() : Boolean
9: -- Returns true if the template parameter represents a signal.

10:
11: isOperationCall() : Boolean
12: -- Returns true if the template parameter represents an operation call.

Figure 1: Operations on OCL Messages

2 OCL

OCL is a declarative expression-based language, i.e.,
evaluation of OCL expressions does not have side ef-
fects on the corresponding UML model. In the re-
mainder, we will call this UML model the referred
user model.

Each OCL expression has a type. Besides user-
defined model types (e.g., classes or interfaces) and
some predefined basic types (e.g., Integer, Real, or
Boolean), OCL also has a notion of object collection
types (i.e., sets, ordered sets, sequences, and bags).
Collection types are homogeneous in the sense that
all elements of a collection have a common type. A
new feature of the OCL 2.0 proposal is a built-in tu-
ple type. Tuples are sequences of a fixed number of
elements that can be of different types. Moreover, a
standard library is available that provides operations
to access and manipulate values and objects.

For example, assume a UML model with classes
Person and Company and an association that connects
those classes. We can navigate from class Person
to class Company via that association and make use
of the role name employers that is attached to the
association-end at the Company side. The following
invariant ensures that each object that is an instance
of class Person has at least one associated employer:

context Person
inv: self.employers->notEmpty()

Let us briefly outline how to read this OCL invari-
ant. The class identifier that follows the context
keyword specifies the class for which the following
expression should hold. The keyword inv specifies
that this is an invariant, i.e., for each object of the
context class the following expression must evaluate
to true at any time. Note that an invariant may be
violated during execution of an operation. In Sec-
tion 5, we will therefore give a more precise definition
of the meaning of at any time in this context. The
optional keyword self refers to the object for which
the constraint is evaluated. Attributes, operations,
and associations can be accessed by dot notation, e.g.,
self.employers results in a (possibly empty) set of
instances of Company. The arrow operator indicates
that a collection of objects is manipulated by one of
the predefined OCL collection operations. For exam-
ple, operation notEmpty() returns true if the accessed
set is not empty.

2.1 OCL messages

OCL messages have been newly introduced in the
OCL 2.0 proposal to specify constraints over messages
sent by objects. It is based on work presented by
Kleppe & Warmer (2000, 2002). Basically, an OCL
message refers to a signal sent or a (synchronous or
asynchronous) operation called. While signals sent
are asynchronous and the calling object simply con-
tinues its execution, synchronous operation calls make

the invoking operation wait for a return value. In con-
trast, an asynchronous operation call is like sending a
signal, such that a potential return value is simply dis-
carded. For more details about messaging actions, we
refer to the action semantics of UML 1.5 (OMG 2003,
Section 2.24).

The concept of OCL messages enables modelers
to specify constraints that require that specific sig-
nals must have been sent, operations must have been
called, or operations must have been completely ex-
ecuted and returned. The corresponding operations
are listed in Figure 1. Note that OCL messages can
only be accessed in operation postconditions.

Syntax. A parameterized type OclMessage(T) is
now part of the type system within the OCL standard
library, where the template parameter T denotes an
operation or signal. A concrete OclMessage type is
therefore described by (a) the referred operation or
signal and (b) all formal parameters of the referred
operation or all attributes of the referred signal.

OCL messages are obtained by the message opera-
tor ^^ that is attached to a destination object. For ex-
ample, the OCL expression destObj^^setValue(17)
results in the sequence of messages setValue(17)
that have been sent to the object determined by
destObj during execution of the considered oper-
ation – recall that the considered expression must
have been specified in an operation postcondition.
Each element of the resulting sequence is an in-
stance of type OclMessage(T). For example, the
type of OCL expression destObj^^setValue(17) is
Sequence(OclMessage(setValue(i:Integer))).

One can make use of so-called unspecified val-
ues to indicate that an actual parameter is not re-
stricted to a specific value. Unspecified values are
denoted by question marks, e.g., we may specify
destObj^^setValue(?:Integer). Specification of
parameter types is optional, but they might be nec-
essary in order to refer to the correct operation when
the operation is specified more than once with differ-
ent parameter types.

To check whether a message has been sent, the
hasSent operator ^ can be used, e.g., the expression
destObj^setValue(17) results in true if a message
setValue(17) has been sent to destObj during exe-
cution of the operation under investigation. Note that
the hasSent operator is a shortcut and can be derived
from the message operator ^^. For example, the ex-
pression destObj^setValue(17) can be replaced by
destObj^^setValue(17)->notEmpty().

Semantics. The semantics of OCL messages is cur-
rently only defined in the metamodel-based semantics
(Ivner et al. 2003, Section 5.2). In this context, the
so-called Values package that represents the seman-
tic domain has a class for local snapshots. A local
snapshot is an element of the semantic domain that
stores the values that are necessary for later reference.



Local snapshots are kept as an ordered list that al-
lows to access the history of the values of an object,
e.g., attribute values at the beginning of an operation
execution. In particular, local snapshots keep track
of the sequence of messages an object has sent and
the sequence of messages that the object has received
during execution of an operation.

As a formal semantics of OCL messages has not
yet been defined, the two semantics for OCL are cur-
rently inconsistent. To overcome this deficiency, we
therefore extend the formal approach of object mod-
els in the next section.

Example. We here present a slightly modified ver-
sion of a postcondition found in the OCL 2.0 proposal
(Ivner et al. 2003, Section 2.7.2):

context Person::giveSalary(company:Company, amount:Integer)
post: let messages : Sequence(OclMessage) =

company^^getMoney(amount)
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
messages->select(msg:OclMessage | msg.result() = true)

->size() = 1

The expression company^^getMoney(amount) re-
turns the sequence of messages named getMoney with
actual parameter value amount. We require that these
messages must all have been returned at the time of
termination of operation execution of giveSalary()
and that exactly one of these messages returned with
the result value true.

3 Extended object models

We define an extension of object models called ex-
tended object models, in which the following concepts
are newly introduced (cf. Section 3.1):

• operation parameter kinds in, inout, and out,

• a flag that indicates whether an operation is a
query operation without side-effects or not,

• signal receptions for classes with corresponding
well-formedness rules,

• Statecharts and their association with classes,

• a formal definition of state configurations, and

• an extension of the formal descriptor of a class.

