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Abstract

This article describes our approach for the specification and verification of pro-
duction automation systems with real-time properties. We focus on the graphical
MFERT notation and RT-OCL (Real-Time Object Constraint Language) for the
specification of state-oriented real-time properties. RT-OCL is an extension of
the Object Constraint Language (OCL) that is part of the Unified Modeling
Language (UML). We introduce the formal semantics of RT-OCL based on a
formal model of UML Class and State Diagrams and provide a mapping to tem-
poral logics. The applicability of our approach is demonstrated by the case study
of a manufacturing system with automated guided vehicles.

1 Introduction

In early stages of development of production automation systems, system model
behavior is most frequently analyzed by quantitative and qualitative simulation.
However, due to the complexity of those systems, simulation can never provide
coverage for complete verification for those systems. In recent years, formal ver-
ification with equivalence and model checking has received a wide acceptance
in the domain of digital circuit and communication protocol design. A model
checker verifies a property specification for a given state-oriented model of a
system, typically given as a Kripke Structure. The model checker returns either
‘true’ or generates a counter example in cases when the model does not satisfy
the property. The counter example demonstrates an execution of the model that
leads to a situation which falsifies the property. This can be most helpful for de-
tailed error analysis. The most remarkable advantage of model checking is that
the task of verifying is fully automated. However, model checking has two main
obstacles in practical application. The first one is the state explosion problem in



dependence to the number of possible inputs. The second one is due to the spec-
ification of properties in temporal logics, since it often turns out that designers
and programmers are not familiar with formal methods and regard it as a task
too cumbersome to specify and understand properties in temporal logics.

For production automation systems, the correct time-critical behavior of re-
quired properties is of particular interest. This is already important in early
phases of development to avoid expensive and time-consuming changes to the
system under development at later stages. Though classical model checking is
mainly for the verification of cycle-accurate behavior without timing properties,
there are a few tools like the RAVEN model checker [36] that support the for-
mal verification of time-annotated system models and additionally provide basic
timing analysis.

In this article, we present the GRASP1 approach to formal verification of
production automation systems. The GRASP approach covers the design flow
for the modeling and formal verification of production automation systems by
means of the domain-specific modeling language MFERT2 with complementary
visualization through animation of a virtual 3D model (cf. Figure 1). MFERT
is a methodology and graphical language for the description and analysis of
production automation systems. For analysis, GRASP focuses on model checking
and integrates a model checker by seamlessly embedding it into a graphical
environment with 3D animation for virtual prototyping, in particular for the
animation of counter examples. The main idea was that in a first step the designer
specifies a model in a graphical specification language, namely MFERT. The
model, i.e., the MFERT description, is then translated into an annotated state
machine-based formalism (i.e., I/O-Interval Structures [38]) for model checking.
Additionally, properties are specified and translated into temporal logics (i.e.,
Clocked Computation Tree Logic, CCTL [37]) for formal verification with the
RAVEN model checker. Once the objects in the virtual prototype are associated
with the system model, the execution of counter examples can be observed in
the virtual prototype animation.

One of the main visions of the GRASP approach was to provide practical
means to designers with programming skills to facilitate property specification.
We investigated existing related work and developed a pattern-based approach
in the early phases of the GRASP project (see Section 2.1 for more details). In
a second step, we decided to integrate an extension of the Object Constraint
Language (OCL) [42, 43] with MFERT for the specification of required proper-
ties for production automation systems. OCL was introduced as a language for
the specification of constraints in the context of the Unified Modeling Language
(UML) de-facto standard [29], focusing on Class Diagrams and on guards in be-

1 GRASP (GRAphical Specification and Real-Time Verification for Production Au-
tomation Systems) is a project within the DFG Priority Programme 1064 ‘Integra-
tion von Techniken der Softwarespezifikation für ingenieurwissenschaftliche Anwen-
dungen’.

2 MFERT is short for ‘Modell der FERTigung’ (German for ‘Model of Manufactur-
ing’).
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Fig. 1. GRASP Approach to Verification of Production Automation Systems

havioral diagrams. The syntax of OCL comes in a ‘programmer-friendly’ style
using dot-notation and operation calls as known from object-oriented languages.
With the wide acceptance of UML, OCL has also received a considerable visibil-
ity. However, OCL currently lacks sufficient means to specify constraints over the
temporal behavior, i.e., the evolution of state activations and state transitions as
well as timing constraints. Since it is essential to be able to specify such timing
constraints for time-dependent systems to guarantee correct system behavior, we
developed an OCL extension, i.e., RT-OCL, that overcomes this limitation and
at the same time keeps compliant with the syntax and semantics of the latest
version of OCL, i.e., Version 2.0 [28].

