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Abstract. The recently adopted OCL 2.0 specification comes with a formal se-
mantics that is based on set theory with a notion of an object model and system
states. System states keep the runtime information relevant for the evaluation of
OCL expressions. However, not all new language concepts of OCL 2.0 are al-
ready addressed in that formal semantics. We show how to overcome this by
introducing new components to the object model and system states defining a
dynamic semantics of OCL. In order to give precise rules that determine when
the current system state has to be updated according to a change in the referred
UML model, we make use of adequate mathematical means, namely Abstract
State Machines (ASMs). Though our ASM specification also gives a clear def-
inition for the evaluation of OCL constraints, it leaves sufficient flexibility for
application specific implementations that have to determine when constraints are
to be checked.

1 Introduction

The recently adopted OCL 2.0 specification provides both a metamodel-based as well as
a formal semantics definition [11]. The formal semantics is based on set theory with the
notion of an object model, which is basically a formalization of UML Class Diagrams.
An instantiation of an object model is called asystem. A system changes over time, i.e.,
the (number of) objects, their attribute values, and other characteristics change during
system execution. The information that is needed to evaluate OCL expressions is stored
in system states, which represent snapshots of the running system. For the evaluation of
OCL expressions, the adopted OCL 2.0 specification provides a denotational semantics
by interpretation functions overenvironments, i.e., tuples of system states and OCL-
specific variable assignments.

Several new language concepts have been introduced to OCL 2.0, like tuples, mes-
sages sent, and ordered sets. However, not all of the new concepts are already addressed
in the formal semantics. In particular, the formal OCL 2.0 semantics currently lacks a
formalization of

– operations on predefined collection typeOrderedSet,
– global variable definitions, calleddef-clauses1,

1 Leaving out this language concept leads to a significant loss in the expressiveness of OCL. See
[4] for more details.



– operations on State Diagram states, and
– operators to access OCL messages and operations to reason about them.

Note that operations defined for ordered sets are basically the same as for sequences
and that def-clauses are mapped to so-calledOclHelper variables and operations [11,
Section 7.4.4].OclHelper variables and operations, in turn, are stereotyped attributes
and operations of classifiers. Such variables and operations can be used in OCL expres-
sions just like common attributes and operations. Thus, it only has to be ensured that no
naming conflicts occur.

We already integrated UML State Diagrams to OCL and defined a formal semantics
for the predefined operationoclInState() [6] and also formally defined operators
and operations for OCL messages [5]. These definitions are based on extensions of
the work by Richters which heavily influenced the formal semantics of OCL 2.0 [13].
We introduced additional components to the object model and system states and could
then give a denotational semantics by interpretation functions for the predefined OCL
operations that are still missing in the formal semantics of OCL 2.0, e.g., the message-
related operationshasReturned() andresult().

This extension is also the foundation for defining adynamic semanticsof OCL,
which is in the focus of this article. Note that the (extended) denotational semantics al-
low to evaluate OCL 2.0 expressions over given system states, but there are no precise
rules that determinehowsystem states have to be updated in relation to the execution
of the referred UML model. To overcome this, we make use of adequate mathemat-
ical means for state-oriented operational definitions, namely Abstract State Machines
(ASMs).

ASMs were introduced by Gurevich [7]. Based on the notion of a virtual machine
execution in combination with a mathematically precise notion of states and state tran-
sitions known asalgebras, they provide a concise and rigorous but yet intuitive way to
define system semantics. ASMs are well-established in the domain of formal specifica-
tion and have already been successfully applied to define the semantics of, e.g., UML
Activity Diagrams [1] and the run-to-completion step of UML State Diagrams [2].

The remainder of this article is structured as follows. The next section briefly out-
lines the basics of ASMs. In Section 3, we present the extensions to the object model
and system states that are necessary to be able to evaluate OCL expressions that also
make use of state- and message-related operations. Section 4 then presents the dynamic
semantics of OCL with ASMs. In Section 5, we briefly discuss related work. Section 6
closes with a conclusion.