Additionally, the following information has to be
added to system states to be able to evaluate OCL
expressions that make use of state-related and OCL
message-related operations (cf. Section 3.2):

• for each object, the input queue of received sig-
nals and operation calls that are waiting to be
dispatched,

• the state configurations of all currently existing
active objects,

• the currently executed operations, and

• for each currently executed operation, the mes-
sages sent so far.

These system state components allow to give a se-
mantics to message-related operators and operations
that could so far not formally be defined (cf. Section
4). Moreover, these components are used to define
a high-level dynamic semantics for OCL by means of
execution traces (cf. Section 5).

3.1 Syntax

In the remainder of this article, let A be an alphabet,
N be a set of names over A+, and T a set of types.
In particular, T = TB ∪ TE ∪ TC ∪ TS comprises

• a set of basic standard library types TB , i.e.,
Integer, Real, Boolean, and String,

• a set TE of user-defined enumeration types,

• a set TC of user-defined classes, c ∈ CLASS, and

• a set of special types

TS = {OclV oid,OclState,OclAny}.

We call the value set ITY PE(t) (or simply I(t) when
the context is clear) represented by a type t the
type domain. For convenience, we presume that
OclUndefined (in the following denoted by symbol
⊥) is included in each type domain, such that we
have, e.g., I(OclV oid) = {⊥} and

I(OclAny) =
⋃

t∈TB∪TE∪TC∪{OclV oid,OclState}

I(t).

Furthermore, let c ∈ CLASS be a class and
tc ∈ TC be the type of class c.1 Each class c is as-
sociated with a set ATTc of attributes that describe
characteristics of their objects. An attribute has a
name a ∈ N and a type t ∈ T that specifies the do-
main of attribute values. A class c is also associated
with a set OPc of operations and a set SIGc of signals
(in UML, signals handled by a class are specified by
so-called receptions (OMG 2003, Section 3.26.6)).

We define Extended Object ModelsM by the tuple

M =
〈
CLASS,ATT,OP, paramKind,

isQuery, SIG, SC,ASSOC,≺,
≺sig, associates, roles,multiplicities

〉
with

• a set CLASS = ACTIV E∪PASSIV E of active
and passive classes,

• a set of attributes, ATT =
⋃
c∈CLASS ATTc,

• a set OP of operations, OP =
⋃
c∈CLASS OPc,

• a function paramKind : CLASS × OP × N →
{in, inout, out} that gives for each operation pa-
rameter its parameter kind,

• a function isQuery : CLASS × OP → Boolean
that determines whether an operation is a query
operation or not,

• a set SIG of signals, SIG ⊇
⋃
c∈CLASS SIGc,

• a set SC of Statecharts, SC =
⋃
c∈ACTIV E SCc,

• a set ASSOC of associations between classes,

• generalization hierarchies ≺ for classes and ≺sig
for signals, and

• functions associates, roles, and multiplicities
that define a mapping for each element in
ASSOC to the participating classes, their corre-
sponding role names, and multiplicities, respec-
tively.

1Each class c ∈ CLASS induces an object type tc ∈ T that has
the same name as the class. The difference between c and tc is
that we have the special value ⊥ ∈ I(tc) for all c ∈ CLASS.



Note that we do not further describe the tu-
ple components of extended object models here.
For more details on sets CLASS, ATT , OP , and
ASSOC, readers are referred to the corresponding
sources (Ivner et al. 2003, Richters 2001). We also
omit the formal syntax definitions for signals and
Statecharts and refer to (Flake & Mueller 2003) for
further details. Concerning Statecharts and their in-
heritance among classes, we assume that there is ex-
actly one Statechart for each active class that com-
plies to some inheritance policy. Though the UML
1.5 standard suggests some informal policies (sub-
typing, strict inheritance, and general refinement)
(OMG 2003, Section 2.12.5), different other formal
notions for behavioral consistency have been identi-
fied in the literature, e.g., by Stumptner & Schrefl
(2000).

The set of characteristics defined in a class to-
gether with its inherited characteristics is called the
full descriptor of a class. More formally, the full de-
scriptor of a class c ∈ CLASS is a tuple

FDc =
〈
ATT ∗c , OP

∗
c , paramKind

∗
c ,

isQuery∗c , SIG
∗
c , SCc, navEnds

∗(c)
〉

containing the complete sets of attributes, operations
(with corresponding functions that determine param-
eter kinds and query operations), signals, navigable
role names, and – in the case of an active class – the
associated Statechart. For example, the complete set
of attributes of a class c is defined by

ATT ∗c = ATTc ∪
⋃

c′∈parents(c)

ATTc′ ,

where parents(c) denotes the set of (transitive) su-
perclasses of c. The complete sets OP ∗c , SIG∗c , and
navEnds∗(c) of operations, signals, and navigable
role names are defined correspondingly. Functions
isQuery∗c : OP ∗c → Boolean and paramKind∗c :
OP ∗c × N → {in, inout, out} are derived from func-
tions isQuery and paramKind, respectively.

3.2 System state

The domain of a class c ∈ CLASS is the set of objects
of this class and all of its child classes. Objects are
referred to by object identifiers that are unique in the
context of the whole system.

The set of object identifiers of a class c ∈ CLASS
is defined by an infinite set oid(c) = {oid1, oid2, . . . }.
The domain of a class c ∈ CLASS is defined as

ICLASS(c) =
⋃

c′∈CLASS with c′≺c ∨ c′=c

oid(c′).

For technical purposes, we also define ICLASS =⋃
c′∈CLASS ICLASS(c′). Note that – in contrast to

the current OCL semantics – we distinguish between
“real” objects oid and their identifiers oid in the re-
mainder of this article, simply by using underlines.

As pointed out earlier, the current notion of a sys-
tem state with only three components is not sufficient
to be able to evaluate OCL expressions that make use
of state-related operations and OCL messages. Ad-
ditionally, we need information about currently acti-
vated states, operations called, signals sent, currently
executed operations, etc. In this context, we adopt
ideas of Ziemann & Gogolla (2002) to formalize cur-
rently executed operations and define further func-
tions to capture the required additional information.
Formally, a system state for an extended object model

M is a tuple

σ(M) =
〈

ΣCLASS ,ΣATT ,ΣASSOC ,ΣCONF ,
ΣcurrentOp,ΣcurrentOpParam,
ΣsentMsg,ΣsentMsgParam,

ΣinputQueue,ΣinputQueueParam
〉
.

