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Abstract

The textual Object Constraint Language (OCL) is an of-
ficial part of the Unified Modeling Language (UML). A new
concept in the recently adopted OCL version 2.0 is the no-
tion of OCL messages that enable modelers to put restric-
tions on messages sent.

However, this concept shows some shortcomings with re-
spect to the existing OCL language concepts. On the one
hand, the proposed syntax does not quite conform to the es-
tablished notation of OCL. On the other hand, the formal
OCL semantics still lacks an integration of OCL messsages.

This article reviews the syntax and semantics of OCL
messages and presents a new approach to better integrate
this concept with the rest of OCL 2.0.

1 Introduction

The Object Constraint Language (OCL) is a declara-
tive expression language that enables modelers to formulate
constraints in the context of a given UML user model [12].
Recently, OCL version 2.0 has been adopted by the Object
Management Group (OMG) as part of the new UML 2.0
standard [9]. OCL is mainly used to specify invariants at-
tached to classes and pre- and postconditions of operations,
but OCL is also applied to formulate well-formedness rules
in the metamodel definition of the official UML specifica-
tion.

As an application example, assume that we have a model
with classes Machine and Buffer and an association be-
tween these classes (see Figure 1). The following invariant
requires that each instance of class Machine has at least one
associated buffer:

context Machine

inv: self.buffers->notEmpty()

The class name that follows the context keyword spec-
ifies the class for which the following expression should

Figure 1. Sample Class Diagram

hold. The keyword self refers to each object of the con-
text class. Attributes, operations, and associations can be
accessed by dot notation, e.g., self.buffers results in a
(possibly empty) set of instances of Buffer. The arrow no-
tation indicates that a collection of objects is manipulated
by one of the predefined OCL collection operations. For
example, operation notEmpty() returns true when the ac-
cessed set is not empty.

In operation postconditions, modelers can put restric-
tions on messages sent. For example, consider the following
requirement for buffer objects.

During execution of operation load(), a report-
ing message has to be sent to the machine to
which the buffer belongs.

A corresponding operation specification in OCL may look
like this:

context Buffer::load(i:Item)

pre: storedItems < capacity

post: myMachine^reportNewItem(i)

The expression myMachine^reportNewItem(i) is a bool-
ean expression that results in true when at least one mes-
sage reportNewItem(i) has been sent to the associated
machine object during operation execution.

However, the syntax and semantics of such message
specifications have some significant shortcomings that are
discussed in the remainder of this article. In particular, we
consider the following issues as being problematic, both in
terms of usage by UML modelers as well as w.r.t. the un-
derlying semantics:



1: msg.hasReturned() : Boolean
2: -- Returns true if the message denotes an operation call and if the invoked operation has already returned.
3:
4: msg.result() : OclAny -- Note: the actual return type is the return type of the invoked operation.
5: -- Returns the result of the invoked operation if the message denotes an operation call and the invoked
6: -- operation has already returned. Otherwise the operation returns OclUndefined.
7:
8: msg.isSignalSent() : Boolean
9: -- Returns true if the message represents a signal.

10:
11: msg.isOperationCall() : Boolean
12: -- Returns true if the message represents an operation call.

Figure 2. Operations on OCL Messages

• Each OCL message expression requires the explicit
specification of a destination object.

• The syntax used for message operators, i.e., ^ and ^^,
is unnecessarily cryptic.

• The expressions for common message specifications
are unnecessarily complex.

• Concerning the evaluation of OCL expressions, a mes-
sage specification can refer to a destination object that
might has already been destroyed.

• The OCL semantics description becomes quite com-
plex due to the required data structure that stores the
history of messages sent (cf. [4]).

The remainder of this article is structured as follows. In
Section 2, we outline the concept of OCL messages as de-
fined in OCL 2.0. Section 3 then discusses the identified
shortcomings of the current definition of OCL messages. In
Section 4 we then present our redefinition of the OCL mes-
sage concept. Related work is outlined in Section 5, and
Section 6 concludes the article.

