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Abstract

We present the syntax and semantics of a past- and
future-oriented temporal extension of the Object Constraint
Language (OCL). This extension supports designers to ex-
press time-bounded properties over a state-oriented UML
model of a system under development. The semantics is
formally defined over the system states of a mathemati-
cal object model. Additionally, we provide a mapping to
Clocked Linear Temporal Logic (Clocked LTL) formulae,
which is the basis for further application in appropriate
model checking verification tools. We demonstrate the ap-
plicability of the approach by the example of a buffer within
a production system.

1 Introduction

The Unified Modeling Language (UML) defines a num-
ber of diagrams to model different aspects of the structure
and behavior of software systems [20]. For example, Class
Diagrams are used to describe the static structure of a sys-
tem, while UML State Diagrams model the (reactive) be-
havior of objects. In addition to the set of diagrams, the tex-
tual Object Constraint Language (OCL) is an integral part
of UML to specify further restrictions over values of (parts
of) a given UML model [19]. Significant parts of OCL
have already been formally defined in [24] based on the
set-theoretic definition of anobject model. That work heav-
ily influenced the formal semantics of the recently adopted
OCL 2.0 proposal [19].

UML has already been applied in different domains, e.g.,
to modeltime-critical software-controlled systems such as
embedded real-time systems [6]. For time-critical systems,
correct time-constrained behavior is an essential require-
ment to meet. In this context, it is desirable to be able to
identify improper behavior w.r.t. suchtime-bounded tem-
poral propertiesalready in early phases of development.
Otherwise, overall goals like meeting project deadlines and

adherence to estimated costs may fail due to the need of
time-consuming and expensive re-designs at a later stage of
development.

UML currently provides only limited support for the
specification oftemporal propertiessuch as safety or live-
ness constraints [17] – let it be with or without explicit time.
Different approaches have already introduced extensions
to overcome this deficiency, e.g., extensions of UML Se-
quence Diagrams to enhance time-bounded specifications
of event-basedcommunication among objects [9, 5, 16].
In contrast, we focus on the specification of time-bounded
state-orientedconstraints to reason about the time-critical
system execution.

In our previous work, we already introduced a future-
oriented temporal extension of OCL [13]. We chose OCL
for our specification approach, as it already supports op-
erations for sets and sequences to extract and manipulate
collections (in particular, collections of states). We can
thus reuse existing UML concepts and keep the learning
curve low for people that already know UML and OCL.
The semantics of our temporal OCL extension is defined
over tracesof the referred UML user model. Traces are se-
quences ofsystem statesthat keep all information necessary
to evaluate OCL expressions.

For further application in a verification tool, we addition-
ally defined a mapping to atemporal logicscalled Clocked
Computation Tree Logic (CCTL) [27]. Temporal logics are
frequently applied to formally specify required behavioral
properties of a system under development. The most pop-
ular temporal logics used in the area of formal verification
are Linear Temporal Logic (LTL) and the branching-time
Computation Tree Logic (CTL) [21, 8]. Most temporal log-
ics support future-oriented temporal operators, but past time
operators can often be very useful to express required prop-
erties in an easier way [18]. Note that past time operators
do not necessarily add expressive power to temporal logics
that solely rely on future-oriented temporal operators [14].
Due to space limitations, we do not go into more details
about different temporal logics here. Instead, we refer to
[3, 15] for introductions to temporal logics and their appli-
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Figure 1. Parts of the UML Class Diagram of the Case Study

cation in formal verification. Furthermore, [22] provides a
good overview of the history and application of past time
temporal logics.

Compared to branching-time temporal logics, the seman-
tics of linear temporal logicsis often seen as beingmore in-
tuitive for modelers that are not experts in formal methods,
as linear temporal logics define the validity of a formula
over a givenentire execution trace. This combines well with
the mental model of people that are used to think in terms
of simulation-based tests and validations. In this article, we
therefore focus on an LTL-based language as the semantic
foundation for our temporal OCL extension. We provide a
mapping of our temporal OCL extension to a time-bounded
variant of linear temporal logics that we callClocked Linear
Temporal Logics with Past(Clocked LTL).