We explain the components of system states in more
detail, but note that ΣCLASS , ΣATT , and ΣASSOC
are already defined by Richters (2001) and Ivner et
al. (2003).

(1) ΣCLASS =
⋃
c∈CLASS ΣCLASS,c. The finite

sets ΣCLASS,c contain all objects of a class c ∈
CLASS existing in the system state, i.e.,

ΣCLASS,c ⊆ oid(c) ⊆ ICLASS(c) .

For further application, we define ΣACTIV E,c for
active and ΣPASSIV E,c for passive classes corre-
spondingly.

(2) The current attribute values are kept in set
ΣATT . It is the union of functions σATT,a :
ΣCLASS,c → I(t), where a ∈ ATT ∗c and t is the
type specified for a. Each function σATT,a as-
signs a value to a certain attribute of each object
of a given class c ∈ CLASS.

(3) ΣASSOC =
⋃
as∈ASSOC ΣASSOC,as comprises

the finite sets ΣASSOC,as that contain links
that connect objects. We refer to the sources
mentioned above for detailed information about
links, i.e., elements of IASSOC(as), and the for-
malization of multiplicity specifications.

(4) The current Statechart configurations are kept
by σCONF =⋃
c∈ACTIV E

{
σCONF,c : ΣACTIV E,c → ISC(c)

}
.

Each function σCONF,c assigns a complete active
state configuration to each object of a given class
c ∈ ACTIV E. Set ISC(c) denotes the possible
state configurations of the Statechart SCc asso-
ciated with active class c. Note that the UML
1.5 only informally specifies state configurations.
In particular, we identified deficiencies concern-
ing final states and provided a concise definition
of state configurations (Flake & Mueller 2003).

While the definition of a system state so far is
sufficient to reason about currently activated states,
additional runtime information must be taken into ac-
count to be able to evaluate expressions that access
OCL messages. This mainly concerns the histories of
sending, receiving, and consuming signals and send-
ing, receiving, dispatching, execution, and return of
operation calls. Both, the source and the destination
object of an OCL message must keep corresponding
information. The following subsections describe cor-
responding system state components that relate to
the local snapshots defined in the metamodel-based
semantics of OCL 2.0.

3.2.1 Currently executed operations

Let ID be an infinite enumerable set, e.g., ID = N,
and let Status = {executing, returning}. At the
starting point of an operation execution, a unique
identifier opId ∈ ID is associated with the current
operation execution. Thus, an operation execution
can uniquely be identified by a given object identifier,



an operation signature op ∈ OP , and an operation
identifier opId ∈ ID. The set of currently executed
operations is defined by ΣcurrentOp =⋃
c∈CLASS

{
σcurrentOp,c : ΣCLASS,c ×OP ∗c →
P(ICLASS ×OP × ID × ID × Status)

}
Each function σcurrentOp,c gives a set of tuples of
the form 〈srcId, srcOp, srcOpId, opId, status〉 that
uniquely identify all currently executed operations for
a given object and operation name. Elements srcId,
srcOp, and srcOpId refer to the operation execution
that originally invoked the considered operation op
with identifier opId. These elements are necessary to
have a reference for returning a potential result value
after termination of op. We require that associated
operation identifiers must not change until the execu-
tion of that operation terminates.

A flag status ∈ Status indicates the current status
of operation execution. Compared to the messaging
actions specified in UML 1.5, we here omit statuses
ready and complete (OMG 2003, Section 2.19.2.3), as
they are currently not necessary in the context of the
OCL semantics.

Actual parameter values of executed operations
are kept in ΣcurrentOpParam =⋃

c∈CLASS

{
σcurrentOpParam,c :

ΣCLASS,c ×OP ∗c × ID →
I?(t1)× ...× I?(tn)× I?(t)

}
.

Each function σcurrentOpParam,c gives the actual pa-
rameter values of the currently executed operations
for a given object, operation signature, and oper-
ation execution identifier. In the definition above,
we applied sets I?(type) = I(type) ∪ {?}, where
type ∈ T . Symbol ? denotes the unspecified sta-
tus of a value. This symbol must not be mixed up
with the undefined value denoted by OclUndefined
(or ⊥ in this article) and is also different from the
String literal ’?’. Only operation parameters i with
paramKind(c, op, i) = out and the return value carry
the unspecified value during operation execution.

We require that all parameter values do not change
until operation termination. But when the status
of operation execution changes from executing to
returning, the parameters of kind inout, out, and
the return value returnV al are updated. However,
this is performed by the actual system and is not in
the scope of the OCL semantics. If an operation is
not returning a result, the result type t of operation
op is OclV oid. In that case, returnV al is set to ⊥
when the operation terminates. Note that these up-
dates only have an effect for synchronous operation
calls, as result values of asynchronous operation calls
are discarded according to the UML specification.

3.2.2 Messages sent

To be able to evaluate OCL expressions that make
use of the message operator ^^, we have to store the
history of messages sent for each executed operation.
For each object oid ∈ ΣCLASS,c and each of its cur-
rently executed operations op with identifier opId, we
define a function σsentMsg,c(oid, op, opId) that gives
the set of messages sent with their corresponding des-
tination objects.

When a message is sent from an execution of op-
eration op with identifier opId to a destination object
destId, that destination object must actually exist
(otherwise we could not refer to it), but it may already
have been destroyed when the execution of operation
op terminates. This is the reason why we cannot use

the set ΣCLASS as the base set for destination objects,
as that set only keeps currently existing objects. In-
stead, the signature of function σsentMsg,c has to use
the general set ICLASS to refer to destination object
identifiers. Recall that we distinguish between “real”
objects destId and their identifiers destId.

We define ΣsentMsg =⋃
c∈CLASS

{
σsentMsg,c :

ΣCLASS,c ×OP ∗c × ID →
P(ICLASS × (SIG ∪OP )× ID)

}
.

Set ID in P(ICLASS × (SIG∪OP )×ID) is used to
refer to the correct message identifier when returning
a value for synchronous operation calls. It would be
sufficient to have an identifier that is unique in the
context of the source object, e.g., named IDoid, but
we here simply reuse set ID for the sake of concision.
However, note that we here additionally have to re-
quire a total order for ID, such that we can uniquely
build sequences of messages sent (cf. Section 4.1).

