Past- and Future-Oriented Time-Bounded Temporal Properties with OCL

Stephan Flake and Wolfgang Mueller

C-LAB, Paderborn University, Fuerstenallee 11, 33102 Paderborn, Germany
E-mail: {flake,wolfgang}@c-lab.de

Abstract adherence to estimated costs may fail due to the need of
time-consuming and expensive re-designs at a later stage of
We present the syntax and semantics of a past- anddevelopment.
future-oriented temporal extension of the Object Constraint UML currently provides only limited support for the
Language (OCL). This extension supports designers to ex-specification otemporal propertiesuch as safety or live-
press time-bounded properties over a state-oriented UML ness constraints [17] — let it be with or without explicit time.
model of a system under development. The semantics i®ifferent approaches have already introduced extensions
formally defined over the system states of a mathemati-to overcome this deficiency, e.g., extensions of UML Se-
cal object model. Additionally, we provide a mapping to quence Diagrams to enhance time-bounded specifications
Clocked Linear Temporal Logic (Clocked LTL) formulae, of event-basecommunication among objects| [9, [5,]116].
which is the basis for further application in appropriate In contrast, we focus on the specification of time-bounded
model checking verification tools. We demonstrate the ap-state-orientecconstraints to reason about the time-critical
plicability of the approach by the example of a buffer within system execution.
a production system. In our previous work, we already introduced a future-
oriented temporal extension of OCL |13]. We chose OCL
for our specification approach, as it already supports op-
erations for sets and sequences to extract and manipulate
collections (in particular, collections of states). We can
thus reuse existing UML concepts and keep the learning
The Unified Modeling Language (UML) defines a num- curve low for people that already know UML and OCL.
ber of diagrams to model different aspects of the structure The semantics of our temporal OCL extension is defined
and behavior of software systems[20]. For example, Classovertracesof the referred UML user model. Traces are se-
Diagrams are used to describe the static structure of a sysquences o$ystem statethat keep all information necessary
tem, while UML State Diagrams model the (reactive) be- to evaluate OCL expressions.
havior of objects. In addition to the set of diagrams, the tex- For further application in a verification tool, we addition-
tual Object Constraint Language (OCL) is an integral part ally defined a mapping to tmporal logicscalled Clocked
of UML to specify further restrictions over values of (parts Computation Tree Logic (CCTL)[27]. Temporal logics are
of) a given UML model [[18]. Significant parts of OCL frequently applied to formally specify required behavioral
have already been formally defined [n_[24] based on the properties of a system under development. The most pop-
set-theoretic definition of anbject modelThat work heav- ular temporal logics used in the area of formal verification
ily influenced the formal semantics of the recently adopted are Linear Temporal Logic (LTL) and the branching-time
OCL 2.0 proposal[19]. Computation Tree Logic (CTL) [21]8]. Most temporal log-
UML has already been applied in different domains, e.g., ics support future-oriented temporal operators, but past time
to modeltime-critical software-controlled systems such as operators can often be very useful to express required prop-
embedded real-time systems [6]. For time-critical systems, erties in an easier way [18]. Note that past time operators
correct time-constrained behavior is an essential require-do not necessarily add expressive power to temporal logics
ment to meet. In this context, it is desirable to be able to that solely rely on future-oriented temporal operatbrs [14].
identify improper behavior w.r.t. suctime-bounded tem- Due to space limitations, we do not go into more details
poral propertiesalready in early phases of development. about different temporal logics here. Instead, we refer to
Otherwise, overall goals like meeting project deadlines and|[3,[15] for introductions to temporal logics and their appli-

1 Introduction

FactoryUnit Item
name : String . . id : Integer
,-’| pos : Position 1 Cis-atunit status : ltemStatus
e capacity : Integer - kind: ItemKind
e currentUnit currentltems
e {ordered}
«invariant»
self.currenttems->size() <= self.capacity
\
Station Buffer
workTime : Integer packageBuffer | /storedltems : Integer

<<enumeration>> | |<<enumeration>> loadTime: InFeger 1 overflow : Boolean
ItemStatus ItemKind unloadTime : Integer load(i-ltem)
Raw load(i:ltem) unload()
inProcess i] gg? unload(i:ltem) emergencyStop()
Final X1t000 work() reset()
Failure !
1
<<enumeration>> context Buffer::storedltems : Integer B
MachineKind derive:
HPR5002 self.storedltems = self.currentltems->size()
HPR5002a [|
HPQ6000 Packaging Machine

maintaininterval: Integer kind: MachineKind

maintain()

Figure 1. Parts of the UML Class Diagram of the Case Study

cation in formal verification. Furthermore, [22] provides a The buffer is used to store production items delivered by
good overview of the history and application of past time three preceding machines. It has limited space for items,
temporal logics. e.g., 17 items can maximally be stored. The three machines

Compared to branching-time temporal logics, the seman-cyclically output items with different periods, i.e., 5, 6, and
tics oflinear temporal logicss often seen as beingore in- 7 time units. Items are taken from the buffer by a rather
tuitive for modelers that are not experts in formal methods, fast packaging unit. However, the packaging unit has to
as linear temporal logics define the validity of a formula be maintained in certain intervals, e.g., every 40 time units
over a giverentire execution tracerThis combines well with for the length of 10 time units. During maintenance the
the mental model of people that are used to think in terms packaging unit cannot take any items from the buffer.
of simulation-based tests and validations. In this article, we We can already specify with standard OCL that the ca-
therefore focus on an LTL-based language as the semantipacity of the machines and buffer must always be regarded,
foundation for our temporal OCL extension. We provide a such that no overflow occurs. The corresponding OCL in-
mapping of our temporal OCL extension to a time-bounded variant is
variant of linear temporal logics that we c@llocked Linear
Temporal Logics with PagClocked LTL).