The remainder is structured as follows. The next section
presents an example that is later used to demonstrate the
applicability of the approach. Sections 3 and 4 then briefly
outline the temporal logics Clocked LTL and standard OCL,
respectively. Section 5 presents our state-oriented temporal
extensions to OCL and a mapping to Clocked LTL. Section
6 shows some time-bounded constraints in the context of
the example in both temporal OCL as well as corresponding
Clocked LTL formulae. Section 7 briefly discusses related
work. Section 8 closes with a conclusion.

2 Example

In this section we present a rather generic example of a
buffer that is part of a more complex production system. A
UML class diagram that presents the system structure and
an object diagram that gives the initial setting are shown in
Figures 1 and 2.

The buffer is used to store production items delivered by
three preceding machines. It has limited space for items,
e.g., 17 items can maximally be stored. The three machines
cyclically output items with different periods, i.e., 5, 6, and
7 time units. Items are taken from the buffer by a rather
fast packaging unit. However, the packaging unit has to
be maintained in certain intervals, e.g., every 40 time units
for the length of 10 time units. During maintenance the
packaging unit cannot take any items from the buffer.

We can already specify with standard OCL that the ca-
pacity of the machines and buffer must always be regarded,
such that no overflow occurs. The corresponding OCL in-
variant is

self.currentItems->size() <= self.capacity .

However, enhanced temporal properties cannot directly
be expressed with UML or OCL means, e.g., that

• as long as no error occurs, the buffer takes items from
the machines and eventually puts them into the pack-
aging unit, and

• every overflow in the buffer is due to an error in the
packaging unit (causality w.r.t. the past).

In Section 6, we will show that such properties can be ex-
pressed with our OCL extension.

3 Clocked Linear Temporal Logic with Past

Various variants of temporal logics with time-bounds ex-
ist. We here only mention Timed Linear Temporal Logic
(TLTL) [29], RTCTL [8], and CCTL [27]. Most temporal
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Figure 2. UML Object Diagram of the Initial Situation of the Case Study

logics focus on future-oriented temporal operators such as
’next’ or ’eventually’.

In this article, we present a new variant calledClocked
Linear Temporal Logic (Clocked LTL). The syntax of
Clocked LTL is recursively defined by the following gram-
mar:

φ ::= p | true | false | (φ)

| ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ

| X[a] φ | F[a,b] φ | G[a,b] φ | φ U[a,b] φ

| P[a] φ | Fpast [a,b] φ | Gpast [a,b] φ | φ S[a,b] φ

wherep is an element of a setPr of propositions,a ∈ N0,
and b ∈ N0 ∪ {∞}. The symbol∞ is defined through:
∀i ∈ N0 : i <∞, and it holdsi+∞ = ∞ and∞− i = ∞
andi −∞ = 0 (the latter rule is particularly necessary for
well-defined time-bounded past temporal operators).

The letters are acronyms for the usual temporal logic op-
erators. The future-oriented operators are X (for neXt), F
(eventually), G (globally), and U (until). The past time-
oriented operators are P (for previous), GP (globally in the
past),Fpast (eventually in the past), and S (since). The tem-
poral operators F, G, U,Gpast, Fpast, and S are provided
with interval time-bounds[a, b]. However, we also allow
that these operators have a single time-bound only. In this
case the lower bound is set to zero by default. It is also al-
lowed to specify no timing annotation at all. In this case,
the lower bound is zero and the upper bound is infinity by
default. The X- and P-operators have a single time-bound
[a] only (here,a ∈ N). If no time bound is specified, it
is implicitly set to one. The operator precedence is catego-
rized into five groups as follows (ordered from high to low):
(1) ¬, (2) G[a,b], F[a,b], X[a], Gpast[a,b], Fpast[a,b], P[a], (3)
∧, ∨, (4)→, (5) U[a,b], S[a,b].

Of course, several additional operators known from the
literature can additionally be supported, e.g., logical oper-
ators like equivalence and xor and temporal operators like
’before’, ’weak until’, and ’eventually since’.

Semantics. The validity of a Clocked LTL formula is
defined over atrace of a model that is given as a time-
annotated Kripke structureK. Note here that the particular
execution semantics ofK are not essential for the definition
of the temporal logics. We only require that a discrete time
step (i.e., a time unit) passes between two subsequent states
of a Kripke structure, such that we can speak of a tracev
with time steps 0, 1, 2, 3, ...