To seamlessly integrate RT-OCL with the domain-specific language MFERT,
we defined UML Profiles for both MFERT and RT-OCL and defined mappings to
the formal means of I/O-Interval Structures and CCTL, respectively. CCTL was
introduced by Ruf and Kropf in [37] for the specification of properties over I/O
Interval Structures. CCTL formulae are composed from propositions denoting
predicates in combination with Boolean connectives and time-annotated tem-
poral operators. The temporal CCTL operators build upon the common CTL
operators and are annotated by timing intervals, such as AF[a,b], where A is a
path quantifier (‘on all paths’) and F is the temporal CTL operator (‘eventually
in the future’) that is further limited by the timing interval [a,b]. For further
details of CCTL and its application for real-time model checking we refer to [35,
39].

The remainder of this article is structured as follows. The next section dis-
cusses related work in the domain of (real-time) property specifications. Section
3 gives an introduction to MFERT with an example. Section 4 introduces syntax
and semantics of our temporal OCL extension RT-OCL. Section 5 demonstrates
the application of RT-OCL in the context of a production automation scenario
with automated guided vehicles. Finally, Section 6 concludes the article and gives
an outlook on future work.



2 Related Work

There are already several approaches that make use of graphical captures for
model checking, e.g., with Petri Nets or StateCharts [6, 3]. Those means are used
to define the system by a model. Behavioral property specification, however, is
usually still performed by means of temporal logics formulae, mainly in Com-
putation Tree Logic (CTL) or Linear Time Logic (LTL). The most prominent
formal method that investigates whether a given model satisfies such property
specifications is model checking [8]. Model checking takes a set of synchronous
finite state machines as a model and (a set of) temporal logic formulae as the
specification of required properties. In application, the main obstacles for model
checking lie in the state explosion problem and in the adequate specification of
properties by means of temporal logic formulae [33]. Several approaches to sup-
port property specification have been developed. In the following subsections, we
distinguish the areas of (a) pattern-based specification, (b) graphical property
languages, and (c) temporal extensions of OCL.

2.1 Pattern-Based Property Specification

To support temporal logic property specification, some approaches identify pat-
terns which provide the user with structured application of formulae. First at-
tempts in pattern classification led to taxonomies that coarsely distinguish be-
tween safety and liveness properties. A detailed pattern-based classification is
published by Dwyer et al. in [14]. That pattern system is based on the inves-
tigation of more than 500 examples for property specification and presents a
semantically ordered hierarchy of property patterns. For instance, absence, even-
tual existence, and global existence of states/events are combined as so-called
occurrence patterns.

The idea of patterns was adopted not just to classify but also to construct
specifications for finite state verification. For example, the Testbed Studio is a
framework for business process modeling that provides a small set of templates
in natural English language for verification with the SPIN model checker [26].
These templates are also denoted as patterns, although they refer to concrete
specifications in contrast to the previously mentioned classification patterns. In a
more general approach of natural language oriented specification, the PROSPER
project aims at the specification through an English language subset [24].

In the early phases of the GRASP project, we developed an interactive visual
framework that employs structured English sentences [23] as given in Figure 2.
Compared to other pattern-based approaches, we provide a richer set of spec-
ifications, in particular, as we additionally cover explicit timing annotations.
In contrast to temporal logic formulae-based approaches, non-experts can more
easily capture the final sentence in structured English than just by CTL or LTL.
Compared to unstructured English, the available structured English fragments
give the uneducated user a better guidance through the allowable and non-
allowable specifications with less iterations. However, it turned out that this



Fig. 2. Specification with Structured English Sentences

approach leads to quite long sentences and remains too cumbersome for more
complex applications, so that we started to investigate alternative approaches.