2 Abstract State Machines

Abstract State Machine (ASM) specifications can be understood aspseudocode over
abstract datawithout any particular theoretical prerequisites. We here only list the basic
definitions and refer to [7, 3] for a formal introduction and more details. An ASM
specification comes in form of guarded function updates, calledrules, of the form

if Condition then <Updates> else <Updates> endif



Rules are presented as nested if-then-else clauses with a set of function updates in
their body. When executing the rules, the underlying ASM abstract machine executes
state transitions withalgebrasas states. An algebra can be seen as adatabase of func-
tions[3]. Basically, an algebra is a mathematical structure over abstract objects that are
elements of a domain (or: universe). A particular function or relation for an objectobj
is described by a parameterized functionf , which assigns to eachx the valuef(obj, x).
Partial functions are turned into total functions by settingf(obj, x) = undef , where
undef is a special predefined value denoting thatf(obj, x) is undefined. Note that 0-ary
functions play the role of variables known from imperative programming languages.

Functions have a well-defined signature and mapping. ASMs distinguish static and
dynamic functions. Static functions do not change during executions of the ASM, i.e.,
the function values do not depend on the states of the ASM. In contrast, the values
of dynamic functions might change, either because of an update in the ASM itself or
by the environment. ASMs distinguish between four kinds of dynamic functions, i.e.,
controlled, monitored, interaction, andout functions. Controlled functions can only be
read and changed by the ASM itself, while monitored functions can only be read by
the ASM and are changed by the environment. Interaction (or shared) functions can be
changed by both the ASM and the environment, but then some mechanism is necessary
to guarantee consistency. Finally, out functions are changed but cannot be read by the
ASM.

Firing a set of rules in one step performs astate transition. Only those rules are
fired whose guards (i.e.,Condition) evaluate to true. At each step, the guards evaluate
to a set offunction updates, each of the formf(t1, ..., tr) := t0, whereti are terms
(including functions). Ablock is a set of function updates which we separate by com-
mas. The individual function updates of each block are collected in a so-calledupdate
setand are simultaneously executed in the same step. Each function update changes a
value at a specificlocation that is given by the left hand side of the update. Functions
are considered to be global, such that two or more simultaneous updates of the same
location in one update set define inconsistency.

In the case of inconsistency no state transition is performed and no update is being
executed.

We demonstrate a simple guarded update by the following example:

if true then A := B,B := A endif

That definition gives an simultaneous update of the0-ary functionsA andB. Since both
updates are simultaneously executed, the values are swapped (A becomes the value of
B and vice versa). Due to its true condition, the rule fires at each step.

ASMs are multi-sorted based on the notion of universes. We presume the standard
mathematic universes of booleans, integers, lists, etc. as well as the standard operations
on them without further mention.

The chooseconstructor defines an arbitrary selection of one element in a universe

choosev in Universe <Rule> endchoose

wherev is (non-deterministically) selected from the given universe. Thechoosecon-
structor can be qualified by an additional condition indicated by the keywordsatisfying.



Thevar rule constructor defines the simultaneous instantiation of a rule:

var v ranges over Universe <Rule> endvar

Executing the constructor means to execute the rule for each element inUniverse
simultaneously, i.e., the constructor basically spawnsn rules wheren is the number of
elements inUniverse.

3 Extended Object Model and System States

The formal definition of the object model in OCL 2.0 is based on the object model of
Richters [13]. However, this formalization lacks some of the new OCL 2.0 language
concepts. We therefore define an extension of the object model calledextended object
model, in which a number of concepts are newly introduced (cf. Section 3.1). Corre-
spondingly, additional information has to be stored in system states to be able to evalu-
ate OCL 2.0 expressions (cf. Section 3.2). The completed system state description then
allows to define a high-level dynamic semantics for OCL by means oftraces(cf. Sec-
tion 4).

3.1 Syntax

In the remainder of this article, letA be an alphabet,N be a set of names overA+, and
T a set of types. In particular,T = TB∪TE∪TC ∪TS comprises a set of basic standard
library typesTB , i.e.,Integer, Real, Boolean, andString, a setTE of user-defined
enumeration types, a setTC of user-defined classes,c ∈ CLASS, and a set of special
typesTS = {OclV oid,OclState, OclAny}.

We call the value setI(t) represented by a typet thetype domain. For convenience,
we presume thatOclUndefined (in the following denoted by symbol⊥) is included
in each type domain, such that we have, e.g.,I(OclV oid) = {⊥} andI(OclAny) =⋃

t∈TB∪TE∪TC∪{OclState} I(t).
Furthermore, letc ∈ CLASS be a class andtc ∈ TC be the type of classc.2 Each

classc has a setATTc of attributes that describe characteristics of their objects. An
attribute has a namea ∈ N and a typet ∈ T that specifies the domain of attribute
values. A classc is also associated with a setOPc of operations and a setSIGc of
signals.