It is thus sufficient here to defineK as a tuple
(Pr, S, Tr, L, I) wherePr is a set of atomic propositions,
S is a set of states,Tr ⊆ S × S is a total transition rela-
tion, andL : S → 2Pr is a labeling function, such thatL
labels each state ofS with a set of propositions that are true
in that state. Finally,I is a time labeling function that de-
fines delay times inK. For example,I can be a transition
labelingI : Tr → 2N that defines delay times of transitions
(cf. Interval Structures [28]). However, other labelings and
slightly different execution semantics forK are possible.

A tracev : N0 → S over discrete time is an infinite se-
quenceg0, g1, . . . of states∈ S, where for alli ∈ N0 holds
(gi, gi+1) ∈ Tr. The semantics of Clocked LTL formulas
is defined by a satisfiability relation|= over traces. We use
v |=t φ to denote that tracev satisfies formulaφ at timet.
The satisfiability relation that recursively defines the seman-
tics of Clocked LTL formulae is shown in Table 1. In that
table,φ andψ denote arbitrary Clocked LTL (sub)formulae
and0 ≤ a ≤ b ∈ N0. Note that we requirea > 0 for the
operatorsX[a] andP[a]. The semantics of a Clocked LTL
formula over an entire trace is then as follows.



Table 1. Description of Clocked LTL Operators

Formula Description

v |=t p (p ∈ Pr) if p ∈ L(v(t))

v |=t ¬φ if v |=t φ is false

v |=t φ ∧ ψ if v |=t φ andv |=t ψ

v |=t φ ∨ ψ if v |=t φ or v |=t ψ

v |=t φ→ ψ if v |=t φ impliesv |=t ψ

v |=t X[a] φ if v |=t+a φ

v |=t F[a,b] φ if there is ani with t+ a ≤ i ≤ t+ b such thatv |=i φ

v |=t G[a,b] φ if for all i with t+ a ≤ i ≤ t+ b holdsv |=i φ

v |=t φ U[a,b] ψ if there is ani with t + a ≤ i ≤ t + b such thatv |=t ψ and for all j,
t+ a ≤ j < i holdsv |=j φ.

v |=t P[a] φ if t− a ≥ 0 andv |=t−a φ

v |=t Fpast[a,b] φ if t− b ≥ 0 and there is ani with t− b ≤ i ≤ t− a such thatv |=i φ

v |=t Gpast[a,b] φ if t− b ≥ 0 and for alli with t− b ≤ i ≤ t− a holdsv |=i φ

v |=t φ S[a,b] ψ if t− b ≥ 0 and there is ani with t− b ≤ i ≤ t− a such thatv |=i ψ and for
all j, i < j ≤ t− a holdsv |=j φ

Definition 1 Let φ be a Clocked LTL formula andv be a
trace.v satisfiesφ (denoted byv |= φ) iff v |=0 φ.

For specification purposes, it is often necessary to dis-
tinguish whether a property expressed by a (C)LTL formula
has to hold overall possible traces or only over at least one
trace.

Definition 2 LetK be a discrete-time Kripke Structure and
φ be a Clocked LTL formula.K satisfiesφ on all traces
(denoted byK |=A φ) iff for all possible tracesv ofK holds
v |=0 φ. We say that thatK cansatisfyφ (denoted byK |=E

φ) iff there is a tracev ofK with v |=0 φ.

Though temporal logics are powerful languages that can
produce arbitrarily nested specifications, their full expres-
sive power is not needed in practice. This led to property
specification pattern systems [7] and related approaches that
abstract from temporal logics. With our OCL extension, we
also follow this idea. We nevertheless have to define amap-
pingto a temporal logic like Clocked LTL to be able to make
use of appropriate automatic verification tools.

Note that our variant Clocked LTL is not more expressive
than other time-bounded linear temporal logics from a the-
oretical viewpoint. It is therefore possible to map Clocked
LTL to other temporal logics and thus use existing verifi-
cation tools, e.g. SPIN1. The reason for defining Clocked
LTL is that the syntax and semantics of existing logics do
not exactly match our requirements. All temporal logics we
found so far either do not consider timing intervals, do not
consider past time operators, or are defined over continuous

1http://spinroot.com/spin/whatisspin.html

time. In contrast, Clocked LTL avoids cryptical symbols
(like diamonds, squares, and circles), is based on discrete
time for practical purposes, and supports future as well as
past temporal operators in combination with timing inter-
vals.