The remainder is structured as follows. The next section .)
presents an example that is later used to demonstrate the However, enhanced temporal properties cannot directly
applicability of the approach. Sectiofis 3 4fd 4 then briefly P€ expressed with UML or OCL means, e.g., that
outline the temporal logics Clocked LTL and standard OCL,
respectively. Sectidn5 presents our state-oriented temporal
extensions to OCL and a mapping to Clocked LTL. Section
shows some time-bounded constraints in the context of
the example in both temporal OCL as well as corresponding
Clocked LTL formulae. Section|7 briefly discusses related
work. Sectiori B closes with a conclusion.

self.currentItems->size() <= self.capacity .

e as long as no error occurs, the buffer takes items from
the machines and eventually puts them into the pack-
aging unit, and

e every overflow in the buffer is due to an error in the
packaging unit (causality w.r.t. the past).

In Sectior , we will show that such properties can be ex-

2 Example pressed with our OCL extension.

In this section we present a rather generic example of a3 Clocked Linear Temporal Logic with Past
buffer that is part of a more complex production system. A
UML class diagram that presents the system structure and Various variants of temporal logics with time-bounds ex-
an object diagram that gives the initial setting are shown inist. We here only mention Timed Linear Temporal Logic
Figureq 1 anf]2. (TLTL) [29], RTCTL [8], and CCTL [27]. Most temporal

p1:Packaging
“ltem machine1 : Machine name j:oo?gg
id = 10023 currentitems "name = 'Drill12' Sopacty =1)
status = Raw pos = (120,130) workTime = 1
kind = X1t000 capacity = 1 loadTime = 1
workTime =7 N
- Ime = unloadTime = 1
currentUnit I:nalglgq'iem_el ; maintaininterval = 40
Kind = HPR5002 maintainTime = 10
:item it machine2 : Machine
id= 10028 CUTENEeMS [ame = Dril3’ packageBuffer
status = Raw 0s = (120,140 packageBuffer
kind = X1t000 Eapaci(ty 1) buffer1 ; Buffer
—| workTime =6 name = 'RQ-23'
currentUnit | 2 1 packageBuffer pos = (160,140)
unloadTime = 1 capacity = 17
kind = HPR5002a packageBuffer
T
Item currentitems machine3 : Machine i
|d‘=1 1003"3 name = 'Drill14' :
status = Raw os = (120,150 iti i =
Kind = X1t000 gapaci(ty -) Initially, it holds self.storedltems = 0 %
| workTime =5
currentUnit JoadTime = 1
unloadTime = 1
kind = HPQ6000

Figure 2. UML Object Diagram of the Initial Situation of the Case Study

logics focus on future-oriented temporal operators such as Of course, several additional operators known from the

‘next’ or 'eventually’. literature can additionally be supported, e.g., logical oper-
In this article, we present a new variant callébbcked ators like equivalence and xor and temporal operators like

Linear Temporal Logic (Clocked LTL)The syntax of 'before’, 'weak until’, and 'eventually since’.

Clocked LTL is recursively defined by the following gram-

mar: Semantics. The validity of a Clocked LTL formula is
b= p | true | false | (¢) defined over drace of a model that is given as a time-
annotated Kripke structur€. Note here that the particular
=6 [o oV o= execution semantics & are not essential for the definition
| Xig) | Flay ¢ | Gap @ | ¢ Upap) ¢ of the temporal logics. We only require that a discrete time
|Pla) & | Fpast (ab] @ | Gpast jab] @ | @ Spap) @ step (i.e., a time unit) passes between two subsequent states
of a Kripke structure, such that we can speak of a trace
wherep is an element of a s&®r of propositionsg € Ny, with time steps 0, 1, 2, 3, ...
andb € Ny U {oo}. The symbolco is defined through: It is thus sufficient here to defindC as a tuple
Vi e Ng : 1 < oo, and it holdsi + oo = oo andoo — 7 = o0 (Pr,S,Tr,L,I) wherePr is a set of atomic propositions,
andi — oo = 0 (the latter rule is particularly necessary for S is a set of states'r C S x S is a total transition rela-
well-defined time-bounded past temporal operators). tion, andL : S — 277 is a labeling function, such thdt

The letters are acronyms for the usual temporal logic op- labels each state ¢f with a set of propositions that are true
erators. The future-oriented operators are X (for neXt), F in that state. Finally/ is a time labeling function that de-
(eventually), G (globally), and U (until). The past time- fines delay times irkC. For example[can be a transition
oriented operators are P (for previous), GP (globally in the labeling! : Tr — 2" that defines delay times of transitions
past),Fpast (eventually in the past), and S (since). The tem- (cf. Interval Structures [28]). However, other labelings and
poral operators F, G, Uzpast, Fpast, and S are provided — slightly different execution semantics ftir are possible.
with interval time-boundda, b]. However, we also allow A tracev : Ng — S over discrete time is an infinite se-
that these operators have a single time-bound only. In thisquenceyg, g1, - . . of statesc S, where for alli € Ny holds
case the lower bound is set to zero by default. It is also al- (¢g;, g;+1) € Tr. The semantics of Clocked LTL formulas
lowed to specify no timing annotation at all. In this case, is defined by a satisfiability relatios over traces. We use
the lower bound is zero and the upper bound is infinity by v |=; ¢ to denote that trace satisfies formula at timet.
default. The X- and P-operators have a single time-boundThe satisfiability relation that recursively defines the seman-
[a] only (here,a € N). If no time bound is specified, it tics of Clocked LTL formulae is shown in Tallé 1. In that
is implicitly set to one. The operator precedence is catego-table,¢ andy denote arbitrary Clocked LTL (sub)formulae
rized into five groups as follows (ordered from high to low): and0 < a < b € Ny. Note that we require > 0 for the
(1) = (@) Glap)s Fla,p)s Xja)s Gpastla,b)» Fpast[a,b]s Pla)s (3) operatorsX|,; andP,;. The semantics of a Clocked LTL
AV, (4) =, (B) Upab)s Sa,p)- formula over an entire trace is then as follows.