An element

〈destId,msg, callId〉 ∈ σsentMsg,c(oid, op, opId)

denotes that a message with signature msg and call
identifier callId has been sent from object oid to the
(not necessarily still existing) object with identifier
destId as part of operation execution op with identi-
fier opId.

Additionally, we have to store the actual parame-
ter values of each message sent. We therefore define
ΣsentMsgParam =⋃
c∈CLASS

{
σsentMsgParam,c :

ΣCLASS,c × OP ∗c × ID × ICLASS
× (SIG ∪OP )× ID

→ I?(t1)× . . .× I?(tn)× I?(t)
}
,

where the number n and the types ti of message
attributes vali ∈ I(ti), 1 ≤ i ≤ n, are deter-
mined by the formal parameters of the correspond-
ing message signature, i.e., either a signal sig =
(ω : tc × t1 × . . . × tn) ∈ SIG∗c or an operation
op = (ω : tc × t1 × . . . × tn → t) ∈ OP ∗c . The val-
ues val1, . . . , valn correspond to the actual parame-
ter values of the message and are thus fixed, but note
that parameters of kind out may carry the unspec-
ified value. We set returnV al = ? by default, i.e.,
the potential return value is left unspecified until it is
calculated. Basically, returnV al ∈ I?(t) is only rel-
evant for synchronous operation calls, where it gets
a value ∈ I(t) after termination of the called opera-
tion. Again, note that potential results are discarded
anyway for asynchronous operation calls. For signals
sent, the domain of return type t is set to I?(OclV oid)
by default and the corresponding return value simply
remains unspecified.

Help Sets and Functions. In the remainder of this
article, we need some helper sets and functions. These
are basically subsets of ΣsentMsg and ΣsentMsgParam
and sub-functions of σsentMsg,c and σsentMsgParam,c,
respectively. As their formal definitions are straight-
forward, we omit them here for the sake of brevity.

Signals sent during execution of an operation are
kept in set ΣsentSig. Within this set, functions
σsentSig,c return the history of signals sent. Actual
parameter values are kept in set ΣsentSigParam with
functions σsentSigParam,c.

Operations called are kept in set ΣcalledOp. We
make use of functions σcalledOp,c that return the his-
tory of operations called. Set ΣcalledOpParam keeps



the actual parameter values of called operations, and
functions σcalledOpParam,c are used to access the ac-
tual parameter values of operations called.

To further distinguish synchronous and asyn-
chronous operation calls, sets ΣcalledSynchOp and
ΣcalledAsynchOp are employed. Within each set, we
have functions σcalledSynchOp,c and σcalledAsynchOp,c
that return the history of called synchronous and
asynchronous operations for a given operation exe-
cution. Actual parameter values are kept in sets
ΣcalledSynchOpParam and ΣcalledAsynchOpParam and
are accessed by functions σcalledSynchOpParam,c and
σcalledAsynchOpParam,c.

3.2.3 Input queues

Set ΣinputQueue is used to store events, i.e., in our
terms operation calls and signals that are sent to ob-
jects and still waiting to be dispatched. While other
events like change events, time events, and implicit
completion events invoked by Statecharts have to be
considered in a more general notion of an input queue,
we here restrict to those events that are relevant for
evaluating OCL expressions. We later refer to input
queues to update the system state when a signal or
operation is dispatched. This enables us to change
the set of currently executed operations accordingly,
which is essential for a well-defined semantics of OCL
message operations.

We define ΣinputQueue =⋃
c∈CLASS

{
σinputQueue,c : ΣCLASS,c →
P(ICLASS × OP × ID

× (SIG∗c ∪OP ∗c )× ID)
}
,

where each function σinputQueue,c maps to a set of sent
signals and operations. Again, we make use of the
general set ICLASS instead of ΣCLASS , as we cannot
assume that the source object from which an asyn-
chronous message was sent is still existing in the cur-
rent system state. However, for a message that rep-
resents a synchronous operation call, we assume that
the corresponding source object exists at least until
the invoked operation terminates and returns. In the
latter case, we can therefore refer to objects of set
ΣCLASS ⊂ ICLASS .

Finally, we keep the actual parameter values of
waiting messages in set ΣinputQueueParam =⋃
c∈CLASS

{
σinputQueueParam,c :
ΣCLASS,c × ICLASS ×OP × ID

× (OP ∗c ∪ SIG∗c)× ID
→ I?(t1)× . . .× I?(tn)× I?(t)

}
.

A function σinputQueueParam,c gives the actual param-
eter values of the waiting messages w.r.t. a given ob-
ject oid.

We now have all necessary components to be able
to evaluate general OCL expressions, i.e., also those
that access Statechart states and OCL messages.

4 Formal semantics of OCL

The formal semantics of OCL currently lacks a for-
malization of

• operations on predefined collection type
OrderedSet,

• global variable definitions (called def-clauses in
OCL),

• operations on Statechart states, and

• operators and operations to access and reason
about OCL messages.

Note that operations defined for ordered sets
are basically the same as for sequences and that
def-clauses can directly be mapped to so-called
OclHelper variables and operations. OclHelper vari-
ables and operations, in turn, are stereotyped at-
tributes and operations of classifiers. Such variables
and operations can be used in OCL expressions just
like common attributes and operations. Thus, it only
has to be ensured that no naming conflicts occur,
while additional semantic issues do not have to be
regarded here. As we already integrated Statecharts
to OCL in a previous article (Flake & Mueller 2003),
we now formally define operators and operations to
access and reason about OCL messages.

First, we formally define the semantic domain of
OCL messages by I(OclMessage) =⋃

c∈CLASS,op∈OP∗c
I(OclMessage(op))

∪
⋃
c∈CLASS,sig∈SIG∗c

I(OclMessage(sig)),

where the set I(OclMessage(op)) for a given opera-
tion op = (ω : tc× t1× . . .× tn → t) ∈ OP ∗c is defined
as follows:

I(OclMessage(op)) =
ID × ICLASS × I?(t1)× . . .× I?(tn)

Set ID refers to the unique call identifiers (callId)
of sent messages. Set ICLASS is used to keep the
object identifier of the destination object to which
the message is sent. Set I(OclMessage(sig)) for a
signal sig = (ω : tc × t1 × . . .× tn) ∈ SIG∗c is defined
in the same way.