2.2 Graphical Property Specification

Regarding property specification by visual means we can distinguish two different
kinds of approaches. The first ones are still syntactically based on CTL or LTL
specifications. Those frameworks provide support to visually compose segments
of specifications, e.g., by enabling and disabling parts of specifications during the
development process. In UPPAAL, invariants and reachability properties can be
specified using a very limited subset of LTL formulae [27]. To create specifications
with this approach, the user must know how to apply and to control temporal
logic formulae. Other approaches have an abstract graphical notation, which is
translated to temporal logic formulae before checking. Examples are Symbolic
Timing Diagrams (STDs) [15] and Life Sequence Charts (LSCs) [10], which are
for StateChart verifications.

2.3 OCL-Based Property Specification

As an alternative to the previous approaches, we investigated UML in combina-
tion with OCL for model checking. OCL was originally developed complementary
to UML to restrict values of (parts of) a model, e.g., attributes or associations,
but has recently been extended towards a more general query and expression
language [28]. Several non-commercial OCL tools are currently available that
implement syntax and type checks, dynamic constraint validation, test automa-
tion, and code generation of OCL constraints. An overview can be found in
[31, 32]3. OCL constraints are frequently used in the UML specification docu-
ments at the UML metamodel level (M2 layer) to define the static semantics
3 See http://www.klasse.nl/ocl and http://www.um.es/giisw/ocltools for updated

lists of available OCL tools.



of UML diagrams. Those so-called well-formedness constraints specify syntacti-
cal restrictions on diagrammatic model elements. There are several approaches
that either extend OCL for temporal constraints specification or introduce alter-
native UML-based means to express behavioral real-time constraints for UML
diagrams.

Ramakrishnan et al. [30] extend the OCL syntax by additional grammar
rules with unary and binary future-oriented temporal operators (e.g., always
and never) to specify safety and liveness properties. Ziemann and Gogolla [45]
introduce similar temporal operators based on a finite linear temporal logic.
Therein, Richter’s formal object model [31] is extended to provide a formal
definition of system state sequences. However, it is left open how system state
sequences are exactly derived. A similar approach has been published by Conrad
and Turowski in the area of business modeling [9]. Their approach additionally
considers past-temporal operators; a formal semantics is not provided.

Distefano et al. [13] define Object-Based Temporal Logic (BOTL) to facili-
tate the specification of static and dynamic properties. BOTL is not directly an
extension of OCL. It rather maps a subset of OCL into object-oriented CTL.
Bradfield et al. [2] extend OCL by useful causality-based templates for dynamic
constraints. A template consists of two clauses, i.e., the cause and the conse-
quence. The cause clause starts with the keyword after followed by a Boolean
expression, while the consequence is an OCL expression prefaced by eventually,
immediately, infinitely, etc. The templates are formally defined by a map-
ping to observational µ-calculus, a two-level temporal logic with OCL on the
lower level.

In the domain of real-time systems modeling, we can find mainly three ap-
proaches for temporal constraint specification. Roubtsova et al. [34] define a UML
Profile with stereotyped classes for dense time as well as parameterized specifi-
cation templates for deadlines, counters, and state sequences. Each of the tem-
plates has a structural-equivalent dense time temporal logics formula in Timed
Computation Tree Logic (TCTL). Sendall and Strohmeier [41] introduce tim-
ing constraints on state transitions in the context of a restricted form of UML
protocol state machines that define the temporal ordering between operations.
Five time-based attributes on state transitions are proposed, e.g., (absolute)
completion time, duration time, or frequency of state transitions. Cengarle and
Knapp [5] present OCL/RT, a temporal extension of OCL with modal operators
always and sometime over event occurrences. They specify deadlines and time-
outs of operations and reactions on received signals. Events are equipped with
time stamps by introducing a metaclass Time with attribute now to refer to the
time unit at which an event occurs. In turn, each object can access the set of
currently queued events at each point in time.

In contrast to the event-based temporal extensions of OCL, we focus on
state-oriented properties due to the intended application domain of state-based
modeling of production automation systems with MFERT. Note that it is already
possible to refer to the states of UML State Diagrams in standard OCL, i.e.,
the operation oclInState(stateName) returns a Boolean value that indicates



whether a given state is currently activated or not. However, OCL does not yet
integrate the notion of State Diagram states on the language definition level,
i.e., the semantics of State Diagram states in the context of OCL expressions is
not sufficiently defined so far. To overcome this deficiency, we provided a formal
semantics for state-oriented OCL expressions for application with UML State
Diagrams in [22].