Table 1. Description of Clocked LTL Operators

Formula Description

vip e Pr) | ifpe Lu()

vt 1 if v j=¢ @is false

vErdAY if v =L pandv = ¢

vEL oV if v gorv=: ¢

vELd— Y if v =¢ ¢ impliesv =¢ ¥

vt X ¢ if v Ftta ¢

vt Flap ¢ if there is ani with t + a < ¢ < t + bsuch thav |=; ¢

v [t Gia,p) ¢ if forall i witht 4+ a <4 <t -+ bholdsv |=; ¢

vt @ Ulgp) ¥ if there is ani with ¢t + a < 7 < t + b such thatv =, v and for all j,
t+a < j<iholdsv |=; ¢.

v Pra ¢ ift—a>0andv Ei—q ¢

v [t Fpastla,p) @ | ift —b>0andthereisanwitht — b <i <t —asuchthav |=; ¢

v =t Gpastlap) @ | ift —b2>0andforalliwitht —b < i <¢—aholdsv |=; ¢

vt ¢ Siap ¥ if t —b > 0and there is anwith t — b < i < ¢ — a such that |=; v and for
allj,i<j<t—aholdsv |; ¢

Definition 1 Let ¢ be a Clocked LTL formula and be a
trace. v satisfiesp (denoted by = ¢) iff v =¢ ¢.

time. In contrast, Clocked LTL avoids cryptical symbols
(like diamonds, squares, and circles), is based on discrete
time for practical purposes, and supports future as well as

~ For specification purposes, it is often necessary to dis-past temporal operators in combination with timing inter-
tinguish whether a property expressed by a (C)LTL formula ;5.

has to hold oveall possible traces or only over at least one
trace. 4 Introduction to OCL
Definition 2 Let K be a discrete-time Kripke Structure and
¢ be a Clocked LTL formula.K satisfies¢ on all traces
(denoted byC =4 ¢) iff for all possible traces of K holds

v Eo ¢. We say that thalC cansatisfy (denoted byC =g

¢) iff there is a tracev of K with v |=¢ ¢.

OCL is a declarative expression-based language to con-
strain values in the context of a given UML model. Evalu-
ation of OCL expressions does not have side effects on the
corresponding UML model. In the remainder, we will call
this UML model thereferred user model

Each OCL expression has a type. Besides user-defined

Though temporal logics are powerful languages that can .
model types (e.g., classes or interfaces) and some prede-

produce arbitrarily nested specifications, their full expres- . X
sive power is not needed in practice. This led to property IN€d basic types (e.gInteger, Real, Or Boolean), OCL
specification pattern systems [7] and related approaches tha’iIISO has a notion of object collection type; (ie., sets, or-
abstract from temporal logics. With our OCL extension, we dered sets, sequences, and bags). Collection types are ho-
also follow this idea. We nevertheless have to defineap- mogeneous in the sense that all elements of a collection

pingto a temporal logic like Clocked LTL to be able to make 1a@ve & common type. In contrast, OCL 2.0 now also sup-
use of appropriate automatic verification tools. ports tuples that are sequences of a fixed number of ele-

Note that our variant Clocked LTL is not more expressive ments 'Fhat can be of d|fferer_1t types. Mgreover, a standard
than other time-bounded linear temporal logics from a the- I|bra_ry is available that pr_owdes operations to access and
oretical viewpoint. It is therefore possible to map Clocked ma(r;lcp:JEIate V?Iu_e? and OBJeCFS' I lied . tvoed
LTL to other temporal logics and thus use existing verifi- constraints can be visually applied as stereotype
cation tools, e.g. SPfﬂl The reason for defining Clocked pote; that are attaqhed 0 thewco_rrespondlng class as shown
LTL is that the syntax and semantics of existing logics do in Figure[] in Segtloﬁ]Z. Alternatively, they can be formu-
not exactly match our requirements. All temporal logics we lated separately in pure textual form, but then the gontgxt
found so far either do not consider timing intervals, do not class has to be provided. For example, the following in-

consider past time operators, or are defined over continuoué’aﬂan_t ensures that each instance of Cmine has one
associated package buffer and that this buffer is the same

for all instances of claS$achine:

http://spinroot.com/spin/whatisspin.html

+appliedProperty
0..1

context Machine
inv: self.packageBuffer->size() = 1
and
Machine.allInstances() .packageBuffer
->asSet()->size() =1

PropertyCallExp

0..n {ordered}

+arguments

0..1| +source

OclExpression

The class name that follows thentext keyword spec- Operation
ifies the class for which the following expression should (from Core)
hold. The keywordinv indicates that this is an invariant «stereotype»’i\ +referredOperation
that has to hold for each object of the context class at all
times. The keyworgelf refers to each object of the con-
text class. Attributes, operations, and associations can be /N
accessed by dot notation, e.gelf .myBuffer results in a [\
(possibly empty) set of instances®ifffer. The arrow no- ‘ PastTemporalExp
tation indicates that a collection of objects is manipulated by
one of the pre-defined OCL collection operations. For ex-
ample, operatiomotEmpty () returns true, if the accessed
set is not empty.