We define theExtended Object ModelM by the tuple

M =
〈

CLASS,ATT, OP, paramKind, isQuery, SIG, SC,
ASSOC,≺,≺sig, associates, roles,multiplicities

〉
with

– a setCLASS = ACTIV E ∪ PASSIV E of active and passive classes,
– a set of attributes,ATT =

⋃
c∈CLASS ATTc,

2 Each classc ∈ CLASS induces an object typetc ∈ T that has the same name as the class. The
difference betweenc andtc is that we have the special value⊥ ∈ I(tc) for all c ∈ CLASS.



– a setOP of operations,OP =
⋃

c∈CLASS OPc,
– a functionparamKind : CLASS × OP × N → {in, inout, out} that gives for

each operation parameter its parameter kind,
– a functionisQuery : CLASS × OP → Boolean that determines whether an

operation is a query operation or not,
– a setSIG of signals,SIG ⊇

⋃
c∈CLASS SIGc,

– a setSC of State Diagrams (or: StateCharts),SC =
⋃

c∈ACTIV E SCc,
– a setASSOC of associations between classes,
– generalization hierarchies≺ for classes and≺sig for signals, and
– functionsassociates, roles, andmultiplicities that define a mapping for each

element inASSOC to the participating classes, their corresponding role names,
and multiplicities, respectively.

That definition should be sufficient for the remainder of this article. For more details
about setsCLASS, ATT , OP , andASSOC, readers are referred to the correspond-
ing sources [13, 11]. We also omit the formal syntax definitions for signals and State
Diagrams and refer to [6] for further details. Concerning State Diagrams and their inher-
itance among classes, we assume that they comply to someinheritance policy. Though
the UML standard suggests some informal policies [12, Section 2.12.5], different other
formal notions for behavioral consistency have been identified in the literature, e.g.,
[14].

The set of characteristics defined in a class together with the inherited characteristics
is called thefull descriptor of a class. Formally, this is a tuple

FDc =
〈

ATT ∗
c , OP ∗

c , paramKind∗c , isQuery∗c , SIG∗
c , SCc, navEnds∗(c)

〉
with the complete sets of attributes, operations, signals, navigable role names, and – in
the case of an active class – the associated State Diagram. For example, the complete
set of attributes of a classc is defined by

ATT ∗
c = ATTc ∪

⋃
c′∈parents(c)

ATTc′ ,

whereparents(c) denotes the set of (transitive) superclasses ofc. The complete sets
OP ∗

c , SIG∗
c , andnavEnds∗(c) of operations, signals, and navigable role names are

defined correspondingly. FunctionsisQuery∗c : OP ∗
c → Boolean andparamKind∗c :

OP ∗
c × N → {in, inout, out} are derived from functionsisQuery andparamKind,

respectively.

3.2 System State

The domainICLASS(c) of a classc ∈ CLASS is the set of objects of classc and all of
its child classes. For technical purposes, we defineICLASS =

⋃
c′∈CLASS ICLASS(c′).

Objects are referred to by object identifiers that are unique in the context of the whole
system. The set of object identifiers of a classc ∈ CLASS is defined by an infinite set
oid(c) = {oid1, oid2, . . .}.



Note that – in contrast to the current OCL semantics – we distinguish between
‘real’ objectsoid and their identifiersoid in the remainder of this article, simply by
using underlines.

The current notion of a system state with only three components (i.e., current ob-
jects, their attribute values, and the established links) is not sufficient to be able to
evaluate OCL 2.0 expressions. Additionally, we need information about currently acti-
vated states, operations called, signals sent, currently executed operations, etc. In this
context, we adopt ideas of Ziemann and Gogolla [16] to formalize currently executed
operations and define further functions to capture the required additional information.
Formally, asystem stateover the extended object modelM is a tuple

σ(M) =
〈

ΣCLASS , ΣATT , ΣASSOC , ΣCONF , ΣcurrentOp, ΣcurrentOpParam,
ΣsentMsg, ΣsentMsgParam, ΣinputQueue, ΣinputQueueParam

〉
.

We explain the components of system states in more detail, but note thatΣCLASS ,
ΣATT , andΣASSOC are already defined in [13, 11].