3 MFERT

Our approach is based on MFERT as the basis for modeling of production au-
tomation systems. MFERT is a language and a methodology for the specification
and implementation of planning and control assignments in production processes.
MFERT is basically a universal approach which has been successfully applied in
various projects with different industrial partners [12, 11], additionally acknowl-
edged by the German science award of logistics [40]. An MFERT model is based
on production elements and production processes. Production elements represent
objects whose properties are changed by processes and transformations. Prop-
erties of production elements are described by attributes. A production element
obtains its own identity, composed out of the description and the element’s cor-
relative status. Using this identity, the different states during the production can
be associated to production elements. An MFERT model is a directed bipartite
graph of E-nodes for elements and P-nodes for processes. The graphical notation
of an E-node is a triangle. P-nodes are represented as rectangles. Each E-node
represents a specific state and can be seen as a container for elements in the re-
spective state. P-nodes represent transformations on elements, performed by the
corresponding processes. Nodes are connected by edges that describe exchange
relations between two nodes. Edge annotations define if a predecessor is bring-
ing, providing, or waiting for elements and processes, as well as that a successor
is fetching, receiving, or waiting for elements. Interface edges are for connecting
different levels of hierarchy. They additionally allow the coupling to a real pro-
duction environment. MFERT-Elements and MFERT-Processes are in certain
states, which are characterized by attributes. An attribute denotes a property of
an element and assigns a value to a relation. Constructors for the definition of
discrete time modes are available. In practice, different time models are required
for the definition of production assignments, e.g., the provision of the source
materials for an assembly line may take place non-recurringly at the beginning
of a shift, while the mounted end products are transported every hour to the
delivery store. For implementation, model nodes are equipped with functions
and their process control is carried out by means of message exchange between
nodes and by a so-called global manager that coordinates the computations in
the model.

Figure 3 gives the MFERT example of a subsystem for the production of en-
gines with processing steps Milling, Drilling, and Washing. The primary input
of the example is modeled by the E-nodes RawEngines and RawShafts. Corre-
sponding processes are used to supply these items into E-nodes EnginesSupplied



and ShaftsSupplied. Input and output buffers of processes are modeled by the
corresponding E-nodes like ItemsBeforeMill, ItemsAfterMill etc. The trans-
port between stations and the primary output is modeled by different transport
processes like TransportingToMill and TransportingToOutput. Automated
guided vehicles (AGVs) transport items between the different production steps,
where the AGV resource management is modeled as a separate E-node.

SupplyingShafts ShaftsSupplied

AGVs

Milling EnginesAfterMill

TransportingToDrill ItemsBeforeDrill

Drilling ItemsAfterDrill TransportingToWash ItemsBeforeWash

Washing ItemsAfterWash TransportingToOutput OutputQueue

RawEngines

RawShafts

SupplyingEngines EnginesSupplied EnginesBeforeMillTransportingToMill

Fig. 3. MFERT Graph of the Case Study

The input/output behavior of P-nodes is basically defined as time-annotated
finite state machines whose graphical presentation is not given in MFERT. For P-
node representation, we thus developed a variant of timed UML State Diagrams
in [17] to define the local functionality of P-nodes.

In order to be able to give a formal semantics, we have to limit the set of
actions and activities of standard UML State Diagrams. We only consider actions
and activities that perform (a) requests of P-nodes to put and get elements to
and from E-nodes, (b) transfers of production elements between MFERT nodes,
and (c) local transformations with a duration. Due to the limited space, we give
just a a small example and refer to [17] for more details about the graphical
notation, the formal model, and the dynamic semantics of MFERT.

Consider the P-node TransportingToMill and its corresponding State Dia-
gram given in Figure 4. The diagram specifies that a transport requires an AGV
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do/ load()

MovingToLoad
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MovingToUnload
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do/ unload()

do/ move()

do/ move()

Performing

do/ EnginesSupplied.requestGetEngine()

TransportingToMill

[10,20] unload()
[10,20] load()
[20,50] move()

Idle

do/ EnginesBeforeMill.requestPutEngine()

GettingAGV

do/ AGVs.getAGV()

Fig. 4. P-node TransportingToMill and its State Diagram

and either an Engine or a Shaft, where the movement between stations is ex-
pected to be executed within 20 to 50 time units. Such basic timing declarations
are based upon information gained from the actual physical alignment of the
production system.

4 RT-OCL

Figure 5 gives an overview of our formalization approach in the domain of mod-
eling production automation systems. We decomposed the whole approach into
four different activity parts. Figure 5 also illustrates the dependencies among
the different activities.

