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Abstract

The visual modeling facilities of the UML do not provide
sufficient means to support the design of multi-agent sys-
tems. In this paper, we are investigating the development
phases of requirements analysis, design, and code gener-
ation for multi agent systems. In the requirements anal-
ysis phase, we are using extended use case diagrams to
identify agents and their relationship to the environment.
In the design phase, we are using stereotyped class and
object diagrams to model different agent types and their
related goals and strategies. While these diagrams define
the static agent system architecture, dynamic agent be-
havior is modeled in statecharts with respect to the BDI!
agent approach. Concerning code generation, we show
how the used diagrams can be taken to generate code for
CASA, our executable agent specification language that
is integrated into an existing multi-agent framework.

1 Introduction

Designing agent-based systems is a complex and de-
manding task. As agents are in itself software systems,
they should be treated as such, and well-known software-
engineering principles should be taken into consideration
when designing agent-based systems. Currently, several
different agent architectures exist, and one of the best
known is probably the BDI-architecture. While there has
been a lot of work concerning the development of specific
agent architectures, only little work has been directed to
solve software engineering problems which result from
the advent of agents. Although agent-based systems are
software systems, they can be distinguished from an or-
dinary software system. Key characteristics of agents are
autonomy, pro-activity, reactivity and temporal continu-
ity [8]. Agent-based systems literature distinguishes mi-
cro and macro views. The micro view considers the local
behavior of an individual agent (e.g. strategies, knowl-
edge, behavior), whereas its environment and interaction

! Beliefs, Desire, Intention

is investigated in the macro view (communication, inter-
action).

While the agent community has significant interest in
methods and techniques for specifying, modeling, imple-
menting, and verifying multi-agent systems (MAS), no
standardized design methodology has been established
so far. It is interesting that although the agent metaphor
claims to be especially suitable for conceptualizing as-
pects of complex systems in early design stages, until
now only very few approaches considered visual mod-
eling approaches.

The success of the Unified Modeling Language (UML)
[13] in unifying many different object-oriented ap-
proaches led to the idea of applying UML to the design of
MAS. The UML does not provide the means of capturing
all agent related modeling aspects like autonomy, pro-
activity, and cooperation [3]. As a consequence, there
have recently been some efforts to extend the UML for
modeling agent-based systems [1, 4, 12, 14].

‘While many UML improvements focused on macro as-
pects of agent systems like agent interaction and commu-
nication, the design of micro aspects of such agents like
goals, complex strategies, knowledge, etc. has often been
missed out. To our knowledge there are only very few
approaches that cover the complete UML-based design
of a MAS application with respect to analysis, design,
and code generation.

In this paper we focus on these aspects and present
an UML-based engineering approach based on CASA, a
MAS that was designed to support the rapid prototyping
of autonomous agents with complex behavior.

2 UML-based Modeling of Agents

Currently, most software systems are built using object
orientation. Systems are not only implemented using an
object-oriented programming language such as C++ or
Java, prior to implementation analysis and design is con-
ducted using object-oriented modeling languages. In the
last decade, many different object-oriented modeling lan-
guages have been developed which finally led to the ad-
vent of the Unified Modeling Language (UML) and the
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standardization of UML by the OMG. Nowadays, the
UML is widely used in industry and academia.

The UML consists of several different forms of dia-
grams. Use Case Diagrams are used to capture the re-
quirements and interactions with the user of the system to
be built. Static structure diagrams such as class diagrams
allow the modeling of static structure aspects of the sys-
tem. Statechart diagrams and Activity diagrams are ap-
plied for modeling the dynamics of the software system.
Finally, implementation diagrams support the modeling
of distributed components of the system.

Software construction is tremendously facilitated by
CASE-tools. These tools allow the software engineer to
construct UML models of the software system to be built
during analysis and design. They also support the soft-
ware engineer by code generation and consistency checks
of models.

As agent-based systems are software systems, they
should be modeled with UML or an extension of the
UML such as Agent UML [1]. Recently, several ap-
proaches have been made to establish a modeling lan-
guage for agents. It is our opinion that if agents are to be-
come successful there has to be code generation and other
techniques supporting the software engineer in the devel-
opment of agent-based systems. Therefore, we show how
to model agents with UML and how to map these UML
models on an implementation.

3 Related Work

Agent-oriented software engineering goes back to the
Gaia methodology [18]. Gaia proposes a role-oriented
approach for the analysis and design of agent-based sys-
tems. After identification of key roles in the system a de-
tailed role model is constructed. Roles are then mapped
to an agent class model. Whereas Gaia is not based on the
UML but provides an own notation, the Multiagent Sys-
tems Engineering methodology (MaSE) by Wood et al.
[17] uses goal models, agent class models and commu-
nication class diagrams in an UML-like notation. Other
than the approach described in this paper, MaSE does not
include any means of modeling rules or plans of agents.