(1) ΣCLASS =
⋃

c∈CLASS σCLASS(c). The finite setsσCLASS(c) comprise all cur-
rently existing objects of classc, i.e., σCLASS(c) ⊆ oid(c) ⊆ ICLASS(c) . For
further application, we defineσACTIV E(c) for active classes correspondingly.

(2) The current attribute values are kept in setΣATT . It is the union of functions
σATT (a) : σCLASS(c) → I(t), wherea ∈ ATTc andt is the type specified for
a. Each functionσATT (a) assigns a value to attributea for each currently existing
object of classc.

(3) ΣASSOC =
⋃

as∈ASSOC σASSOC(as) comprises the finite setsσASSOC(as) that
contain links that connect objects. We refer to the sources mentioned above for
detailed information about links.

(4) The current State Diagram configurations are kept in set

ΣCONF =
⋃

c∈ACTIV E

{
σCONF (c) : σACTIV E(c) → ISC(c)

}
.

Each functionσCONF (c) assigns an active state configuration to each object of a
given classc ∈ ACTIV E. SetISC(c) denotes the set of valid state configurations
of the State DiagramSCc. For a formal definition of state configurations, see [6].

The following subsections describe the new system state components that relate to the
local snapshotsof the metamodel-based semantics of OCL 2.0 [11, Section 10.2.1].

Currently Executed Operations.Let ID be an infinite enumerable set, e.g.,ID = N,
and letStatus = {executing, returning}. At the starting point of an operation execu-
tion, a unique identifieropId ∈ ID is associated with the current operation execution.
Thus, an operation execution can uniquely be identified by a given object identifier,
an operation signatureop ∈ OP , and an operation identifieropId ∈ ID. The set of
currently executed operations is defined by

ΣcurrentOp =
⋃

c∈CLASS

{
σcurrentOp,c : σCLASS(c)×OP ∗

c →
P(ICLASS ×OP × ID × ID × Status)

}
.



Each functionσcurrentOp,c gives a set of tuples of the form〈srcId, srcOp, srcOpId,
opId, status〉 that uniquely identify all currently executed operations for a given object
and operation name. ElementssrcId, srcOp, andsrcOpId refer to the operation exe-
cution that originally invoked the considered operationop with identifieropId. These
elements are necessary to have a reference for returning a result value after operation
termination.

A flag ∈ Status indicates the current status of operation execution. Compared to
the messaging actions specified in UML 1.5, we here omit statusesready andcomplete
[12, Section 2.19.2.3], as they are not necessary in the context of OCL.

Actual parameter values of executed operations are kept inΣcurrentOpParam =⋃
c∈CLASS

{
σcurrentOpParam,c :
σCLASS(c)×OP ∗

c × ID → I?(t1)× ...× I?(tn)× I?(t)
}

.

Each functionσcurrentOpParam,c gives the actual parameter values of the currently
executed operations. In the definition above, we applied setsI?(t) = I(t) ∪ {?} for
any t ∈ T . Symbol ? denotes theunspecified statusof a value. This symbol must not
be mixed up with theundefined valuedenoted by⊥ (or OclUndefined in the concrete
OCL syntax) and is also different from the String literal’?’. Only operation parameters
i with paramKind(c, op, i) = out and the return value carry the unspecified value
during operation execution.

Messages Sent.To be able to evaluate OCL expressions that reason about messages, we
have to store thehistory of messages sentfor each executed operation. For each object
oid ∈ σCLASS(c) and each of its currently executed operationsop with identifieropId,
we define a functionσsentMsg,c(oid, op, opId) that gives the set of messages sent with
their corresponding destination objects. We then defineΣsentMsg =⋃
c∈CLASS

{
σsentMsg,c :
σCLASS(c)×OP ∗

c × ID → P(ICLASS × (SIG ∪OP )× ID)
}

.

SetID in P(ICLASS × (SIG ∪ OP ) × ID) is used to refer to the correct message
identifier when returning a value for synchronous operation calls. We here require a
total order forID, such that it is possible to uniquely build sequences of messages sent.

An element〈destId, msg, callId〉 ∈ σsentMsg,c(oid, op, opId) denotes that a mes-
sage with signaturemsg and call identifiercallId has been sent from objectoid to the
(not necessarily still existing) object with identifierdestId as part of operation execu-
tion op with identifieropId.