The predefined operatiosillInstances() is applied
to classMachine to extract the set of currently exist-
ing Machine objects. The expressioMachine.all- differs depending on the production rule and refers to a
Instances() .packageBuffer then refers to the multi- type of the OCL metamodel. In this cassst is of type
set (or: bag) of buffer objects when navigating from each PastTemporalExp. The following new rule now gives the
Machine object via associatiopackageBuffer to class main production rule fopast temporal OCL expressians
Buffer. This multiset is casted to an ordinary set by ap- Note that we introduce a temporal operator '@’ to distin-
plying the predefined operaticasSet (). We finally re- guish temporal expressions from OCL's common dot and
quire that the size of this set is equal to one, and we thusarrow notation for accessing attributes, operations, and as-
have specified that each machine object is associated wittsociations.
the same buffer object.

Note that it is also possible to formulate checks for ac- PastTemporalExpCS ::= OclExpressionCS ’@’
tivated State Diagram states that are associated with ob- _ simpleNameCS °(’ argumentsCS? *)’
jects, using the operatiosclInState (stateName:Ocl- Abs;zzgeigﬁzzgzggfﬁ; . PastTemporalExp
State) :Boolean. The existing — though still informal — gynthesized Attributes:

notion of states in OCL is especially important for our tem- PastTemporalExpCS.ast.source = 0OclExpressionCS.ast
poral OCL extension. PastTemporalExpCS.ast.arguments = argumentsCS.ast
PastTemporalExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation(
5 Temporal OCL Extension simpleNameCS.ast,
if argumentsCS->notEmpty()
then argumentsCS.ast->collect(type)

OperationCallExp

‘ FutureTemporalExp

Figure 3. Temporal Expressions as Special
Form of Operation Call Expressions

The concrete syntax of OCL 2.0 is defined by an at- else Sequence{}
tributed grammar in EBNF (Extended Backus-Naur Form) endif)

. Inherited Attributes:
with inherited and synthesized attributes as well as disam-""" . _

. . . - clExpressionCS.env = PastTemporalExpCS.env
biguating rules. For each production rule, a mapping to the argunentscs.env = PastTemporalExpCS . env
corresponding concept in the abstract syntax (i.e., the metabisambiguating Rules:
model) is provided -- Operation name must be a past time temporal operator

. . . [1] Set{’pre’}->includes(simpleNameCS.ast)
Based on this grammar and a UML Profile that intro- __ 1, joeration signature must be valid

duces stereotypes for temporal expressions, we already in- [2] not PastTemporalExpCS.ast.referredOperation.

troduced future-oriented temporal OCL expressions in [13]. oclIsUndefined ()

The basic idea is to interpret a temporal OCL expression

as a special form of operation call. An operation call in Thus, past time temporal OCL expressions map to the
the abstract OCL syntax has a source, a referred operaspecific UML stereotyp@astTemporalExp that inherits
tion, and operation arguments (see Fidyre 3). Correspondvalues fromOperationCallExp on the metamodel level
ing attribute values have to be set and become part of thesee Figur¢]3). Additional temporal operations can easily be
abstract syntax tree. The dedicated variatde (abstract introduced at a later point of time, as just the disambiguat-
syntaxtree) is used to store these values. The typesaf ing rule [1] has to be extended in such cases.

5.1 Semantics

) . i . o(M) = (Scrass, Barr, EasS0C; SCONF
OCL 2.0 provides extensive semantic descriptions by

both a metamodel-based as well as a formal mathematical ZcurrentOps YeurrentOpParam,
approach. In the remainder, we focus on foemal OCL YsentMsgs ZisentMsgParam
semanticghat is based upon the notion of an set-theoretic
object mode[19]. An object modelM is a tuple with a set i , . i i)
CLASS of classes, a sedTT of attributes, a seDP of With those extensions, it is possible to defieeecution
operations, a set. SSOC of associations, a generalization tracesthat capture all of those_ system changes_ that are rele-
hierarchy< over classes, and functionssociates, roles, ~ Vantto evaluate OCL constrainis [11]. In the simplest case,
and multiplicities that give for eachus ¢ ASSOC its e.g., when (an implementation of) the system is executed on

dedicated classes, the classes’ role names, and multiplici-a single CPU, there is a clear temporal order of operations.
ties, respectively But when (the implementation of) the system is distributed,

In the remainder, we call an instantiation of an object we have a partial order between configurations of different

model asystemA system changes over time, i.e., the (num- _objects._ This problem can be treated in an idegl case by
ber of) objects, their attribute values, and other characteris-'ﬂtrOducmg aglzba:jg!qckthl?t aIIovr\]/s for a globalhweV\f/]on.
tics change during system execution. The information to th€ system. And additionally, we here assume that the time

evaluate OCL expressions is storedsirstem statesvhich unit is chosen sufficiently small, such that only at most one

represent snapshots of the running system. In OCL 2.0, a?rﬁ;]gcei\s/igt;g?sr::gr]:tigzrtiggj((a):‘:ttimaey happen in a time step.

system state-(M) is formally defined as a triple with a set

Einp'u,tQueue» EinpthueueParaWL > .