2 OCL Messages

Based on the work by Kleppe and Warmer [6, 7], OCL
messages have been newly introduced in OCL 2.0 to specify
behavioral constraints over messages sent by objects. An
OCL message refers to a particular signal sent or a (syn-
chronous or asynchronous) operation called. While signals
sent are asynchronous and the calling object simply contin-
ues its execution, synchronous operation calls make the in-
voking operation wait for a return value. An asynchronous
operation call is like sending a signal, such that a poten-
tial return value is simply discarded. For more details about
messaging actions we refer to the action semantics of UML
[10, Section 2.24].

2.1 Syntax

The parameterized type OclMessage(T) is part of the
OCL Standard Library, where the template parameter T

refers to an operation or signal. A concrete OclMessage

type is therefore described by (a) the referred operation or
signal and (b) all formal parameters of the referred opera-
tion or all attributes of the referred signal, respectively. Four
operations on OCL messages are predefined (see Figure 2).

OCL messages are obtained by the message operator ^^
that is attached to a destination object. For example, the ex-
pression myMachine^^reportNewItem(i) results in the
sequence of messages reportNewItem(i) that have been
sent to the object determined by myMachine during execu-
tion of the considered operation – recall that the considered
expression must have been specified in an operation post-
condition. Each element of the resulting sequence is an in-
stance of type OclMessage(T). For example, the exact type
of the OCL expression myMachine^^reportNewItem(i)

is Sequence(OclMessage(reportNewItem(i:Item))).
One can make use of so-called unspecified values to indi-

cate that an actual parameter does not need to have a specific
value. Unspecified values are denoted by question marks,
e.g., myMachine^^reportNewItem(?:Item).

The hasSent operator ^ can be used to check whether
a message has been sent. This has already been illustrated
for the OCL expression myMachine^reportNewItem(i)

in Section 1. Note that this operator can easily be de-
rived from the message operator ^^. Each expression of the
form destObj^msgName(parameters) can be replaced
by destObj^^msgName(parameters)->notEmpty().

2.2 Semantics

The OCL 2.0 specification provides two semantic de-
scriptions. The first semantics is a metamodel-based ap-
proach, i.e., the semantics of an OCL expression is given
by associating each value defined in the semantic domain
(i.e., the Values package) with a type defined in the meta-
model (i.e., the AbstractSyntax package), and by asso-
ciating each evaluation with an expression of the abstract



syntax. Given an overall snapshot of the running system,
these associations allow to yield a unique value for each
OCL expression, which is the result value of OCL expres-
sion evaluation. Secondly, a formal semantics is defined
based on the mathematical notion of an object model. This
is discussed in more detail in Section 3.

A semantic integration of OCL messages with the rest
of OCL is currently only available in the metamodel-based
semantics [9, Section 10.2]. In this context, the Values

package has a class for local snapshots. Local snapshots are
kept as an ordered list which allows to access the history of
the values of an object, e.g., attribute values at the begin-
ning of an operation execution. In particular, local snap-
shots keep track of the sequence of messages an object has
sent. However, there is no dynamic semantics, such that it is
undefined which snapshots of a running system are actually
stored, i.e., it is not clear how local snapshots are created
and handled at runtime. Moreover, there is no official for-
mal semantics of OCL messages available, which motivated
our previous work [4].

3 Review of the Formal OCL Semantics

The formal OCL 2.0 semantics is defined by a set-
theoretic approach called object model based on work by
Richters [11]. The object model of OCL 2.0 is a tuple

M =
〈

CLASS,ATT,OP,ASSOC,≺,

associates, roles,multiplicities
〉

with a set CLASS of classes, a set ATT of attributes, a set
OP of operations, a set ASSOC of associations, a general-
ization hierarchy ≺ over classes, and functions associates,
roles, and multiplicities that give for each as ∈ ASSOC

its dedicated classes, the classes’ role names, and multiplic-
ities, respectively.

In the remainder of this article, we call an instanti-
ation of an object model a system. A system changes
over time, i.e., the (number of) objects, their attribute val-
ues, and other characteristics change during system exe-
cution. System states keep corresponding information to
be able to evaluate OCL expressions. In OCL 2.0, a sys-
tem state σ(M) is formally defined as a triple σ(M) =
〈ΣCLASS,ΣATT ,ΣASSOC〉 with the set ΣCLASS of cur-
rently existing objects, the set ΣATT of attribute values of
the objects, and the set ΣASSOC of currently established
links that connect the objects.