Additionally, we have to store the actual parameter values of each message sent.
The formal definition of functionsσsentMsgParam,c is very similar to the definition
of the functions for parameters of currently executed operations presented before. We
therefore omit further descriptions here and refer to [5] for more details.

Input Queues.SetΣinputQueue is used to store events, i.e., operation calls and signals
that are sent to objects and still waiting to be dispatched. While other events likechange
events, time events, and implicitcompletion eventsinvoked by (an implementation of)
a State Diagram have to be considered in a general notion of an input queue, it is suf-
ficient for us to consider only those events that are relevant for the evaluation of OCL



expressions. We later refer to input queues to update the system state when a signal
or operation is dispatched. This enables us to change the set of currently executed op-
erations accordingly, which is essential for a well-defined semantics of OCL message
operations. Formally, we haveΣinputQueue =⋃

c∈CLASS

{
σinputQueue,c : σCLASS(c) →
P(ICLASS × OP × ID × (SIG∗

c ∪OP ∗
c )× ID)

}
,

where each functionσinputQueue,c maps to a set of sent signals and operations. The
actual parameter values of waiting messages are kept in setΣinputQueueParam, and
again we omit a formalization here for the sake of conciseness.

We now have all necessary components defined to evaluate general OCL 2.0 ex-
pressions and we refer to [6, 5] for the formal semantics of the predefined state- and
message-related operations. In the remainder of this article, we make use of the pre-
sented extended object model and system states for an ASM definition of the dynamic
semantics of OCL.

4 ASM Definition of the Dynamic OCL Semantics

In the simplest case, i.e., when (the implementation of) the system is executed on a
single CPU, there is a clear temporal order on the system execution. But when the
system is distributed, there is a partial order among the system execution. This problem
can be treated in an ideal case by introducing aglobal clockthat allows for a global
view on the system. For the evaluation of OCL constraints, we assume that we have this
global view on the system.

The basic idea of our approach is that the system states are stored such that it is
possible to access them at a later point of time. There are two reasons for this approach,
both in the context of postcondition evaluation. Firstly, it is possible in postconditions
to refer to values at the precondition time of the corresponding operation execution.
Secondly, the sequence of messages sent during an operation execution has to be stored
to be able to evaluate message-related operations in postconditions.

To record the system changes we are interested in w.r.t. OCL constraints, we first
identify the set ofnoteworthy changeswhich may affect the evaluation of OCL ex-
pressions. Each time such a noteworthy change occurs, a new system state is built and
appended to the current sequence of system states. This sequence is also called atrace
in the remainder. Atrace for an instantiation of an extended object modelM is an
(infinite) sequence of system states, i.e.,

trace(M) = 〈〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . .〉〉.

The first trace elementσ(M)[0] denotes the initial system state in which all components
are empty. Given a system stateσ(M)[i], i ∈ N0, the next system stateσ(M)[i+1] is
added to the trace when at least onenoteworthy changeoccurs. The particular notewor-
thy changes are further explained in the ruleupdateSystemStateof the ASM definition
in Subsection 4.2.



4.1 When to Check Constraints

We take a general approach and abstract from the factwhenOCL constraints are to be
evaluated andwhat to do in the case of a constraint failure. This is completely in sense
of the OCL developers [15], as they state at the beginning of the corresponding Section
4.6 (page 90):

When implementing constraints, you must decide when to check them and what
to do when a constraint fails.

We make use of the monitored ASM functionevaluateConstraintsof type Boolean
to trigger the evaluation of OCL constraints. As explained before, it is out of the scope
of this definition when this function actually becomes true.

We defineINV =
⋃

c∈CLASS inv(c) as the set of all invariants, whereinv(c) de-
notes the set of invariants over classc of the referred UML model. Letinv∗(c) be the
full set of invariants for a given classc, i.e.,inv∗(c) = inv(c) ∪

⋃
c′∈parents(c) inv(c′).

Similarly, letPRE andPOST represent the sets of all pre- and postconditions, respec-
tively.