Ycrass Of currently existing objects, a sét - of at- Definition 3 (Time-based Trace)
tribute values of the objects, and a Eefssoc of currently A time-based tracéor an instantiation of an extended ob-
established links. ject model M is an (infinite) sequence of system states,

The object model and system state definition, however, ;.q..(A1) % (¢ (M), (M) - -, (Mg,),

lack descriptions of ordered sets, global OCL variable defi- \yhere eachr(M)y, i € Ny, represents the system state
nitions, OCL messages, and states of UML State Diagrams.ime units after start of execution. In particular(M)

Especially the latter are needed for our temporal OCL se-genotes the initial system state.
mantics. We therefore extend the formal model and system

(0]

states accordingly, such that the resultixgended object We may also apply the annotati¢i to the components
model M with of the system state. In particular, we denote the state config-
uration of an active objectid over a system staig(M);;
M = { CLASS, ATT,OP,SIG,SC, ASSOC, by soid[i)-

We here give an interpretation for the past temporal oper-

paramKind, isQuery, <, <sig, ationpre (a,b), while the semantics of the future-oriented

associates, roles, multiplicities) operationpost (a,b) can be found in[[13]. Assume that
N _ _ S a temporal OCL expression for an objegtl of a class
additionally includes operation parameter kir{ds, inout, c € CLASS is to be evaluated over a system staté1)

out}, a flag that indicates query operations, signal recep-at timet¢ of a tracetrace(M). The semantics of operation

tions for classes, State Diagrdins formal definition of pre(a,b) is then defined as follov.
state configuratioffs and an extension of the formal de-

scriptor of a class. Furthermore, the following informa- [[pre : OclAny x Integer x OclAny
tion has to be added to system states to evaluate OCL ex- — Sequence(Set(OclState))]](oid, a, b)
pressions that make use of state-related and OCL message-

related operations: for each object, the input queue of re- ((Soid 1)+ Soid [1—a)): I 00 € ZacTivE,e

ceived signals and operation calls, the state configurations Na>0Ab>a

of all active objects, the currently executed operations, and 4.y ANt—0b2>0,

for each curreljtly executed operation, the messages sent so 1, if oid & Y acTIvVE.c

far. The resulting tuple of aystem statever an extended

object modelM is Va<0Vae=1
Vb<aVb=1.

?Note that no specific execution semantics for state diagrams have to
be assumed here. 4For the matter of brevity, we omitted the additional variable assign-
SUML only informally definesactive state configurationd his results mentg in this definition. FunctiorB determines values for OCL-specific
in some shortcomings, e.g., it is not considered that final states can be partariables, such as iterator variables and local variables of so-cadled

of state configurations. expressions [19, Section A.3.1.2].

Symbol L represents the predefined OCL valited Unde- CollectionLiteralExp | <<stereotype>> | TraceLiteralExp

fined, i.e., a third logical built-in value of OCL that is used kind: Collectionkind ||
to indicate erroneous expressiodsycrive,c € Lorass
is the set of all currently existing objects of a so-caléed +parts |0..n {ordered}

Classifier

CollectionLiteralPart (from Core)

tive classc — we have to consider here that only such kinds
of objects have a notion of state configurations. Recall that
b is either a non-negative natural number anf’. We in-

terpret’inf’ in this context aso. For the symbobo, it ‘C : ‘ ‘ - k«stereotype» TraceLiteralPart
holds thatv’i c NO <00 NT+00=00 A i—o00= 0. ollectionRange ollectionltem | _— - __-I°_ |
5.2 Trace Literal Expressions Hirs 1 rlasty

As we want to reason about time-based traces obtained
by @pre, we need a new mechanism in OCL to explic-
itly specify traces with annotated timing intervals by means <<taggedValue>> lowerBound[1]
of literals. The timing intervals denote for how long each
state configuration may be activated. Based on the OCL 2.0 Figure 4. UML Stereotypes for Trace Literal
metamodel, we define stereotypBsacelLiteralExp and Expressions
TraceLiteralPart as illustrated in Figurg]4. The follow-
ing restrictions apply, leaving out the corresponding formal
well-formedness rules for reasons of brevity. to the element type of the sequence to which the operation
includesSequence () is applied. In particular, this allows
to investigate whether a required sequence of state configu-
rations (that is specified by means of a trace literal expres-
sion) has appeared in a trace. An example is given in the
next section.

T

I

. 1

OclExpression Fitem H
1 1

! 1

1

1

1
, | <<taggedValue>> upperBound[1]
1

1. The collection kind of stereotypkracelLiteralExp
iSCollectionKind: : Sequence.

2. The type associated withTaraceLiteralPart must
be Set(0clState). Note that we do not require
explicit specification of a set when a state config- .
uration can already be specified by one state only. 2-3 Mapping to Clocked LTL
In this case, typeclState is implicitly casted to

Set (OclState). Due to space limitations, we here focus on the map-

ping of instances dfastTemporalExpCS to Clocked LTL
3. EachTraceLiteralPart has a lower bound and an formulae. However, a corresponding mapping of future-
upper bound. oriented temporal OCL expressions can easily be obtained
a very similar way.
4. Lower bounds must evaluate to non-negative Integer By definition, OCL invariants for a given class must be
values. true for all its instances at any time |19, Section 7.3.3]. In
the context of time-based traces, this means that the invari-
values or to the Stringin£ (for infinity). In the first ant must be true on all traces at each position. Consequently,

corresponding Clocked LTL formula must hold for all
case, the upper bound value must be greater or equa ; i
. races of the model, i.e =4 ¢, and¢ has to start with
to the corresponding lower bound value.

theG operator (globally).