However, the information stored in this system state
triple is not sufficient to evaluate expressions that reason
about messages sent; messages are not considered at all in
the formal model so far. We therefore added appropriate
components to the object model and system states. Thus,

the resulting extended system state is a tuple

σ(M) =
〈

ΣCLASS,ΣATT ,ΣASSOC ,ΣCONF ,

ΣcurrentOp,ΣcurrentOpParam,

ΣsentMsg,ΣsentMsgParam,

ΣinputQueue,ΣinputQueueParam

〉

that now additionally comprises

• the set ΣCONF of active state configurations over ac-
tive objects (see [5] for more details about OCL and
UML State Diagrams),

• for each currently existing object, the set ΣcurrentOp

of its currently executed operations,

• for each current operation execution, the set ΣsentMsg

of sent messages, and

• for each currently existing object, the set ΣinputQueue

of received messages that are still waiting to be dis-
patched.

Parameter values of executed operations and sent/received
messages are kept in separate structures for technical rea-
sons. The resulting structure of system states has become
comparatively complex, but all listed components are in
fact necessary in order to (a) provide a formal semantics for
OCL messages and (b) give a dynamic semantics of OCL.
We defined a dynamic OCL semantics by means of traces,
i.e., sequences of system states, based on a set of notewor-
thy changes that identify all changes relevant for the evalu-
ation of OCL constraints [4]. While that work is primarily
intended to complete the formal semantics of the OCL 2.0
standard, this article reviews and enhances the concept of
OCL messages.

4 Our Approach

To motivate our approach, we first review a message
specification found in the OCL 2.0 specification [9, Section
7.7.2]:

context Person::giveSalary(amount : Integer)
post: let message : OclMessage = company^getMoney(amount)

in
message.hasReturned() -- getMoney was sent and returned
and
message.result() = true -- getMoney returned true

Unfortunately, this postcondition has a type mismatch;
the expression company^getMoney(amount) does not re-
turn an OCL message, but rather a boolean value, as the
hasSent operator is applied. We therefore revise the post-
condition and use the message operator ^^ to extract the
corresponding message(s) sent. Additionally, we adjust the
type of variable messages to be a sequence of messages:



context Person::giveSalary(amount : Integer)
post: let messages : Sequence(OclMessage) =

company^^getMoney(amount)
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
messages->forAll(msg:OclMessage | msg.result() = true)

The postcondition above now requires that all messages
getMoney(amount) sent to object company have already
returned with result value true. But this does not have the
originally intended meaning any more. Instead, the actual
requirement is that (a) all messages getMoney(amount)

have already returned and (b) exactly once the return result
is true. Returning true stands for getting the money from
the company – and the money must not be granted more
than once by the company. The correct specification is then
as follows.

context Person::giveSalary(amount : Integer)
post: let messages : Sequence(OclMessage) =

company^^getMoney(amount)
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
messages->select(msg:OclMessage | msg.result() = true)

->size() = 1

The example already exhibits some of the shortcomings
of the current approach in OCL 2.0. Firstly, the syntax ^ and
^^ for message specifications easily leads to errors in the
specification. The two different operators are very similar in
appearance but have totally different results; one denotes a
boolean expression, while the other results in a sequence of
OCL messages. Secondly, a unique destination object has to
be specified together with each referred message. Instead,
one might often be interested in a specific message sent to
different object (e.g., broadcasts). In such cases a message
specification becomes rather complex.

Assume now that a person can have more than one em-
ployer, such that self.companies refers to the set of
Company objects that represent the person’s employers. In
the context of an operation collectBonus() that deter-
mines the total amount of bonus payments, we require that
at least one message getBonus() is sent to each employer
and that all these messages have returned at the time of post-
condition evaluation.

context Person::collectBonus()
post: let messages : Sequence(OclMessage) =

self.companies->collect(c:Company |
c^^getBonus(self.maritalStatus))

in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
self.companies->forAll(c:Company |

c^^getBonus(self.maritalStatus)->notEmpty())

We can directly express the desired, i.e., flattened, se-
quence of all messages sent to all associated companies with

Figure 3. Redefined Type OclMessage

the predefined collect() operation.1 But still, the expres-
sion is quite cumbersome to formulate and relatively diffi-
cult to understand. For this kind of specification, one would
prefer to simply specify the message name without the need
to refer to an explicit destination object each time.