4 Introduction to OCL

OCL is a declarative expression-based language to con-
strain values in the context of a given UML model. Evalu-
ation of OCL expressions does not have side effects on the
corresponding UML model. In the remainder, we will call
this UML model thereferred user model.

Each OCL expression has a type. Besides user-defined
model types (e.g., classes or interfaces) and some prede-
fined basic types (e.g.,Integer, Real, or Boolean), OCL
also has a notion of object collection types (i.e., sets, or-
dered sets, sequences, and bags). Collection types are ho-
mogeneous in the sense that all elements of a collection
have a common type. In contrast, OCL 2.0 now also sup-
ports tuples that are sequences of a fixed number of ele-
ments that can be of different types. Moreover, a standard
library is available that provides operations to access and
manipulate values and objects.

OCL constraints can be visually applied as stereotyped
notes that are attached to their corresponding class as shown
in Figure 1 in Section 2. Alternatively, they can be formu-
lated separately in pure textual form, but then the context
class has to be provided. For example, the following in-
variant ensures that each instance of classMachine has one
associated package buffer and that this buffer is the same
for all instances of classMachine:



context Machine

inv: self.packageBuffer->size() = 1

and

Machine.allInstances().packageBuffer

->asSet()->size() = 1

The class name that follows thecontext keyword spec-
ifies the class for which the following expression should
hold. The keywordinv indicates that this is an invariant
that has to hold for each object of the context class at all
times. The keywordself refers to each object of the con-
text class. Attributes, operations, and associations can be
accessed by dot notation, e.g.,self.myBuffer results in a
(possibly empty) set of instances ofBuffer. The arrow no-
tation indicates that a collection of objects is manipulated by
one of the pre-defined OCL collection operations. For ex-
ample, operationnotEmpty() returns true, if the accessed
set is not empty.

The predefined operationallInstances() is applied
to classMachine to extract the set of currently exist-
ing Machine objects. The expressionMachine.all-
Instances().packageBuffer then refers to the multi-
set (or: bag) of buffer objects when navigating from each
Machine object via associationpackageBuffer to class
Buffer. This multiset is casted to an ordinary set by ap-
plying the predefined operationasSet(). We finally re-
quire that the size of this set is equal to one, and we thus
have specified that each machine object is associated with
the same buffer object.

Note that it is also possible to formulate checks for ac-
tivated State Diagram states that are associated with ob-
jects, using the operationoclInState(stateName:Ocl-
State):Boolean. The existing – though still informal –
notion of states in OCL is especially important for our tem-
poral OCL extension.

5 Temporal OCL Extension

The concrete syntax of OCL 2.0 is defined by an at-
tributed grammar in EBNF (Extended Backus-Naur Form)
with inherited and synthesized attributes as well as disam-
biguating rules. For each production rule, a mapping to the
corresponding concept in the abstract syntax (i.e., the meta-
model) is provided.

Based on this grammar and a UML Profile that intro-
duces stereotypes for temporal expressions, we already in-
troduced future-oriented temporal OCL expressions in [13].
The basic idea is to interpret a temporal OCL expression
as a special form of operation call. An operation call in
the abstract OCL syntax has a source, a referred opera-
tion, and operation arguments (see Figure 3). Correspond-
ing attribute values have to be set and become part of the
abstract syntax tree. The dedicated variableast (abstract
syntax tree) is used to store these values. The type ofast

TemporalExp

PastTemporalExp FutureTemporalExp

PropertyCallExp

<<stereotype>>

Operation
(from Core)

OclExpression

+referredOperation

1
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+arguments
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Figure 3. Temporal Expressions as Special
Form of Operation Call Expressions

differs depending on the production rule and refers to a
type of the OCL metamodel. In this case,ast is of type
PastTemporalExp. The following new rule now gives the
main production rule forpast temporal OCL expressions.
Note that we introduce a temporal operator ’@’ to distin-
guish temporal expressions from OCL’s common dot and
arrow notation for accessing attributes, operations, and as-
sociations.