First, we integrated the notational concepts of UML State Diagrams into
the existing formal description of Class Diagrams by Richters [31]. Basically,
the resulting so-called extended object model is based upon a set-theoretic defi-
nition of the UML metamodel parts for Class Diagrams and State Diagrams. In
parallel, we developed a timed variant of UML State Diagrams. Note that this
activity is at a lower position in Figure 5 to indicate it as a more domain-specific
task, because timing issues are a non-standard concept of UML State Diagrams,
while the extended object model basically concerns standard UML. Integrating
the two formal models and applying further restrictions leads to our domain-
specific notation MFERT, which is provided as a domain-specific UML Profile
with stereotypes, e.g., for P-nodes and E-nodes [22]. Additionally, we defined a
mapping to the semantic domain of I/O-Interval Structures [17].

We have also defined an extension of OCL called RT-OCL that allows for
specification of temporal state-oriented properties. For such OCL expressions,
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we provide a mapping to CCTL formulae. The semantics of the combination of
MFERT notation and temporal state-oriented OCL expressions is then automat-
ically available, as the two formal target languages already have a well-defined
formal relationship, i.e., CCTL formulae have a well-defined semantics over ex-
ecution runs of I/O-Interval Structures. In that context, recall that the model
checker RAVEN is able to verify whether a model (a set of I/O-Interval Struc-
tures) satisfies a given property (a CCTL formula) [36].

The reminder of this section sketches some details of the definition of RT-
OCL and its semantics. But first, we give an introduction to standard OCL in
the next subsection.

4.1 OCL

The Object Constraint Language is an integral part of UML [29, Chapter 6]. OCL
constraints are defined over a given UML model to restrict the values of object
properties. OCL is mainly applied to define invariants for classes and pre- and
postcondition of operations. As OCL is a declarative expression-based language,
evaluation of OCL expressions does not have side effects on the corresponding
UML model.

Each OCL expression has a type. Beyond user-defined model types (e.g.,
classes or interfaces) and predefined basic types (e.g., String, Integer, Real,
or Boolean), OCL has a notion of object collection types, i.e., sets, ordered
sets, sequences, and bags. Collection types are homogeneous in the sense that
all elements of a collection have a common type. A standard library is available
with operations to select, access, and manipulate values and objects.



storedItems : Integer

load(i:Item)
unload(i:Item)

BufferMachine

kind: MachineKind

reportNewItem(i:Item)
getNextItem(i:Item)
processItem(i:Item)
putItem(i:Item)

buffersmyMachine

ProcessedItems : Integer

Fig. 6. Sample Class Diagram

Assume, for example, that we have a model with classes Machine and Buffer
and an association between these classes (cf. Figure 6). The following invariant
defines that each instance of class Machine has at least one associated buffer:

context Machine
inv: self.buffers->notEmpty()

We briefly outline how to read this OCL constraint. The identifier follow-
ing the context keyword specifies the class for which the constraint is defined.
The keyword inv specifies that this is an invariant, i.e., for each object of the
context class the following expression must evaluate to true ‘at any time’4. The
(optional) keyword self refers to the object for which the constraint is evalu-
ated. Attributes, operations, and associations can be accessed by dot notation,
e.g., evaluation of self.buffers results in a (possibly empty) set of instances
of Buffer. The arrow operator indicates that a collection of objects is manipu-
lated by one of the predefined OCL collection operations. For example, operation
notEmpty() returns ‘true’ if the accessed set is not empty.

Standard OCL currently lacks means to specify constraints over the dynamic
behavior of a UML model. Constraints covering the consecutiveness of states and
state transitions as well as time-bounded constraints cannot be defined. However,
since those are essential to specify a correct system behavior, we have developed
a temporal OCL extension that enables modelers to specify state-oriented real-
time constraints [19, 20]. Because the official UML 1.5 specification [29] did not
come with an OCL metamodel, our first idea was to develop an extension of
the OCL type metamodel that was presented by Baar and Hähnle in [1]. More
recently, in reply to the OMG’s OCL 2.0 Request for Proposals, the extensive
OCL 2.0 language proposal by Ivner et al. [25] became available, which addresses
a seamless integration of OCL to relevant parts of UML. In October 2003, this
proposal has been adopted by the OMG as the official OCL 2.0 Specification
[28]. Based on the metamodel provided in these documents, we developed a
more lightweight approach by defining a UML Profile for our temporal OCL
extension [22]. The syntax and semantics of this extension are briefly described
in the following two subsections.