4.1 Redefinition of OCL Messages

We suggest a different way to obtain a sequence of mes-
sages sent. We define new attributes for type OclMessage,
i.e., attributes that refer to the source and destination object
and to the types of the source and destination object (the
latter attributes are for technical purposes as explained in
the remainder). The resulting type definition is illustrated
in Figure 3. Note that we make use of an enhanced OCL
type system that allows to refer to OCL types on the UML
user level M1 [3].

With a new operation named sentMessages() defined
for the general type OclAny, which is the supertype of
all OCL types, the collectBonus() example can then be
specified as follows.

context Person::collectBonus()
post: let messages : Sequence(OclMessage) =

self.sentMessages(getBonus(self.maritalStatus))
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
self.companies = messages.destObj->asSet()

Firstly, the cryptic and error-prone message operator ^^
can simply be replaced by a new operation on the general
supertype OclAny as demonstrated above. Secondly, we

1 Note that one might also assume that the resulting structure is nested,
i.e., the result is of type Set(Sequence(OclMessage)), but operation
collect automatically returns the flattened collection. However, as nesting
of collections is necessary in many other cases, OCL 2.0 now provides a
corresponding operation collectNested().



avoid the explicit specification of a destination object in
front of a message declaration. Instead, the new attribute
destObj for OCL messages leads to a simplified, yet better
understandable, formulation of OCL messages, especially
in the case of broadcasted and multicasted messages. More-
over, this notation is in line with the established OCL syntax
that uses only dot/arrow notation for navigation and applies
operation names with arguments. Note here that our formal
semantics of OCL messages [4] has only marginally to be
adjusted w.r.t. the formal definition of the message tuples.

4.2 Message Destination Objects

A more serious problem arises when a message destina-
tion object does not exist anymore at the time of postcon-
dition evaluation. Explicitly referring to such an object in
a postcondition does then not make sense. The constraint
cannot be evaluated, as the message specification results in
an undefined expression. Nevertheless, a message to that
object might actually have been sent to that object.

In contrast, our approach captures this situation. We can
separately check the value of the attribute destObj. If it
has the predefined OCL value OclUndefined (i.e., the only
instance of type OclVoid, see Figure 3), the destination ob-
ject is no longer existing. In fact, this even gives us the
chance to explicitly require that certain message destination
objects must still exist or must have been destroyed.

Additionally, the attributes referring to the source and
destination types of messages allow to restrict the kind of
participants of message exchanges. For example, we can
require that messages getBonus() may only be sent to ob-
jects of type Company:
context Person::collectBonus()
post: let messages : Sequence(OclMessage) =

self.sentMessages(getBonus(?:Status))
in
messages->forAll(msg:OclMessage |

msg.destType().oclIsTypeOf(Company))

Similarly, we can restrict receptions of messages in pre-
conditions or even invariants. Accessing received messages
is discussed in the next section.

4.3 Received Messages

While it is already possible to reason about messages
sent in OCL 2.0, there is currently no means to access and
reason about the messages received by an object.

At this point we have to discuss whether it is really nec-
essary to formulate constraints on received messages with
OCL. First of all, there are already other UML means to
specify behavioral constraints over received messages, e.g.,
Protocol State Diagrams and Sequence Diagrams. How-
ever, it might be necessary to specify invariants over re-
ceived messages that go beyond the specification means of

State Diagrams, e.g., to define a priority scheme after recep-
tion of two different signals or to specify a more complex
reaction after reception of an external signal. This issue is
of particular interest in the domain of embedded real-time
systems, where additional real-time properties have to be
considered. But as UML and OCL are intended for general
purpose modeling, there is no inherent notion of time, such
that a dedicated UML profile should be considered in this
case.