PastTemporalExpCS ::= OclExpressionCS ’@’

simpleNameCS ’(’ argumentsCS? ’)’

Abstract Syntax Mapping:

PastTemporalExpCS.ast : PastTemporalExp

Synthesized Attributes:

PastTemporalExpCS.ast.source = OclExpressionCS.ast

PastTemporalExpCS.ast.arguments = argumentsCS.ast

PastTemporalExpCS.ast.referredOperation =

OclExpressionCS.ast.type.lookupOperation(

simpleNameCS.ast,

if argumentsCS->notEmpty()

then argumentsCS.ast->collect(type)

else Sequence{}

endif )

Inherited Attributes:

OclExpressionCS.env = PastTemporalExpCS.env

argumentsCS.env = PastTemporalExpCS.env

Disambiguating Rules:

-- Operation name must be a past time temporal operator

[1] Set{’pre’}->includes(simpleNameCS.ast)

-- The operation signature must be valid

[2] not PastTemporalExpCS.ast.referredOperation.

oclIsUndefined()

Thus, past time temporal OCL expressions map to the
specific UML stereotypePastTemporalExp that inherits
values fromOperationCallExp on the metamodel level
see Figure 3). Additional temporal operations can easily be
introduced at a later point of time, as just the disambiguat-
ing rule [1] has to be extended in such cases.



5.1 Semantics

OCL 2.0 provides extensive semantic descriptions by
both a metamodel-based as well as a formal mathematical
approach. In the remainder, we focus on theformal OCL
semanticsthat is based upon the notion of an set-theoretic
object model[19]. An object modelM is a tuple with a set
CLASS of classes, a setATT of attributes, a setOP of
operations, a setASSOC of associations, a generalization
hierarchy≺ over classes, and functionsassociates, roles,
andmultiplicities that give for eachas ∈ ASSOC its
dedicated classes, the classes’ role names, and multiplici-
ties, respectively.

In the remainder, we call an instantiation of an object
model asystem. A system changes over time, i.e., the (num-
ber of) objects, their attribute values, and other characteris-
tics change during system execution. The information to
evaluate OCL expressions is stored insystem states, which
represent snapshots of the running system. In OCL 2.0, a
system stateσ(M) is formally defined as a triple with a set
ΣCLASS of currently existing objects, a setΣATT of at-
tribute values of the objects, and a setΣASSOC of currently
established links.

The object model and system state definition, however,
lack descriptions of ordered sets, global OCL variable defi-
nitions, OCL messages, and states of UML State Diagrams.
Especially the latter are needed for our temporal OCL se-
mantics. We therefore extend the formal model and system
states accordingly, such that the resultingextended object
modelM with

M =
〈
CLASS,ATT,OP, SIG, SC,ASSOC,

paramKind, isQuery,≺,≺sig,

associates, roles,multiplicities
〉

additionally includes operation parameter kinds{in, inout,
out}, a flag that indicates query operations, signal recep-
tions for classes, State Diagrams2, a formal definition of
state configurations3, and an extension of the formal de-
scriptor of a class. Furthermore, the following informa-
tion has to be added to system states to evaluate OCL ex-
pressions that make use of state-related and OCL message-
related operations: for each object, the input queue of re-
ceived signals and operation calls, the state configurations
of all active objects, the currently executed operations, and
for each currently executed operation, the messages sent so
far. The resulting tuple of asystem stateover an extended
object modelM is

2Note that no specific execution semantics for state diagrams have to
be assumed here.

3UML only informally definesactive state configurations. This results
in some shortcomings, e.g., it is not considered that final states can be part
of state configurations.

σ(M) =
〈

ΣCLASS ,ΣATT ,ΣASSOC ,ΣCONF ,

ΣcurrentOp,ΣcurrentOpParam,

ΣsentMsg,ΣsentMsgParam,

ΣinputQueue,ΣinputQueueParam

〉
.

With those extensions, it is possible to defineexecution
tracesthat capture all of those system changes that are rele-
vant to evaluate OCL constraints [11]. In the simplest case,
e.g., when (an implementation of) the system is executed on
a single CPU, there is a clear temporal order of operations.
But when (the implementation of) the system is distributed,
we have a partial order between configurations of different
objects. This problem can be treated in an ideal case by
introducing aglobal clockthat allows for a global view on
the system. And additionally, we here assume that the time
unit is chosen sufficiently small, such that only at most one
OCL-relevant change per object may happen in a time step.
This leads to a discretization of time.