The three monitored functionscheckInv : ΣCLASS → P(INV ), checkPre :
ΣcurrentOp → P(PRE), andcheckPost : ΣcurrentOp → P(POST ) provide the in-
variants, pre-, and postconditions that have to be checked over particular objects and
operations whenevaluateConstraintsbecomes true. In the remainder, we may also
write 〈obj, inv〉 ∈ checkInv to refer to an invariantinv ∈ checkInv(obj). The same
holds for pre- and postconditions〈opExec, pre〉 ∈ checkPre and〈opExec, post〉 ∈
checkPost. Of course, we require that the constraints are well-defined for the objects
and operations, e.g., for all〈obj, inv〉 ∈ checkInv holds thatobj ∈ ΣCLASS(c) im-
pliesinv ∈ inv∗(c). Similar restrictions apply for pre- and postconditions.

4.2 ASM Rules

The left hand side of Figure 1 illustrates the general approach of the ASM definition for
the dynamic OCL semantics. On the right hand side, the figure gives the corresponding
sequential ASM steps until the system execution is stopped. The individual steps are
given as ASMmacrodefinitions. Macros are placeholders for ASM rules in order to
achieve a better readability of the ASM specification.

In stateupdateSystemState, the OCL evaluation continuously updates the system
state untilevaluateConstraintsbecomes true. WhenevaluateConstraintsis true, the
evaluation of constraints is started with an initialization. In the next phase, the con-
straints under investigation, i.e., the elements ofcheckInv, checkPre, andcheckPost,
are checked. A Boolean functionviolation is set totrue if at least one of the consid-
ered constraints is violated. Note here that not only an evaluation tofalse, but also an
evaluation to the undefined value⊥ is a violation.

In the remainder, we provide the ASM rules that reflect the OCL evaluation cycle of
Figure 1. We follow a state-based definition of the individual steps. The individual states



Fig. 1.Overview of the OCL Evaluation Cycle

are represented by the variablephasewhich is checked by each rule and is thereafter
set to the corresponding next state.

Initialization. Initially, phaseis set toinitialize andTRACEis an empty sequence. In
the following rule, settingσ(M)[0] to 〈∅, . . . , ∅〉 means that all tuple components are
initially empty.

if phase = initialize then
i := 0,
TRACE.append(σ(M)[0] := 〈∅, . . . , ∅〉),
phase := updateSystemState

endif

Update System State.Once entering phaseupdateSystemState, we continuously check
for noteworthy changes in the running system. The kinds of noteworthy changes are
listed in Table 1.

Note that different kinds of noteworthy changes might occur in parallel at the same
instant of time, such that several of the macros have to be executed simultaneously and
build a new system stateσ(M)[i+1]. For example, a number of objects can be created
at the same time on different nodes in a distributed system, and in addition one or more
new links can be established.

if noteworthyChange = true ∧ phase = updateSystemState then
UpdateClasses, UpdateAttributes, UpdateLinks,
UpdateConfigurations, UpdateSignals, UpdateOperations,
UpdateInputQueues, UpdateMessagesSent,
TRACE.append(σ(M)[i+1]),
i := i + 1,
if evaluateConstraints = true then

phase := initConstraintEvaluation
endif

endif



In the preceding rule, conditionnoteworthyChange is defined by

noteworthyChange ≡
∨

X∈Changes

X 6= ∅,

where the elements ofChanges are the sets of Table 1, i.e.,NewObjects, Destroyed-
Objects, . . ., ReturnedOperations.

The macros with the prefixUpdatein the preceding rule are for building the new
system stateσ(M)[i+1] w.r.t. the sets of current objects, attribute values, links, con-
figurations, received signals, currently executed operations, and sent messages. All of
these update rules are very similar and explained in more detail in [5], but it is sufficient
to give just an example rule here to understand the general idea, i.e., the functions of
the previous system state are copied and updated corresponding to the given changes in
terms of Table 1.

UpdateMessagesSent ≡
∀j ∈ {1, . . . , r} :

σsentMsg,cj (oidj , msgj , msgIdj)[i+1] :=

σsentMsg,cj (oidj , msgj , msgIdj)[i] ∪ {〈destIdj , opj , callIdj〉},
σsentMsgParam,cj (oidj , opj , opIdj , destIdj , msgj , callIdj)[i+1] :=

〈vj,1, ..., vj,nj , ?〉,

Constraint Evaluation. In the phaseinitConstraintEvaluation, we initialize some help
variables that are for documenting potential constraint violations and setphaseto the
next step.