Similar to the grammar rule foPastTemporalExpCS, Table[? lists the main predefined OCL collection opera-
only some additional grammar rules have to be added to thetions that can be directly applied to past time temporal OCL
concrete OCL 2.0 syntax, such that modelers can specifyexpressions. In each case, we give a mapping to correspond-

5. Upper bounds must evaluate to non-negative Integer

trace literal expressions with timing bounds in OCL. ing Clocked LTL expressions. In that tabkepr denotes
Finally, we define a new boolean operation on se- @ Boolean OCL expressioncltlExpr is the equivalent
guences calledncludesSequence (seq:Sequence(T)). Boolean expression in Clocked LTL syn@cfg_denotes
Basically, this operation is a more general form of the al- @ State configuration of a UML State Diagram (i.e., a set of
ready existing OCL collection operatiagubSequence (). activated states) anellt1Cfg is the corresponding set of
This new operation returns true if the argumeat is in- states in Clocked LTL syntaxc is an iterator variable for
cluded in the sequence to which the operation is applied.State configurations.
The abstract parameter tyfeis a placeholder for the ele- 5We here assume that there is a mapping available from UML State

ment type ofseq. It is required that this type must conform Diagram states to the states of a Kripke StruciGre

Table 2. Mapping Past Temporal OCL Expressions to Clocked LTL Formulae (at time t)

Temporal OCL Expression Clocked LTL Formula
obj@pre(a,b)-includes(cfg) v =t Fpastla,p) (cltIC fg)
obj@pre(a,b}>excludes(cfg) v =t ~Fpastfa,p) (cltIC fg)
obj@pre(a,b}-exists(c| expr) v ¢ Foastja,p) (cltlExpr)
obj@pre(a,by-forAll(c | expr) v =t Gpastla,b) (cltlExpr)
obj@pre(a,b)-at(i:Integer| expr) | v |=¢ Py (cltl Expr)

Letey,eo,...,e, bethe parts of atrace literal expression Buffer
with timing intervals f;,0;], 1 < i < n — 1. The past
temporal OCL expression Running
Get m.load(i) [storedltems >= capacity] / overflow := true
obj@pre(a,b)->includesSequence(@ |atmg K Loading
Sequence{el [0/1, bl]’ €2 [GQ, bg], Tt e”}) m.load(i) [storedItems < capacity]
T
maps to Clocked LTL as follows : e |
dl when (storedltems > 0) Unloadi
e
Fpast[a,b](el U[al,bl] (.@ M')—J
€2 Ufas,by] (
e (e”_lU[an—l,bn—l]E") .))) emergencyStop() reset()
E
Though we have presented the mapp|ng by some exam- when (overflow and self.oclinState(Running::Put::Idle)) er

ples here, it should be clear that more complex formulae
are easily combined from the above, in particular with the
logical OCL and Clocked LTL connectivesnd, or, and
implies.

Note that we only investigate models with ‘persistent’ from the machines, the other section is for delivering items
active objects, i.e., objects must exist from the initial Sys- to the packaging unit. We do not show the State Diagrams
tem state onwards for the complete execution time. This is st the remaining active classes for the sake of brevity, but
due to the formal model of Kripke structures and Clocked pote that they are modeled in a very similar way. For exam-

LTL formulae that do not support specification means for pje the State Diagram for the claBackaging comprises
dynamic object creation and deletion. While this is suffi- the simple statewaiting, Loading, Maintaining, and
cient for our particular application domain, this limitation grror.

should be overcome in the future for the benefit of a more e require that every overflow in the buffer is due to an
general application. As a next step, we therefore intend t0g oy in the packaging unit (i.e., a causality w.r.t. the past).
extend Kripke Structures by additional components and in- 1p;g guarantees that the packaging unit is working suffi-

Figure 5. UML State Diagram for class Buffer

troduce new modalities to Clocked LTL. ciently fast under usual conditions. Or in other words, the
maintenance times do not interrupt the packaging unit for

6 Temporal OCL and Clocked LTL Exam- too long w.r.t. the speed of the machine outputs.

ples
context Buffer
. . . inv: self.oclInState(Error) implies
In this section we show some past-oriented temporal packaging@pre () ->includes (Error)
OCL constraints for requirements in the context of the
buffer example presented in Sect[dn 2. This requirement can even be strengthened by an addi-

Figure[5 illustrates the behavior of the buffer by means tional timing bound, e.gpackaging@pre(1,10). Recall
of a State Diagram that is associated with the active classhere that there has to be a time-based semantics for the exe-
Buffer. The State Diagram comprises two orthogonal sec- cution of State Diagrams, which is not in the scope of stan-
tions that work concurrently. One section is for taking items dard UML.

Assuming that there is a mapping of such a time-basedenable modelers to use OCL extensions like the temporal
semantics to discrete-time Kripke Structures (cf. Definition one we have proposed here.