Definition 3 (Time-based Trace)
A time-based tracefor an instantiation of an extended ob-
ject modelM is an (infinite) sequence of system states,

trace(M)
def
= 〈〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . . 〉〉,

where eachσ(M)[i], i ∈ N0, represents the system statei
time units after start of execution. In particular,σ(M)[0]
denotes the initial system state.

We may also apply the annotation[i] to the components
of the system state. In particular, we denote the state config-
uration of an active objectoid over a system stateσ(M)[i]
by soid[i].

We here give an interpretation for the past temporal oper-
ationpre(a,b), while the semantics of the future-oriented
operationpost(a,b) can be found in [13]. Assume that
a temporal OCL expression for an objectoid of a class
c ∈ CLASS is to be evaluated over a system stateσ(M)[t]
at timet of a tracetrace(M). The semantics of operation
pre(a,b) is then defined as follows.4

I[[pre :OclAny × Integer ×OclAny

→ Sequence(Set(OclState))]](oid, a, b)

def
=



〈〈soid [t−b], ..., soid [t−a]〉〉, if oid ∈ ΣACTIV E,c

∧ a ≥ 0 ∧ b ≥ a

∧ t− b ≥ 0,

⊥, if oid 6∈ ΣACTIV E,c

∨ a < 0 ∨ a = ⊥
∨ b < a ∨ b = ⊥ .

4For the matter of brevity, we omitted the additional variable assign-
mentβ in this definition. Functionβ determines values for OCL-specific
variables, such as iterator variables and local variables of so-calledlet-
expressions [19, Section A.3.1.2].



Symbol⊥ represents the predefined OCL valueOclUnde-
fined, i.e., a third logical built-in value of OCL that is used
to indicate erroneous expressions.ΣACTIV E,c ⊆ ΣCLASS

is the set of all currently existing objects of a so-calledac-
tive classc – we have to consider here that only such kinds
of objects have a notion of state configurations. Recall that
b is either a non-negative natural number or’inf’. We in-
terpret’inf’ in this context as∞. For the symbol∞, it
holds that∀i ∈ N0 : i <∞ ∧ i+∞ = ∞ ∧ i−∞ = 0.

5.2 Trace Literal Expressions

As we want to reason about time-based traces obtained
by @pre, we need a new mechanism in OCL to explic-
itly specify traces with annotated timing intervals by means
of literals. The timing intervals denote for how long each
state configuration may be activated. Based on the OCL 2.0
metamodel, we define stereotypesTraceLiteralExp and
TraceLiteralPart as illustrated in Figure 4. The follow-
ing restrictions apply, leaving out the corresponding formal
well-formedness rules for reasons of brevity.

1. The collection kind of stereotypeTraceLiteralExp
is CollectionKind::Sequence.

2. The type associated with aTraceLiteralPart must
be Set(OclState). Note that we do not require
explicit specification of a set when a state config-
uration can already be specified by one state only.
In this case, typeOclState is implicitly casted to
Set(OclState).

3. EachTraceLiteralPart has a lower bound and an
upper bound.

4. Lower bounds must evaluate to non-negative Integer
values.

5. Upper bounds must evaluate to non-negative Integer
values or to the String’inf’ (for infinity). In the first
case, the upper bound value must be greater or equal
to the corresponding lower bound value.

Similar to the grammar rule forPastTemporalExpCS,
only some additional grammar rules have to be added to the
concrete OCL 2.0 syntax, such that modelers can specify
trace literal expressions with timing bounds in OCL.

Finally, we define a new boolean operation on se-
quences calledincludesSequence(seq:Sequence(T)).
Basically, this operation is a more general form of the al-
ready existing OCL collection operationsubSequence().
This new operation returns true if the argumentseq is in-
cluded in the sequence to which the operation is applied.
The abstract parameter typeT is a placeholder for the ele-
ment type ofseq. It is required that this type must conform

TraceLiteralPart<<stereotype>>

<<taggedValue>> upperBound[1]

<<taggedValue>> lowerBound[1]

CollectionLiteralExp

kind : CollectionKind

CollectionLiteralPart

+parts 0..n {ordered}

CollectionItemCollectionRange

+type

1

OclExpression

+first 1 1+last

+item

1

Classifier
(from Core)

TraceLiteralExp<<stereotype>>

Figure 4. UML Stereotypes for Trace Literal
Expressions

to the element type of the sequence to which the operation
includesSequence() is applied. In particular, this allows
to investigate whether a required sequence of state configu-
rations (that is specified by means of a trace literal expres-
sion) has appeared in a trace. An example is given in the
next section.