if phase = initConstraintEvaluation then
violation := false,
violatedConstraints := ∅,
undefinedConstraints := ∅,
UpdateOclV ariableAssignments,
phase := checkConstraints

endif

PhasecheckConstraintsthen comprises the evaluation of the considered constraints of
checkInv, checkPre, andcheckPost. We partition this phase as follows.

if phase = checkConstraints then
CheckInvariants,
CheckPreconditions,
CheckPostconditions,
phase := identifyV iolations

endif

The validity of OCL expressions is determined by an interpretation functionI[[ ]]
over so-calledenvironmentsτ [11, Section A.3.1.2]. An environmentτ = 〈σ(M), β〉
comprises the system stateσ(M) and an OCL-specific variable assignmentβ that maps
variable names to values. Functionβ determines values for those variables that appear
in OCL let expressions and as iterator variables of predefined collection operations.



Table 1.Noteworthy Changes for OCL Evaluation

NewObjects := {oid1, . . . , oidn}, where oid1, . . . , oidn are
theobjectsof classescj ∈ CLASS, 1 ≤ j ≤ n, that are newlycreated.

DestroyedObjects := {oid1, . . . , oidm}, where oid1, . . . , oidm are
theobjectsof classescj ∈ CLASS, 1 ≤ j ≤ m, that aredestroyed.

NewAttributeV alues := {a1, . . . , al}, where a1, . . . , al are
theattributes of objectsoidj , 1 ≤ j ≤ l, whose values arechanged.

NewLinks := {las1 , . . . , lask}, where las1 , . . . , lask are
the links of associationsasj ∈ ASSOC, 1 ≤ j ≤ k, that are newlyestablished.

DestroyedLinks := {las1 , . . . , lasp}, where las1 , . . . , lasp are
the links of associationsasj ∈ ASSOC, 1 ≤ j ≤ p, that areremoved.

NewConfigurations := {cfg1, . . . , cfgq}, where cfg1, . . . , cfgq are thenew
state configurationsthat arereachedfor objectsoidjof active classescj , 1 ≤ j ≤ q.

MessagesSent := {opExec1, . . . , opExecr}, where opExecj denotes an
operation execution with nameopj and identifieropIdj , 1 ≤ j ≤ r, of objectsoidj

from classescj ∈ CLASS thatsent a messagenamedmsgj with identifiermsgIdj

and actual parameter valuesvj,1, ..., vj,nj to objectdestIdj with identifiercallIdj .

MessagesReceived := {oid1, . . . , oidv}, where oidj denotes an object of class
cj ∈ CLASS, 1 ≤ j ≤ v, thatreceives a messagenamedmsgj with call identifier
callIdj invoked by an operation execution of objectsrcIdj of a classc′

j (where c′
j

is identified bysrcOpj and srcOpIdj).

ConsumedSignals := {sigSent1, . . . , sigSentw}, where
sigSentj = 〈srcIdj , srcOpj , srcOpIdj , sigj , callIdj〉, 1 ≤ j ≤ w, is asignal that
is consumedby objectsoidj of classescj ∈ CLASS.

DispatchedOperations := {opCalled1, . . . , opCalledx}, where
opCalledj = 〈srcIdj , srcOpj , srcOpIdj , opj , callIdj〉, 1 ≤ j ≤ x, is awaiting
operation call that isdispatchedby objectsoidjof classescj ∈ CLASS.

TerminatedOperations := {opExec1, . . . , opExecy}, where opExecj , 1 ≤ j ≤ y,
denotes anoperation executionwith nameopj and identifieropIdj of an objectoidj

thatterminated.

ReturnedOperations := {opExec1, . . . , opExecz}, where opExecj , 1 ≤ j ≤ z,
denotes aterminated operation with nameopj and identifieropIdj of an objectoidj

thatreturns with its result valueresult.



Note that we specified a macroUpdateOclVariableAssignmentsin the rule forphase
= initConstraintEvaluationto indicate the update ofβ at trace positioni. But asβ
is precisely defined in the formal OCL 2.0 semantics [11, Section A.3.1.1], we omit
further details of the variable update here.

Generally, the semantics of an OCL expressionexpr ∈ Exprt of typet is a function
I[[expr]] : Env → I(t) from the setEnv of all environments to the semantic domain
of t, i.e., I(t). However, for postconditionstwo environments have to be considered,
i.e., the current environmentτ and the past environmentτpre that represents the system
state at the time of the start of the investigated operation execution.