2), the following corresponding CLTL formula must hold: We applied our temporal OCL extensions in the domain
of modeling production automation systems and presented
G ((buffer.state = buffer.error) a UML Profile for a corresponding notation called MFERT
— Fpast[1.00] (packaging.state = packaging.error)) in [12]. A semantics is given to the MFERT Profile by

a mapping to synchronous time-annotated finite state ma-

Although it is also possible to specify this requirement chines (extended Interval Structures|[28]). Our temporal
with future-oriented temporal OCL or LTL operators, the OCL expressions then have a semantics for MFERT mod-

presented solution is a much more natural way of specifying IS, as their mapping to Clocked LTL formulae automati-
a past-oriented causality. cally establishes a formal relation between the two parts.

This provides a sound basis for formal verification by Real-
Time Model Checking. In this context, the RAVEN model
checker has already been used to investigate finite Clocked
LTL formulae in a simulation-based verification approach

Temporal OCL extensions have already been proposed26].
by other authors. After early approaches that directly — Concerning future research, we want to develop further
add temporal logic formulas to OCL_[23], more elabo- temporal OCL extensions on arbitrary objects, as temporal
rated works consider future and/or past temporal operationsrequirements ovepassive objectsannot yet be expressed
[30,/4,[1]. However, all of these works do not consider tim- with our approach. Such requirements can only indirectly
ing bounds. be specified through the different states of associated active

Some approaches already include timing bounds for objects. We therefore want to extend OCL towards speci-
property specifications, but they either use completely dif- fication of temporal expressions also w.r.t. attribute values
ferent notations [25] or introduce time-bounded OCL oper- and established links between objects. It is then possible to
ations foreventbased specifications1[2]. We refer {0 [10] specify temporal restrictions over active as well as passive
for a detailed discussion of temporal OCL extensions. objects.

In contrast, we present aonsistentOCL extension For example, in the context of the buffer example one
that reuses OCL language concepts like predefined collecimight want to require that each item must not remain in
tion types and corresponding operations. Additionally, we the buffer for more than 120 time units. A possible solution
build upon the semantics adopted in the OCL 2.0 spec-would be to require for eacitem object that the association
ification. In our work, we focus orstate-orientedtem- self.currentUnit is of typeBuffer for not more than
poral OCL expressions rather than event-based specifica120 time units. A corresponding temporal OCL expression
tions. Note here that the OCL standard already consid-could be
ers states of UML State Diagrams, as it is possible to .

. . . . context Item inv:
check for activated states with the predefined operation ot currentunit.oc1IsTypeof (Butfer)
oclInState(stateName:0clState). However, some ef- implies
fort is needed to semantically integrate State Diagram states self.currentUnit@post(1,120).0c1IsType0f (Packaging)
with the underlying formal model of OCL as explained in
Sectiorf &1L References

7 Related Work

; 1] J. Bradfield, J. Kister Filipe, and P. Stevens. Enriching OCL
nclusion [
8 Conclusio Using Observational Mu-Calculus. In R.-D. Kutsche and
H. Weber, editors5th International Conference on Funda-

Together with our previous work, we now have an OCL mental Approaches to Software Engineering (FASE 2002),
extension that allows for the specification of past- and April 2002, Grenoble, Frangevolume 2306 of_ecture Notes
future-oriented state-oriented time-bounded constraints on in Computer Scieng@ages 203-217. Springer, 2002.
the basis of the latest OCL 2.0 metamodel proposal. Our [2] M. Cengarle and A. Knapp. Towards OCL/RT. In L.-H.
approach is still the only one that extends OCL by using Eriksson and P. Lindsay, editoprmal Methods — Getting
the UML extension mechanism of profiles, i.e., stereotypes, IT Right volume 2391 ofLecture Notes in Computer Sci-

tagged values, and constraints. The approach demonstrates ence pages 389-408. Springer, July 2002.

that an OCL extension by means of a UML Profile towards [3] E. Clarke, O. Grumberg, and D. Peledodel Checking
temporal time-bounded constraints can be seamlessly ap- MIT PRESS, 1999.

plied on the abstract syntax layer M2. Nevertheless, exten- [4] S. Conrad and K. Turowski. Temporal OCL: Meeting Spec-
sions have to be made on the M1 layer as well in order to ifications Demands for Business Components. Uified

Modeling Language: Systems Analysis, Design, and Devel-[17] L. Lamport. Proving the Correctness of Multiprocess Pro-

opment IssuesDEA Group Publishing, 2001.

grams.|EEE Transactions on Software Engineerii@77.

[5] W. Damm and J. Klose. Verification of a Radio-based Signal- [18] O. Lichtenstein, A. Pnueli, and L. Zuck. The Glory of the

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

ing System Using the Statemate Verification Environment.
Formal Methods of System Desjdi®(2):121-141, 2001.

B. Douglass. Doing Hard Time: Developing Real Time

Past. In R. Parikh, edito€onference on Logic of Programs,
Brooklyn, NY, June 1985%0lume 193 ofLecture Notes in
Computer Sciencgages 196—218. Springer, 1985.

Systems with UML, Objects, Frameworks, and Patterns [19] OMG, Object Management Group. UML 2.0 OCL Final

Addison-Wesley, 2000.

M. Dwyer, G. Avrunin, and J. Corbett. Patterns in Prop-
erty Specifications for Finite-State Verification.aast Inter-
national Conference on Software Engineering, Los Angeles,
California, May 1999.

Adopted Specification. OMG Document ptc/03-10-14, Oc-
tober 2003. ftp://ftp.omg.org/pub/docs/ptc/03-10-14.pdf.

[20] OMG, Object Management Group. Unified Modeling Lan-

guage 1.5 Specification. OMG Document formal/03-03-01,
March 2003.