However, causal relationships concerning requests and
acknowledgments might still need to be modeled and are of
interest in the context of OCL specifications as well. This
soon leads to temporal extensions of OCL that have already
been proposed, e.g., in [1]. Unfortunately, such extensions
make use of temporal logics to provide a formal semantics,
which is definitely out of the scope of the OCL standard
in its current state. We therefore stick to our first-order
predicate semantics presented in [4]. We make use of the
system state component ΣinputQueue to provide a seman-
tics for our new operation receivedMessages() on type
OclAny (cf. Figure 3).

Such a semantics is given in the form of a denotational
interpretation function I[[op]](〈σ(M), β〉) for an operation
signature op = (ω : tc × t1 × . . . × tn → t) ∈ OP over
a system state σ(M) and an OCL-specific variable assign-
ment β.2 In operation signatures, ω is the operation name,
c is the class for which the operation ω is defined, and tc
is the respective OCL type. t1, . . . , tn are the parameter
types, and t is the result type of the operation.

We define the semantics of OCL message operation
receivedMessages() over a system state σ(M) and vari-
able assignment β in the context of a given currently exist-
ing object oid ∈ ΣCLASS,c. The semantics of operation
receivedMessages() is formally notated by

I[[receivedMessages()]](〈σ(M), β〉)(oid).

The evaluation result is simply determined by the set
σinputQueue,c(oid), where σinputQueue,c is a function over
the set ΣinputQueue of incoming messages that are waiting
to be dispatched. We only have to add the corresponding
parameter values stored in ΣinputQueueParam,c to each el-
ement of σinputQueue,c(oid). However, a detailed formal-
ization is omitted here only for the sake of concision.

We decided that operation receivedMessages() re-
turns a set of messages rather than a sequence, as the latter
would require some kind of ordering predicate on incoming
messages. But the order of incoming events is a well-known
semantic variation point in UML. One can use the built-in
operation sortedBy() to induce a sequence of messages if
this is desired.

2Variable assignment β determines values for OCL-specific variables,
i.e., local variables defined in let-expressions and iterator variables used
in collection expressions.



5 Related Work

A good overview of approaches that define a semantics
for (parts of) different versions of OCL is given in [2]. How-
ever, our own recent work [4] so far provides the only for-
mal integration of OCL messages into the rest of OCL.

We know of only one other proposal to enhance the no-
tion of OCL messages, i.e., the work by Kyas and de Boer
[8]. They distinguish between local and global specifica-
tions for OCL constraints. Additional built-in types such as
OclEvent with attributes sender, receiver, and an event
kind (send, receive, invoke, return) are introduced. Using
these types, new predefined attributes localHistory and
globalHistory are presented that allow to access the se-
quence of sent and received messages. This approach also
avoids the rather cryptic message operators ^ and ^^. How-
ever, an integration into the semantical OCL framework
(either the metamodel or the formal semantics) is not de-
scribed.

In contrast, we can provide a formal definition of our
enhancement of the OCL message concept based on the
formal notions of our previously proposed extended object
model and extended system states.

6 Conclusion

We identified shortcomings in the syntactical and seman-
tical definition of OCL messages and proposed correspond-
ing enhancements that keep compliant to the established no-
tation and language concepts. Our changes in the definition
of OCL messages affect other parts of OCL, e.g., the type
system that has to be adjusted to be able to refer to OCL
types at the UML user level M1. The OCL community is
aware of this problem in the current type system and we
expect that this issue will be resolved in the context of the
finalization of OCL 2.0.

The formal semantics of OCL 2.0 is relatively complex.
However, the underlying logic is still restricted to pure first-
order predicate logic, i.e., temporal logic is so far not ap-
plied. It should nevertheless be investigated in the future
whether temporal logic should be considered both for direct
application in user-defined OCL constraints and as an ap-
proach to formulate the underlying formal OCL semantics.
This could, e.g., avoid the explicit storage of the history of
messages sent.

Although there are already some OCL tools available
(see http://www.klasse.nl/ocl for an overview), there is cur-
rently no tool available that supports OCL messages. We
hope that our work can influence the development of appro-
priate tools in the near future.
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