As invariants, pre-, and postconditions are OCL expressions with Boolean result
type, we here simply apply the expression interpretation functionI[[ ]] as defined in
the OCL 2.0 semantics [11, Section A.3.1]. However, note that we annotate function
I[[expr]] by obj to denote thatexpr is evaluated w.r.t. that object.3 The resulting rule
for checking invariants is then defined by

CheckInvariants ≡
∀ 〈obj, inv〉 ∈ checkInv :

if I[[inv]]obj(τ) = false then
violatedConstraints = violatedConstraints ∪ { 〈obj, inv〉 }

endif
if I[[inv]]obj(τ) = ⊥ then

undefinedConstraints = undefinedConstraints ∪ { 〈obj, inv〉 }
endif

As the rule for checking preconditions is defined in a very similar way, we here just
present the more interesting rule for postconditions, as two system states have to be
considered in this case:

CheckPostconditions ≡
∀ 〈opExec, post〉 ∈ checkPost :

chooseτpre = 〈σ(M)[j], β[j]〉 in TRACE
satisfying σ(M)[j] is the system state in whichopExec has started

if I[[post]]opExec(τpre, τ) = false then
violatedConstraints = violatedConstraints ∪ { 〈obj, inv〉 }

endif
if I[[post]]opExec(τpre, τ) = ⊥ then

undefinedConstraints = undefinedConstraints ∪ { 〈obj, inv〉 }
endif

endchoose

Constraint Violations. Finally, we set the functionviolation to true if there is a violated
constraint. We keep the violations in dedicated sets for further usage by the system, e.g.,
for a violation report. However, we do not definewhat has to be done if a constraint

3 This is in contrast to the OCL semantics in which an invariant is always evaluated forall
objectsof the invariant’s context class [11, Section A.3.1.5]. Our model of course also allows
for this. However, we find it more flexible to also allow that only particular invariants are
evaluated for particular objects.



fails. This is left to a user-defined mechanism in the system (e.g., exception handling,
transaction rollback). That mechanism might benefit from our approach and check for
a violation report at completion of the current evaluation cycle, i.e., when stateidenti-
fyViolationsis reached.

if phase = identifyV iolations then
if violatedConstraints 6= ∅ ∨ undefinedConstraints 6= ∅ then

violation := true
endif ,
phase := updateSystemState

endif

5 Related Work

Various works on the semantics of OCL have been published, ranging from early defi-
nitions for OCL version 1.1 back in 1998 to the most recent version OCL 2.0 in March
2004. A good overview of the work is given in [4]. However, none of the existing for-
mal OCL semantics covers all language features. This is due to the fact that the standard
leaves several issues open since they are still under investigation, e.g., non-determinism,
empty collections, and recursive specifications.

Especially language features for checking activated states and sent messages have
not received much attention. Although it is possible to refer to State Diagram states and
check for activated states with operationoclInState() since OCL version 1.3, only
the authors of this article have presented a formal integration of State Diagram states
with OCL yet [6]. Concerning OCL messages, which was originally proposed in [8, 9],
we only know of one other approach that deals with the corresponding formal semantics
[10]. However, we are not aware of any other OCL semantics that supports the OCL
message concept and precisely defines when OCL constraints have to be checked.

6 Conclusion

Our ASM definition of the semantics of OCL makes use of a flexible, generic approach
that allows the executed model (or: the system) to trigger the evaluation of OCL con-
straints at arbitrary times. This is in accordance with the OCL language definition that
deliberately leaves it open when to check OCL constraints, which is mainly due to per-
formance aspects of the individual application. Our approach allows to rigorously check
constraints at all relevant times, namely by synchronization of noteworthy changes with
the evaluation triggerevaluateConstraints. For constraint evaluation in sequential im-
plementations, the system has to be interrupted until the evaluation is completed in
order to extract the evaluation result. This, however, is not very efficient for general
application. Therefore, we see our approach as a prerequisite framework for modellers
that want to precisely definewhen to check OCL constraints. Generally, there are a
number of aspects that have an impact on this issue, e.g., the different phases of the
development process or the specific application domain.



As a next step, we want to use our ASM definition as a basis to precisely identify and
check which constraints have to be evaluated in what states. Our application domain is
the modelling of time-critical manufacturing systems. For this, we also plan to combine
the presented ASM definition with related definitions for State and Activity Diagrams.
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