We are now able to give a syntax for postcondi-
tion expressions w.r.t. OCL message operators and a
corresponding semantics in the next subsection. A se-
mantics of operations on OCL messages is then given
in Subsection 4.2.

4.1 OCL message operators

We here focus on the formalization of the more gen-
eral message operator ^^, as the hasSent operator ^
can easily be derived as shown in Section 2.1.

Syntax. The basic syntactical elements of OCL ex-
pressions are defined by a so-called data signature
ΣM = (TM,≤,ΩM) (Ivner et al. 2003, Appendix
A.2.8), where

• TM is the set of type expressions TExpr(t) for
types t ∈ TB ∪ TE ∪ TC ∪ TS ,

• ≤ is a type hierarchy over TM, and

• ΩM is the set of operation signatures, ΩM =
ΩTM ∪ ΩB ∪ ΩE ∪ ΩC ∪ ΩS .

The formal syntax of general valid OCL expressions
is then inductively defined, such that more complex
expressions are recursively built from simpler ones.
The syntax of OCL expressions is given by the set
Expr =

⋃
t∈TM Exprt and an additional function to

capture free variables. The set Post-Expr of valid
OCL postcondition expressions is defined in the same
way as Expr, but with additional rules for allowing
operation oclIsNew(), operator @pre, and a prede-
fined result variable named result (Ivner et al. 2003,
Appendix A.3.2.2).

Additionally, the following rule viii. introduces a
new kind of postcondition expression w.r.t. OCL mes-
sages. Note here that we also have to consider signals



MSGedest^^ω(e1,...,en) ={
〈callId, eV aldest, v1, ..., vn〉 | ∃c′ ∈ CLASS :

eV aldest = I[[edest]](τpre, τpost) ∈ ICLASS(c′) \ {⊥}
∧
(
∃msg = (ω : tc′ × t1 × ...× tn → t) ∈ OP ∗c′
∨ ∃msg = (ω : tc′ × t1 × ...× tn) ∈ SIG∗c′

)
∧ ∀i ∈ {1, . . . , n} : eV ali = I[[ei]](τpre, τpost) ∈ I?(ti) \ {⊥}
∧ ∀i ∈ {1, . . . , n} : (eV ali 6= ? ⇒ eV ali = vi)
∧ 〈eV aldest,msg, callId〉 ∈ σsentMsg,c(oid, op, opId)
∧ ∃anyV al ∈ I?(OclAny) : 〈v1, . . . , vn, anyV al〉 ∈

σsentMsgParam,c(oid, op, opId, eV aldest,msg, callId)
}

Figure 2: Semantics of OCL Expressions with Message Operator

for message expressions. We therefore make use of
set ΨM to refer to the set of signals defined in an
instantiation of an object model M.

viii. if (a) edest ∈ Post-Exprt and
(b) either (ω : tc × t1 × . . .× tn → t) ∈ ΩM

or (ω : tc × t1 × . . .× tn) ∈ ΨM and
(c) ei ∈ Post-Exprti for all i = 1, . . . , n,

then edest^^ω(e1, . . . , en) ∈ Post-Exprt and
edest^ω(e1, . . . , en) ∈ Post-Exprt. This maps
into OclMessageExp in the abstract syntax of the
OCL 2.0 proposal.

Semantics. Generally, the semantics of expressions
is defined in the context of a given environment τ =
〈σ(M), β〉 with a system state σ(M) and a variable
assignment β : V art → I(t). A variable assignment β
maps variable names to values. In the following, let
Env be the set of all environments τ = 〈σ(M), β〉.

While the semantics of an OCL expression e is
usually defined by a function I[[e]] : Env → I(t),
we have to consider two environments in the case of
operation postconditions, i.e., the environments τpre
(before operation execution) and τpost (after opera-
tion execution). Thus, the interpretation function
for expressions e specified in postconditions becomes
I[[e]] : Env × Env → I(t).

The semantics of OCL message operator ^^ is de-
fined over environments (τpre, τpost) in the context of
a given object oid ∈ ΣCLASS,c and an executed op-
eration with signature op ∈ OP ∗c and identifier opId
(implicitly, we assume that the operation execution
has just terminated). First, we define a help set
MSGedest^^ω(e1,...,en) that keeps all relevant messages
sent (cf. Figure 2).

In the following, let m be the number of elements
in MSGedest^^ω(e1,...,en). For each i ∈ {1, . . . ,m},
let xi = 〈callIdi, eV aldest, v1,i, . . . , vn,i〉 be a distinct
element of set MSGedest^^ω(e1,...,en) with callIdj <

callIdj+1 for all j ∈ {1, . . . ,m− 1}.
Because of the unique call identifiers of messages

sent, the latter condition induces an order on the el-
ements xi ∈ MSGedest^^ω(e1,...,en), such that we can
define the corresponding sequence of messages sent
as follows, using double angle brackets to denote a
sequence of elements:

I[[edest^^ω(e1, ..., en)]](τpre, τpost) = 〈〈x1, ..., xm〉〉 .

If at least one I[[ei]](τpre, τpost), 1 ≤ i ≤ n, evaluates
to ⊥, the expression evaluates to the empty sequence,
as we have explicitly required I[[ei]](τpre, τpost) ∈
I?(t) \ {⊥} in the definition of MSGedest^^ω(e1,...,en).
Note that we could have also defined a semantics that
evaluates to ⊥ in this case.

Furthermore, it is not clearly defined in the OCL
2.0 proposal whether the destination object that is
specified as part of the message expression must still
exist at the time of checking the postcondition. In
order not to loose generality, we think it should be al-
lowed to also refer to objects that might have been de-
stroyed while the operation was still executing. Con-
sequently, this means that we have to distinguish
between objects and their identifiers, in contrast to
the current formal OCL semantics. We cannot as-
sume that I[[edest]](τpre, τpost) evaluates to an object
eV aldest that still exists at the time of postcondition
evaluation. Instead, we interpret I[[edest]](τpre, τpost)
as an object identifier ∈ ICLASS(c′) only. To further
indicate that we are only interested in an object iden-
tifier here, we do not underline eV aldest in Figure 2.

The meaning of eV aldest = ⊥ is now that the ob-
ject identifier eV aldest is not defined w.r.t. the com-
plete execution of the operation under consideration.
In this case, I[[edest^^ω(e1, ..., en)]](τpre, τpost) results
in the empty sequence.