4 Note that an invariant may be violated during execution of an operation. The term
‘at any time’ has therefore to be refined by a dynamic OCL semantics. See our
proposal in [18].



4.2 OCL Syntax Extension

The concrete syntax of OCL 2.0 is defined by an attributed grammar in EBNF
(Extended Backus-Naur Form) with inherited and synthesized attributes as well
as disambiguating rules. Inherited attributes are defined for elements on the right
hand side of production rules. Their values are derived from attributes defined
for the left hand side of the corresponding production rule. For instance, each
production rule has an inherited attribute env (environment) that represents the
rule’s namespace. Synthesized attributes are used to keep results from evaluating
the right hand sides of production rules. For instance, each production rule has
a synthesized attribute ast (abstract syntax tree) that constitutes the formal
mapping from the concrete to the abstract syntax. Disambiguating rules allow
to uniquely determine a production rule in the case of syntactically ambiguous
production rules.

The following rule gives the main production rule for temporal expressions we
introduced for our RT-OCL extension. The idea is to interpret a future-oriented
temporal expression as a kind of operation call. Future temporal OCL expres-
sions map to a new stereotype FutureTemporalExp that is a specialization of
OperationCallExp on the abstract syntax level (i.e., the OCL metamodel). For
temporal OCL expressions, we introduce a temporal operator ‘@’ to distinguish
temporal expressions from OCL’s common dot and arrow notation for accessing
attributes, operations, and associations.

FutureTemporalExpCS ::= OclExpressionCS ’@’

simpleNameCS ’(’ argumentsCS? ’)’

Abstract Syntax Mapping:

FutureTemporalExpCS.ast : FutureTemporalExp

Synthesized Attributes:

FutureTemporalExpCS.ast.source = OclExpressionCS.ast

FutureTemporalExpCS.ast.arguments = argumentsCS.ast

FutureTemporalExpCS.ast.referredOperation =

OclExpressionCS.ast.type.lookupOperation(

simpleNameCS.ast,

if argumentsCS->notEmpty()

then argumentsCS.ast->collect(type)

else Sequence{}

endif )

Inherited Attributes:

OclExpressionCS.env = FutureTemporalExpCS.env

argumentsCS.env = FutureTemporalExpCS.env

Disambiguating Rules:

-- Operation name must be a (future-oriented) temporal operator.

[1] Set{’post’}->includes(simpleNameCS.ast)

-- The operation signature must be valid.

[2] not FutureTemporalExpCS.ast.referredOperation.oclIsUndefined()

Note that an operation call in the abstract syntax has a source, a referred
operation, and operation arguments. In this case, the variable ast is re-typed



to FutureTemporalExp and thus inherits the features source, arguments, and
referredOperation from the metatype OperationCallExp. These features get
the evaluation results of the corresponding parts of the right-hand side of the
production rule (cf. the section ‘Synthesized Attributes’ above).

Additional temporal operations can easily be introduced at a later point of
time, as just the disambiguating rule [1] has to be modified in such cases. For
instance, next() can be introduced as a shortcut for post(1,1), or post() as
shortcut for post(1,’inf’).

4.3 Semantics

While the syntactic integration of the temporal OCL extension is straightfor-
ward, the definition of the semantics needs more investigation. The OCL 2.0
specification provides extensive semantic descriptions by both a metamodel-
based as well as a formal mathematical approach, but unfortunately, those are
currently neither consistent nor complete [18].

In the metamodel-based approach, the semantics of an OCL expression is
given by associations between the different modeling layers M1 (user model layer)
and M2 (metamodel layer). On the one hand, each value defined in the semantic
domain on layer M1 is associated with a type defined in the abstract syntax on
layer M2. On the other hand, each evaluation is associated with an expression
on the abstract syntax. Given a snapshot of a running system, the associations
yield to a unique value for an OCL expression, which determines the result value
of expression evaluation.

The second approach gives the formal semantics of OCL and is based on
set-theory using the notion of an object model [28]. An object model is a tuple

M =
〈

CLASS,ATT, OP,ASSOC,≺, associates, roles,multiplicities
〉

with a set CLASS of classes, a set ATT of attributes, a set OP of operations,
a set ASSOC of associations, a generalization hierarchy ≺ over classes, and
functions associates, roles, and multiplicities that give for each as ∈ ASSOC
its dedicated classes, the classes’ role names, and multiplicities, respectively.