5.3 Mapping to Clocked LTL

Due to space limitations, we here focus on the map-
ping of instances ofPastTemporalExpCS to Clocked LTL
formulae. However, a corresponding mapping of future-
oriented temporal OCL expressions can easily be obtained
a very similar way.

By definition, OCL invariants for a given class must be
true for all its instances at any time [19, Section 7.3.3]. In
the context of time-based traces, this means that the invari-
ant must be true on all traces at each position. Consequently,
a corresponding Clocked LTL formulaφ must hold for all
traces of the model, i.e.,K |=A φ, andφ has to start with
theG operator (globally).

Table 2 lists the main predefined OCL collection opera-
tions that can be directly applied to past time temporal OCL
expressions. In each case, we give a mapping to correspond-
ing Clocked LTL expressions. In that table,expr denotes
a Boolean OCL expression.cltlExpr is the equivalent
Boolean expression in Clocked LTL syntax.5 cfg denotes
a state configuration of a UML State Diagram (i.e., a set of
activated states) andcltlCfg is the corresponding set of
states in Clocked LTL syntax.c is an iterator variable for
state configurations.

5We here assume that there is a mapping available from UML State
Diagram states to the states of a Kripke StructureK.



Table 2. Mapping Past Temporal OCL Expressions to Clocked LTL Formulae (at time t)

Temporal OCL Expression Clocked LTL Formula

obj@pre(a,b)→includes( cfg ) v |=t Fpast[a,b](cltlCfg)

obj@pre(a,b)→excludes( cfg ) v |=t ¬Fpast[a,b](cltlCfg)

obj@pre(a,b)→exists( c| expr) v |=t Fpast[a,b](cltlExpr)

obj@pre(a,b)→forAll( c | expr) v |=t Gpast[a,b](cltlExpr)

obj@pre(a,b)→at( i:Integer| expr) v |=t P[b−i](cltlExpr)

Lete1, e2, . . . , en be the parts of a trace literal expression
with timing intervals [ai, bi], 1 ≤ i ≤ n − 1. The past
temporal OCL expression

obj@pre(a,b)->includesSequence(

Sequence{e1[a1, b1], e2[a2, b2], . . . , en})

maps to Clocked LTL as follows :

Fpast[a,b](e1 U[a1,b1] (

e2 U[a2,b2] (

. . . (en−1U[an−1,bn−1]en) . . .))).

Though we have presented the mapping by some exam-
ples here, it should be clear that more complex formulae
are easily combined from the above, in particular with the
logical OCL and Clocked LTL connectivesand, or, and
implies.

Note that we only investigate models with ‘persistent’
active objects, i.e., objects must exist from the initial sys-
tem state onwards for the complete execution time. This is
due to the formal model of Kripke structures and Clocked
LTL formulae that do not support specification means for
dynamic object creation and deletion. While this is suffi-
cient for our particular application domain, this limitation
should be overcome in the future for the benefit of a more
general application. As a next step, we therefore intend to
extend Kripke Structures by additional components and in-
troduce new modalities to Clocked LTL.

6 Temporal OCL and Clocked LTL Exam-
ples

In this section we show some past-oriented temporal
OCL constraints for requirements in the context of the
buffer example presented in Section 2.

Figure 5 illustrates the behavior of the buffer by means
of a State Diagram that is associated with the active class
Buffer. The State Diagram comprises two orthogonal sec-
tions that work concurrently. One section is for taking items

Running

Get

Loading

Put

Idle
when (storedItems > 0)

Waiting

Unloading

do/ unload()

Error

Buffer

reset()emergencyStop()

when (overflow and self.oclInState(Running::Put::Idle))

m.load(i) [storedItems < capacity]

m.load(i) [storedItems >= capacity] / overflow := true

Figure 5. UML State Diagram for class Buffer

from the machines, the other section is for delivering items
to the packaging unit. We do not show the State Diagrams
of the remaining active classes for the sake of brevity, but
note that they are modeled in a very similar way. For exam-
ple, the State Diagram for the classPackaging comprises
the simple statesWaiting, Loading, Maintaining, and
Error.