4.2 OCL message operations

The operation signature of OCL message operation
hasReturned() is

IhasReturned:OclMessage→Boolean :
I(OclMessage)→ I(Boolean) ,

and the signatures of the other operations result(),
isOperationCall(), and isSignalSent() are very
similar.

As existing OCL syntax does not need to be ad-
justed for message operations, we here only have to
define a semantics for message operations. Generally,
the semantics of an operation (ω : tc× t1× . . .× tn →
t) ∈ OP ∗c is recursively defined by

I[[ω(e1, . . . , en)]](τpre, τpost) =
I(ω)(τpost)

(
I[[e1]](τpre, τpost),
. . . , I[[en]](τpre, τpost)

)
.

We define the semantics of OCL message opera-
tions over environments (τpre, τpost) in the context of
a given object oid ∈ ΣCLASS,c and an executed oper-
ation with signature op = (ω : tc× t1× . . .× tn → t) ∈
OP ∗c and identifier opId (again, we implicitly assume
that the operation execution has just terminated).

Note that operations hasReturned() and
result() only make sense over synchronous
operation calls, as results of asynchronous op-
eration calls are discarded according to UML
1.5. We can therefore directly apply function



σcalledSynchOp,c to check whether a given OCL mes-
sage 〈callId, destId, v1, . . . , vn〉 ∈ I(OclMessage)
has returned and to determine its result, i.e.,

I(hasReturned)(τpost)()(〈callId, destId, v1, ..., vn〉)

=



true, if ∃msg ∈ OP : 〈destId,msg, callId〉 ∈
σcalledSynchOp,c(oid, op, opId)

∧ σcalledSynchOpParam,c(oid,
op, opId, destId,msg, callId) =
〈val1, . . . , valn, returnV al〉,

such that returnV al 6= ?
and ∀i ∈ {1, . . . , n} :
(vi 6= ? ⇒ vali = vi),

false, otherwise.

Condition returnV al 6= ? guarantees that the opera-
tion has returned, as that parameter value is updated
to an element of I(t) after the corresponding opera-
tion termination.

The semantics of operation result() can easily
be derived from the previous definition and is omitted
here for the sake of brevity.

The semantics of operations isSignalSent() and
isOperationCall() is also easily obtained from
the formal definition of operation hasReturned().
The main difference is that the regarded func-
tions σcalledSynchOp,c and σcalledSynchOpParam,c are
replaced correspondingly, as we now have to con-
sider both synchronous and asynchronous operation
calls for isOperationCall() and signals sent for
operation isSignalSent(). Furthermore, condition
returnV al 6= ? does not need to hold for these two
operations and can simply be omitted.

5 Dynamic semantics

So far, it is not defined how a system state is actually
built. The OCL 2.0 semantics simply assumes that a
system state 〈ΣCLASS ,ΣATT ,ΣASSOC〉 is given with
a set ΣCLASS of currently existing objects, a set
ΣATT of attribute values for the objects, and a set
ΣASSOC of currently established links that connect
the objects. While this structure is easy to obtain
from a concrete (implementation of a) running sys-
tem, the situation becomes more complicated when
OCL messages are considered, as corresponding infor-
mation about specific parts of the execution history
has to be available in subsequent system states for
the evaluation of postconditions.

5.1 Traces

Due to the information to keep for subsequent system
states, we have to define traces, i.e., sequences of sys-
tem states that keep track of all noteworthy changes
within a running system. In the context of check-
ing OCL constraints, we are, for instance, not inter-
ested in every single attribute value change that oc-
curs during execution of an operation. Instead, we
are interested in those system states in which some-
thing happens that is of relevance for evaluation of
OCL expressions, e.g., when an operation terminates
and a corresponding postcondition has to be checked.

In the simplest case, e.g., when (an implementa-
tion of) the system is executed on a single CPU, there
is a clear temporal order on the system execution.
But when (the implementation of) the system is dis-
tributed, we have a partial order among the system
executions. This problem can be treated in an ideal
case by introducing a global clock that allows for a
global view on the system.

We here follow the idea of a global view on the
system. A well-defined system state sequence called
trace for an instantiation of an extended object model
M is an (infinite) sequence of system states, i.e.,

trace(M) = 〈〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . . 〉〉.

The first trace element σ(M)[0] denotes the initial
system state. Given a system state σ(M)[i], i ∈ N0,
the next system state σ(M)[i+1] is added to the trace
when for at least one noteworthy change occurs. The
set of these changes is identified in the next subsec-
tion.

5.2 When to check constraints

It is quite obvious when to check pre- and postcon-
ditions, i.e., just before and just after execution of
the according operation. Invariants of an object, in
contrast, have to be checked when certain parts of
the object status change. In this context, we use the
term object status to refer to the whole information
stored for an object in a system state, in contrast to
the object states which refer to the currently activated
Statechart states of the object.

It is often assumed that the status of an object
only changes through operation calls. While this
might be suitable in some application domains, the
situation becomes different when objects are mod-
eled in combination with Statecharts. In UML State-
charts, elapsed time events and change events can be
specified to trigger transitions, e.g., after(1 sec) or
when(x > 100). These are basically monitors that
permanently check for a condition to become true
and then raise an internal event to trigger the ac-
cording transition in the next run-to-completion-step
(RTC-step). Thus, a new Statechart configuration is
entered without any operation call. Similarly, signals
consumed by an RTC-step can also cause a new State-
chart configuration to be entered. Invariants must
therefore be checked in such cases as well.

However, invariants do not have to be checked in
all cases of status changes. For example, assume that
a message is sent by an object oid, such that the
message history σsentMsg,c(oid, op, opId) changes and
therefore the object status changes as well. Certainly,
it is not necessary to check the invariants of the object
yet.

Noteworthy Changes. Let inv(c) denote the set
of invariants of a class c ∈ CLASS. Let inv∗(c) de-
note the full set of invariants for a class c, i.e.,

inv∗(c) = inv(c) ∪
⋃

c′∈parents(c)

inv(c′).

Similarly, let pre(op, c) and post(op, c) denote the pre-
and postconditions of an operation op ∈ OP ∗c . Recall
that we assume that there is an inheritance policy for
Statecharts that guarantees that state-related OCL
expressions are well-defined over inheritance relation-
ships among active classes with associated State-
charts.