E. Emerson. Temporal and Modal Logic. In J. van Leeuwen, [21] A.Pnueli. A Temporal Logic of Concurrent Progranise-

editor, Handbook of Theoretical Computer Sciencel-

ume B, pages 996-1072. Elsevier Science Publisher, Ams-[22]

terdam, 1990.

T. Firley, M. Huhn, K. Diethers, T. Gehrke, and U. Goltz.
Timed Sequence Diagrams and Tool-Based Analysis — A
Case Study. In R. France and B. Rumpe, editoid] '99 -

The Unified Modeling Language. Beyond the Standard. Sec-[23]

ond International Conference, Fort Collins, CO, USA, Octo-
ber 1999 volume 1723 ofLecture Notes in Computer Sci-
ence pages 645-660. Springer, 1999.

S. Flake. Temporal OCL Extensions for Specification of

Real-Time Constraints. In S. Graf, O. Haugen, |. Ober, and [24]

B. Selic, editors,UML 2003 Workshop "Specification and
Validation of UML models for Real Time and Embedded Sys-
tems” (SVERTS’03), San Francisco, CA, U2803.

S. Flake. Towards the Completion of the Formal Seman-
tics of OCL 2.0. In27th Australasian Computer Science
Conference (ACSC 2004), Dunedin, New Zealand, January
2004 volume 26 ofAustralian Computer Science Communi-
cations pages 73-82. Australian Computer Science Society,
Sydney, Australia, 2004.

S. Flake and W. Mueller.
Constraints with the OCL.

A UML Profile for Real-Time
IUML 2002 - The Unified

Modeling Language. 5th International Conference, Dresden, [27]

Germany volume 2460 oLNCS pages 179-195. Springer,
2002.

S. Flake and W. Nlller. Formal Semantics of Static and Tem-
poral State-Oriented OCL Constrain8oftware and Systems
Modeling (SoSyM), Springe?(3):164—-186, October 2003.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the Tem-
poral Analysis of Fairness. Ifith ASM Symposium on Prin-
ciples of Programming Languages (POPL'8@rnges 163—
173. ACM Press, January 1980.

M. R. A. Huth and M. D. Ryan. Logic in Computer Sci-
ence: Modelling and Reasoning about Syste@ambridge
University Press, Cambridge, UK, 2000.

A. Knapp, S. Merz, and C. Rauh. Model Checking Timed
UML State Machines and Collaborations. Tth Interna-
tional Symposium on Formal Techniques in Real-Time and
Fault Tolerant Systems (FTRTFT 2002), Oldenburg, Septem-
ber 2002 Lecture Notes in Computer Science. Springer,
2002.

oretical Computer Sciencé3:45-60, 1980.

M. Pradella, P. San Pietro, P. Spoletini, and A. Morzenti.
Practical Model Checking of LTL with Past. Irst Int. Work-
shop on Automated Technology for Verification and Analy-
sis National Taiwan University, Taipei, Taiwan, December
2003.

S. Ramakrishnan and J. McGregor. Extending OCL to Sup-
port Temporal Operators. IRAroc. of the 21st International
Conference on Software Engineering (ICSE99), Workshop
on Testing Distributed Component-Based Systérns An-
geles, May 1999.

M. Richters. A Precise Approach to Validating UML Mod-
els and OCL ConstraintsPhD thesis, Universit Bremen,
Bremen, Germany, 2001.

E. Roubtsova, J. van Katwijk, W. Toetenel, and R. de Rooij.
Real-Time Systems: Specification of Properties in UML.
In ASCI 2001 Conferenc@ages 188-195, Het Heijderbos,

Heijen, The Netherlands, May 2001.

J. Ruf, D. Hoffmann, T. Kropf, and W. Rosenstiel. Si-
mulation-Guided Property Checking Based on Multivalued
AR-Automata. InDesign, Automation and Test in Europe
(DATE’01), Munich, Germanypages 742—-748. IEEE Com-

puter Society Press, 2001.

J. Ruf and T. Kropf. Symbolic Model Checking for a Dis-
crete Clocked Temporal Logic with Intervals. In E. Cerny
and D. Probst, editorsConference on Correct Hardware
Design and Verification Methods (CHARME9ages 146—
166, Montreal, Canada, October 1997. IFIP WG 10.5, Chap-
man and Hall.

J. Ruf and T. Kropf. Modeling and Checking Networks of
Communicating Real-Time Systems. @Qorrect Hardware
Design and Verification Methods (CHARME 9pages 265—
279. IFIP WG 10.5, Springer, September 1999.

Y. Zhang. A Foundation for the Design and Analysis

of Robotic Systems and Behaviors. Technical Report 94-
26, Department of Computer Science, University of British

Columbia, Vancouver, Canada, 1994. PhD Thesis.

P. Ziemann and M. Gogolla. An Extension of OCL with
Temporal Logic. In J.drjens, M. V. Cengarle, E. B. Fernan-
dez, B. Rumpe, and R. Sandner, edit@stical Systems De-
velopment with UMLpages 53—-62. Technische Univeisit
Munchen, Institutiir Informatik, Munich, Germany, 2002.

	Introduction
	Example
	Clocked Linear Temporal Logic with Past
	Introduction to OCL
	Temporal OCL Extension
	Semantics
	Trace Literal Expressions
	Mapping to Clocked LTL

	Temporal OCL and Clocked LTL Examples
	Related Work
	Conclusion