The formal semantics of that object model, however, lacks descriptions of
ordered sets, global OCL variable definitions, OCL messages, and states of UML
State Diagrams. Especially the latter are needed for our RT-OCL semantics.
In the remainder, we call an instance of an object model a system. A system
changes over time, i.e., the (number of) objects, their attribute values, and other
characteristics change during system execution. This information is stored in
system states, i.e., a system state represents a snapshot of the running system
that is used to evaluate OCL expressions.

In OCL 2.0, a system state σ(M) is formally defined as a triple σ(M) =
〈ΣCLASS , ΣATT , ΣASSOC〉 with a set ΣCLASS of currently existing objects, a
set ΣATT of attribute values of the objects, and a set ΣASSOC of currently
established links that connect the objects. However, this information is not suf-
ficient to evaluate OCL expressions, as system states do not comprise currently



activated states and messages that have been sent. We therefore have to extend
the formal model and system states accordingly, such that the resulting extended
object model M with

M =
〈

CLASS,ATT, OP, paramKind, isQuery, SIG,

SC, ASSOC,≺,≺sig, associates, roles,multiplicities
〉

additionally includes

– functions that give a parameter kind ∈ {in, inout, out} for each operation
parameter,

– functions that indicate whether an operation is a query operation without
side-effects or not,

– signal receptions for classes with corresponding well-formedness rules, and
– State Diagrams and their association with classes5.

The formalization of the extended object model is completed by a formal def-
inition of state configurations6 and an extension of the formal descriptor of a
class.

Furthermore, the following information has to be added to system states to
be able to evaluate OCL expressions that make use of state-related and OCL
message-related operations:

– for each object, the input queue of received signals and operation calls that
are waiting to be dispatched7,

– the state configurations of all currently existing active objects,
– the currently executed operations, and
– for each currently executed operation, the messages sent so far.

The resulting tuple of a system state over an extended object model M is

σ(M) =
〈

ΣCLASS , ΣATT , ΣASSOC , ΣCONF , ΣcurrentOp, ΣcurrentOpParam,

ΣsentMsg, ΣsentMsgParam, ΣinputQueue, ΣinputQueueParam

〉
.

With those extensions, it is possible to define execution traces that capture
all of those system changes that are relevant to evaluate OCL constraints (see
[18] for details). The final formal semantics for our temporal OCL expressions is
given in [22, 17]. While those articles also provide a general mapping to CCTL
formulae, we here give some typical specification examples in the next section.

5 Note that no specific execution semantics for State Diagrams has to be assumed
here.

6 UML only informally defines active state configurations. This results in some short-
comings, e.g., it is not considered that final states can be part of state configurations.

7 As we only need to consider those events that are relevant for the evaluation of OCL
constraints, implicit events such as completion events generated by State Diagram
executions do not have to be considered in this context.



5 Application

We applied the GRASP approach to the case study of a Holonic Manufacturing
System (HMS). The HMS case study was introduced by the IMS Initiative in
[44]. The HMS is composed of a set of different manufacturing stations and a
transport system as it is illustrated by the virtual 3D model in Figure 7. The
different manufacturing stations transform items, e.g., by milling, drilling, or
washing. Additional input and output storages are for primary system input
and output. The flexible transport system consists of a set of automated guided
vehicles (AGVs), i.e., autonomous vehicles that carry items between stations.
We considered that stations have an input buffer for incoming items and that
each AGV can take only one item at a time.

Garage

Wash
Drill

Mill

Battery Recharge Station

AGV

Input

Output

Fig. 7. Virtual 3D Model of the Holonic Manufacturing System

In the following, we provide some typical time-bounded constraints that refer
to the MFERT model given in Section 3. We here just refer to the P-node
TransportingToMill; similar constraints can be defined for other P-nodes. To
outline the mapping, the following also gives the corresponding temporal logic
formula in CCTL [35] for each RT-OCL constraint.