We identified the following kinds of noteworthy
changes relevant for evaluation of OCL expressions.
In each case, we give a corresponding rule for up-
dating the current system state σ(M)[i] and indicate
which OCL constraints have to be checked. Note that
different kinds of noteworthy changes might occur in
parallel at the same instant of time, such that more
than one of the rules might have to be applied on a
given system state σ(M)[i]. For example, a number
of objects can be created at the same time on different



nodes in a distributed system, and in addition one or
more new links can be established.

Although we abstract from an explicit notion of
time here, we have to assume a global view on the
system to determine the set of noteworthy changes on
the whole (even distributed) system at each instant
of time.

In the following rules, we are using the [i]-
annotation also for the components and functions de-
fined in σ(M)[i], i ∈ N0.

(1) Let oid1, . . . , oidn be the objects of classes cj ∈
CLASS, 1 ≤ j ≤ n, that are newly created.

∀j ∈ {1, . . . , n} :
ΣCLASS,cj [i+1] = ΣCLASS,cj [i] ∪ {oidj}

Task: Check invariants inv∗(cj) for all objects
oidj on system state σ(M)[i+1].

(2) Let oid1, . . . , oidm be the objects of classes cj ∈
CLASS, 1 ≤ j ≤ m, that are destroyed.

∀j ∈ {1, . . . ,m} :
ΣCLASS,cj [i+1] = ΣCLASS,cj [i] \ {oidj}

(3) Let lasj , 1 ≤ j ≤ k, be the links of associations
asj ∈ ASSOC that are newly established.

∀j ∈ {1, . . . , k} :
ΣASSOC,asj [i+1] = ΣASSOC,asj [i] ∪ {lasj}

(4) Let lasj , 1 ≤ j ≤ p, be the links for associations
asj ∈ ASSOC that are removed.

∀j ∈ {1, . . . , p} :
ΣASSOC,asj [i+1] = ΣASSOC,asj [i] \ {lasj}

(5) Let cfgj , 1 ≤ j ≤ q, be the new state config-
urations that are reached for objects oidj of
active classes cj .

∀j ∈ {1, . . . , q} :
σCONF,cj (oidj)[i+1] = cfgj

Task: Check inv∗(cj) for object oidj on system
state σ(M)[i+1].

(6) Let opj with opIdj , 1 ≤ j ≤ r, be the op-
eration executions of objects oidj from classes
cj ∈ CLASS that sent a message named msgj
with identifier msgIdj and actual parameter val-
ues vj,1, ..., vj,nj to object destIdj with call iden-
tifier callIdj .

∀j ∈ {1, . . . , r} :
σsentMsg,cj (oidj ,msgj ,msgIdj)[i+1] =
σsentMsg,cj (oidj ,msgj ,msgIdj)[i]

∪ {〈destIdj , opj , callIdj〉}
and
σsentMsgParam,cj (oidj , opj , opIdj ,

destIdj ,msgj , callIdj)[i+1] =
〈vj,1, ..., vj,nj , ?〉

(7) Let oidj , 1 ≤ j ≤ v, be the objects of classes
cj ∈ CLASS that receive a message named
msgj with call identifier callIdj invoked by an
operation execution of object srcIdj of a class c′j
(identified by srcOpj and srcOpIdj).

∀j ∈ {1, . . . , v} :
σinputQueue,cj (oidj)[i+1] =
σinputQueue,cj (oidj)[i]

∪ {〈srcIdj , srcOpj , srcOpIdj ,msgj , callIdj〉}
and
σinputQueueParam,cj (oidj , srcIdj , srcOpj ,

srcOpIdj ,msgj , callIdj)[i+1] =
σsentMsgParam,c′j

(srcIdj , srcOpj , srcOpIdj ,
oidj ,msgj , callIdj)[i]

(8) Let sigSentj = 〈srcIdj , srcOpj , srcOpIdj , sigj ,
callIdj〉, 1 ≤ j ≤ w, be the signals that are con-
sumed by objects oidj of classes cj ∈ CLASS.

∀j ∈ {1, . . . , w} :
σinputQueue,cj (oidj)[i+1] =
σinputQueue,cj (oidj)[i] \ {sigSentj}

(9) Let opCalledj = 〈srcIdj , srcOpj , srcOpIdj , opj ,
callIdj〉, 1 ≤ j ≤ x, be the waiting opera-
tion calls that are dispatched by objects oidj
of classes cj ∈ CLASS.

∀j ∈ {1, . . . , x} :
σinputQueue,cj (oidj)[i+1] =
σinputQueue,cj (oidj)[i] \ {opCalledj}

and
σcurrentOp,cj (oidj , opj)[i+1] =
σcurrentOp,cj (oidj , opj)[i]

∪ {〈 srcIdj , srcOpIdj ,
callIdj , newIdj , executing〉},

where newIdj ∈ ID is a unique id for opj
and
σcurrentOpParam,cj (oidj , opj , newIdj)[i+1] =
σinputQueueParam,cj (oidj , srcIdj , srcOpj ,

srcOpIdj , opj , callIdj)[i]

Task: For all j ∈ {1, ..., x}, check pre(opj , cj) of
operation opj with identifier newIdj on system
state σ(M)[i+1].

(10) Let opj with opIdj , 1 ≤ j ≤ y, be the executing
operations of objects oidj that terminate.
Let srcIdj , srcOpj , and srcOpIdj be the object
identifier, the operation name, and the operation
identifier of the operation execution that initi-
ated the execution of opj with opIdj .

∀j ∈ {1, . . . , y} :
σcurrentOp,c(oidj , opj)[i+1] =(

σcurrentOp,cj (oidj , opj)[i]

\ {〈 srcIdj , srcOpj ,
srcOpIdj , opIdj , executing〉}

)
∪ {〈 srcIdj , srcOpj ,

srcOpIdj , opIdj , returning〉}
and
σcurrentOpParam,cj (oidj , opj , opIdj)[i+1] =
〈vj,1, ..., vj,nj , returnV alj〉



Note that it is not the scope of OCL to perform
updates on the parameter values when an opera-
tion terminates, just as it is not the task of OCL
to update attribute values. We therefore assume
that the system performs the necessary updates
on the actual parameter values vj,1, ..., vj,nj and
the return value returnV alj of the terminating
operation identified by opIdj . Thus, all parame-
ters of kind in are still unchanged and the param-
eters of kind inout and out are already updated
in system state σ(M)[i].