We require that every overflow in the buffer is due to an
error in the packaging unit (i.e., a causality w.r.t. the past).
This guarantees that the packaging unit is working suffi-
ciently fast under usual conditions. Or in other words, the
maintenance times do not interrupt the packaging unit for
too long w.r.t. the speed of the machine outputs.

context Buffer

inv: self.oclInState(Error) implies

packaging@pre()->includes(Error)

This requirement can even be strengthened by an addi-
tional timing bound, e.g.,packaging@pre(1,10). Recall
here that there has to be a time-based semantics for the exe-
cution of State Diagrams, which is not in the scope of stan-
dard UML.



Assuming that there is a mapping of such a time-based
semantics to discrete-time Kripke Structures (cf. Definition
2), the following corresponding CLTL formula must hold:

G ( (buffer.state = buffer.error)

→ Fpast[1,∞](packaging.state = packaging.error) )

Although it is also possible to specify this requirement
with future-oriented temporal OCL or LTL operators, the
presented solution is a much more natural way of specifying
a past-oriented causality.

7 Related Work

Temporal OCL extensions have already been proposed
by other authors. After early approaches that directly
add temporal logic formulas to OCL [23], more elabo-
rated works consider future and/or past temporal operations
[30, 4, 1]. However, all of these works do not consider tim-
ing bounds.

Some approaches already include timing bounds for
property specifications, but they either use completely dif-
ferent notations [25] or introduce time-bounded OCL oper-
ations forevent-based specifications [2]. We refer to [10]
for a detailed discussion of temporal OCL extensions.

In contrast, we present aconsistentOCL extension
that reuses OCL language concepts like predefined collec-
tion types and corresponding operations. Additionally, we
build upon the semantics adopted in the OCL 2.0 spec-
ification. In our work, we focus onstate-orientedtem-
poral OCL expressions rather than event-based specifica-
tions. Note here that the OCL standard already consid-
ers states of UML State Diagrams, as it is possible to
check for activated states with the predefined operation
oclInState(stateName:OclState). However, some ef-
fort is needed to semantically integrate State Diagram states
with the underlying formal model of OCL as explained in
Section 5.1.

8 Conclusion

Together with our previous work, we now have an OCL
extension that allows for the specification of past- and
future-oriented state-oriented time-bounded constraints on
the basis of the latest OCL 2.0 metamodel proposal. Our
approach is still the only one that extends OCL by using
the UML extension mechanism of profiles, i.e., stereotypes,
tagged values, and constraints. The approach demonstrates
that an OCL extension by means of a UML Profile towards
temporal time-bounded constraints can be seamlessly ap-
plied on the abstract syntax layer M2. Nevertheless, exten-
sions have to be made on the M1 layer as well in order to

enable modelers to use OCL extensions like the temporal
one we have proposed here.

We applied our temporal OCL extensions in the domain
of modeling production automation systems and presented
a UML Profile for a corresponding notation called MFERT
in [12]. A semantics is given to the MFERT Profile by
a mapping to synchronous time-annotated finite state ma-
chines (extended Interval Structures [28]). Our temporal
OCL expressions then have a semantics for MFERT mod-
els, as their mapping to Clocked LTL formulae automati-
cally establishes a formal relation between the two parts.
This provides a sound basis for formal verification by Real-
Time Model Checking. In this context, the RAVEN model
checker has already been used to investigate finite Clocked
LTL formulae in a simulation-based verification approach
[26].

Concerning future research, we want to develop further
temporal OCL extensions on arbitrary objects, as temporal
requirements overpassive objectscannot yet be expressed
with our approach. Such requirements can only indirectly
be specified through the different states of associated active
objects. We therefore want to extend OCL towards speci-
fication of temporal expressions also w.r.t. attribute values
and established links between objects. It is then possible to
specify temporal restrictions over active as well as passive
objects.

For example, in the context of the buffer example one
might want to require that each item must not remain in
the buffer for more than 120 time units. A possible solution
would be to require for eachItem object that the association
self.currentUnit is of typeBuffer for not more than
120 time units. A corresponding temporal OCL expression
could be

context Item inv:

self.currentUnit.oclIsTypeOf(Buffer)

implies

self.currentUnit@post(1,120).oclIsTypeOf(Packaging)
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