1. When TransportingToMill is in state Idle, we require that it gets a grant
to put an engine into the subsequent E-node EnginesBeforeMill within the
next 100 time units.

context TransportingToMill

inv: self.oclInState(TransportingToMill::Idle)

implies

self@post(1,100)->forAll(p:Sequence(OclState) |

p->includes(TransportingToMill::Requesting))



// CCTL formula:

AG ( (TransportingToMill.state==TransportingToMill.idle)

-> AF[1,100](TransportingToMill.state==

TransportingToMill.requesting))

2. A transport – once started after the acknowledgments have been received –
has to be completed within 300 time units.

context TransportingToMill

inv: self.oclInState(TransportingToMill::Performing)

implies

self@post(1,300)->forAll(p:Sequence(OclState) |

p->exists(s:OclState | s = TransportingToMill::Idle))

// CCTL formula:

AG ( (TransportingToMill.state==TransportingToMill.performing)

-> AF[1,300](TransportingToMill.state ==

TransportingToMill.idle))

3. The acknowledgment for an available AGV within composite state Trans-
portingToMill::Performing must be received within 150 time units.

context TransportingToMill

inv: self.oclInState(TransportingToMill::Performing::GettingAGV)

implies

self@post(1,150)->forAll(p:Sequence(OclState) |

p->exists(s:OclState |

s <> TransportingToMill::Performing::GettingAGV))

// CCTL formula:

AG ( ((TransportingToMill_performing.state==

TransportingToMill_performing.gettingAGV)

& (TransportingToMill_performing.activated))

-> AF[1,150]( (TransportingToMill_performing.state==

TransportingToMill_performing.movingToLoad)

& TransportingToMill_performing.activated

)

)

Note here, that for technical matters, the activation of composite substate
Performing has to be considered explicitly in the CCTL formula, as ex-
plained in [17, Section 7.3].

4. To enforce the production flow, it has to be guaranteed that the mill station
is continuously served, i.e., at each point of time, state Performing will
eventually be entered, and at each point of time, state Idle will eventually be
entered. (The latter condition guarantees that state Performing is eventually
left again.)



context TransportingToMill

inv: self@post()->forAll(p:Sequence(OclState) |

p->includes(TransportingToMill::Performing))

and

self@post()->forAll(p:Sequence(OclState) |

p->includes(TransportingToMill::Idle))

// CCTL formula:

AG AF (TransportingToMill.state==TransportingToMill.performing)

&

AG AF (TransportingToMill.state==TransportingToMill.idle)

Further examples of time-bounded state-oriented OCL constraints in the con-
text of other UML and MFERT models can be found in [20, 4, 17]. In [21], we
additionally demonstrated that it is possible to express the property specification
patterns of Dwyer et al. [14].

For formal verification of MFERT models and RT-OCL/CCTL specifica-
tions, we apply the RAVEN model checker. In RAVEN, additional timing anal-
ysis queries help users to extract important time bounds from formal system
descriptions. For instance, one might be interested in the maximal number of
time steps an item is waiting until it is processed. Other typical problems are
minimal and maximal delay times between events, e.g., the maximal time until
the first item leaves the process. For intuitive interpretation of counter exam-
ples, RAVEN generates execution runs to give the example of a violating path in
the state transitions. Additionally, we have extended RAVEN to automatically
generate traces which trigger the animation of the virtual 3D model (cf. Fig. 7).

6 Conclusion

We have presented the GRASP approach for the specification and verification of
production automation systems combining the domain-specific language MFERT
and a temporal OCL extension, i.e., RT-OCL. For application in the context of
model checking with the real-time model checker RAVEN, we have defined the
semantics of RT-OCL by means of a mapping to Clocked Computational Tree
Logic. The approach demonstrates that an OCL extension by means of a UML
Profile towards temporal real-time constraints can be seamlessly applied on the
M2 layer of UML, i.e., the OCL metamodel. Nevertheless, some extensions have
to be made also on the user model level (i.e., M1 layer) in order to enable
modelers to use our temporal OCL extensions. The presented extensions are
based on a future-oriented temporal logic. However, current work additionally
investigates the extension to past-oriented and additional logics.

We have implemented an editor and simulator for MFERT as given in Fig-
ure 8. Efficient code generation for RAVEN is currently investigated and under
implementation. The code is generated with respect to efficient runtime in BDD
composition and model checking considering optimized module and variable or-
ders. The temporal OCL extensions as presented here are integrated into our



OCL parser and type checker, which translates constraints with temporal oper-
ations to CCTL formulae.

Fig. 8. MFERT Editor and Simulator
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