Task: For all j ∈ {1, ..., y}, check post(opj , cj)
of operation opj with identifier opIdj on sys-
tem state σ(M)[i+1]. For passive objects oidj ,
we here also check the invariants inv∗(c) on sys-
tem state σ(M)[i+1]. In contrast, invariants of
active objects are only checked after completion
of RTC-steps, which is covered by noteworthy
change (5).

(11) Let opj with opIdj , 1 ≤ j ≤ z, be the termi-
nated operations of objects oidj that return.

For each j ∈ {1, ..., z}, let srcIdj ∈ I(tc′j ) be the
corresponding source object identifier, srcOpj
the invoking operation with identifier srcOpIdj ,
and callIdj the message call identifier. Parame-
ter values are returned for synchronous operation
calls only, i.e.,

∀j ∈ {1, . . . , z} :
σcurrentOp,cj (oidj , opj)[i+1] =
σcurrentOp,cj (oidj , opj)[i]

\ {〈 srcIdj , srcOpj ,
srcOpIdj , opIdj , returning〉}

and
if 〈oidj , opj , callIdj〉 ∈
σcalledSynchOp,c′j (srcIdj , srcOpj , srcOpIdj)

then σcalledSynchOpParam,c′j (srcIdj , srcOpj ,
srcOpIdj , oidj , opj , callIdj)[i+1] =

σcurrentOpParam,cj (oidj , opj , opIdj)[i]

For the sake of brevity, we have not ex-
plicitly defined all updates on the parameter
functions σcurrentOpParam,c, σsentMsgParam,c, and
σinputQueueParam,c. In particular, when an element
from one of the sets σcurrentOp,c, σsentMsg,c, and
σinputQueue,c is removed, we have to remove the cor-
responding parameters, too. Moreover, note that up-
dates on the attributes in set ATT and the actual
parameters of operations are not in the scope of this
OCL semantic definition, such that we implicitly as-
sume the correct attribute and parameter values in
each system state σ(M)[i]. Nevertheless, all other
components of system state σ(M)[i] that are not ex-
plicitly considered in the update sections remain un-
changed for the subsequent system state σ(M)[i+1].

6 Conclusion

Based upon our previous formalization that already
captures Statecharts and state-related operations,
this article presents further extensions to object mod-
els and system states, such that a formal semantics
for OCL messages and corresponding operators and
operations could be given.

We identified the situation that a destination ob-
ject (i.e., an object to which a message is sent) might

no longer exist at the time of postcondition evalu-
ation of the invoking operation. In turn, when an
asynchronous operation call is dispatched or a signal
sent is consumed in a destination object, the source
object might already be destroyed. It is thus neces-
sary to distinguish between “real” objects and their
identifiers, in contrast to the current OCL semantics.

For OCL messages, we used explicit call identi-
fiers to distinguish different messages. When return-
ing from a synchronous operation call, we simply up-
date the relevant parameter values by referring to the
call identifiers. This is an abstraction from the UML
semantics that assume that a specific reply object is
generated and sent (OMG 2003, Section 2.24).

Our formal definition of a trace currently relies
on a global view on the executed system. However,
this cannot generally be assumed, e.g., for distributed
systems. It has therefore to be discussed whether it
is necessary to distinguish between local and global
OCL constraints.

One important remaining task is to complete
the counterpart semantics, i.e., the metamodel-based
OCL semantics. In particular, a semantics of State-
chart states is still missing in the metamodel-based
OCL semantics. Moreover, consistency among the
two semantics should be reviewed.

Several publications of recent years apply tem-
poral extensions of OCL, e.g., Ziemann & Gogolla
(2002). The dynamic semantics presented in this ar-
ticle is a suitable basis for a formal semantics of such
temporal OCL extensions. In this context, a future-
oriented temporal OCL extension w.r.t. reachability
of Statechart configurations has already been devel-
oped (Flake & Mueller 2003).

Acknowledgement

This work receives funding through the DFG project
GRASP within the DFG priority programme 1064
“Integration von Techniken der Softwarespezifikation
für ingenieurwissenschaftliche Anwendungen”.

References

Flake, S. & Mueller, W. (2003), Formal Semantics of Static
and Temporal State-Oriented OCL Constraints, Software
and System Modeling (SoSyM), 2(3), Springer.

Ivner, A., Högström, J., Johnston, S., Knox, D. & Rivett, S.
(2003), ‘Response to the UML2.0 OCL RfP, Version 1.6’,
OMG Document ad/03-01-07.

Kleppe, A. & Warmer, J. (2000), Extending OCL to Include
Actions, in A. Evans, S. Kent & B. Selic, eds, ‘UML 2000
- The Unified Modeling Language. Advancing the Stan-
dard’, York, UK, LNCS 1939, Springer, pp. 440–450.

Kleppe, A. & Warmer, J. (2002), The Semantics of the OCL
Action Clause, in T. Clark & J. Warmer, eds, ‘Object
Modeling with the OCL: The Rationale behind the Ob-
ject Constraint Language’, LNCS 2263, Springer, pp. 213–
227.

OMG, Object Management Group (2003), ‘Unified Modeling
Language 1.5 Specification’, OMG Document formal/03-
03-01.

Richters, M. (2001), A Precise Approach to Validating UML
Models and OCL Constraints, PhD thesis, Universität
Bremen, Bremen, Germany.

Stumptner, M. & Schrefl, M. (2000), Behavior Consistent In-
heritance in UML, in A.H.F. Laender et al., eds, ‘19th
International Conference on Conceptual Modeling (ER
2000)’, Salt Lake City, UT, USA, pp. 527–542.

Warmer, J. & Kleppe, A. (1999), The Object Constraint Lan-
guage: Precise Modeling with UML, Addison-Wesley.

Ziemann, P. & Gogolla, M. (2002), An Extension of OCL
with Temporal Logic, in J. Jürjens et al., eds, ‘Critical
Systems Development with UML’, Technische Universität
München, Institut für Informatik, Germany, pp. 53–62.


	Introduction
	OCL
	OCL messages

	Extended object models
	Syntax
	System state
	Currently executed operations
	Messages sent
	Input queues


	Formal semantics of OCL
	OCL message operators
	OCL message operations

	Dynamic semantics
	Traces
	When to check constraints

	Conclusion