Focusing on characteristics such as autonomy, re-
activity, and pro-activity of agents, role models and
graph transformation were introduced in order to model
agent roles and operations performed by the agents
[4, 3]. Global graph transformations are used during
the requirements phase, while local graph transforma-
tions can be used to model autonomy aspects of agents.
Whereas graph transformations are well-suited for mod-
eling agents on a conceptual level, it remains unclear how
to transform such systems to an agent-based implementa-
tion.

Modifying the UML for agent-based software engi-
neering is not a new idea. Our extensions of use case
diagrams for agents have been inspired by the UER tech-
nique [12]. Other extensions include the adaptation of
sequence diagrams for representing agent interaction pro-
tocols [14].

However, in this paper, we do not describe the adap-
tation of UML to fully support modeling of agent-based
systems. Moreover, we try to show how the internals of
agents such as goals and strategies to achieve those goals
can be captured using UML and how to map these di-
agrams on the existing agent system CASA. Before de-
scribing this mapping we briefly sketch CASA, our speci-
fication language for efficiently designing complex MAS.

4 CASA

CASA is a multi-agent system combining the BDI (Be-
liefs, Desire, Intention) micro view of agents with the
FIPA ACL [5] macro view for specification, prototyping,
and validation of agent behavior [6].
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Figure 1: Micro View of an Agent

The specification of a CASA agent is based on Agent-
Speak(L) [15], Guarded Horn Clauses [16], and several
extensions. The complete specification covers the defi-
nition of beliefs, goals, actions, messages, events, plans,
and agents[9]. A CASA agent has individual control over
its behavior. Its internal state is composed of sets of be-
liefs, strategies, and intentions (cf. Figure 1). Beliefs are
a representation of the agent’s local world model and ba-
sically compare to facts in logic programming. Strategies
are plans to achieve goals and are discussed in more de-
tail below. Intentions are instantiated strategies which are
currently executed by an agent.

A CASA agent continuously observes its environment.
Based on these observations it performs actions, can send
messages and may modify beliefs. The behavior of an
agent is basically defined by specifying strategies (resp.
plans). Strategies compare to clauses in logic program-
ming. A CASA agent strategy is formally defined as an
extended guarded horn clause of the form



where H is the head, G; are guards, B; are body predi-
cates, and p defines a priority.

The head of a CASA strategy describes the event the
agent must perceive in order to instantiate the plan. The
guard elements define test conditions that the arguments
of the perceived event must satisfy. Only if all test con-
ditions are valid a strategy is considered as being appli-
cable. Additionally, a priority allows to choose between
different applicable strategies.

CASA agents distinguish between different types of
strategies. If all guards are just testing the validity of lo-
cal beliefs, the strategy is considered as being reactive. If
the strategy’s guards include goals, the strategy is delib-
erative, because the evaluation of such guards requires a
speculative computation which evaluates other strategies
in order to reduce the goal (multi level plans). If com-
munication between agents is required in the strategy’s
guards, the strategy is communicative. If multiple strate-
gies can be applied, reactive strategies take precedence
over deliberative strategies, which in turn take prece-
dence over communicative strategies to optimize perfor-
mance.

During execution, an agent can suspend currently exe-
cuted strategies and resume suspended ones by using spe-
cial operations for suspending/resuming.
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Figure 2: CASA Agent Execution Cycle

The operational semantics of a CASA agent can be
best described by means of an abstract interpreter as il-
lustrated in Figure 2. The interpreter manages the execu-
tion of all agent activities in an interpretation loop. The
operation of the agent interpreter is controlled by three
functions that control event selection, plan selection, and
intention selection.

The interpretation starts with the selection of a per-
ceived event. Then a set of relevant plans for process-

ing the selected event is identified. The preconditions
of all relevant plans are checked against the beliefs and
plans stored in the agent to extract the set of applicable
plans, i.e., plans whose preconditions are satisfied. One
applicable plan from that set is selected as the pursued
strategy. This plan is then instantiated on the agent’s in-
tention multistack. The multistack concept allows each
agent to investigate several plans in parallel and to instan-
tiate new (sub)intentions. Finally, the interpreter selects
an intention from the multistack and executes it starting
from the top element. Execution can result in direct ac-
tions, sending out messages, or generation of new events
for (sub)intentions. Thereafter, the interpreter advances
to process the next event.

A CASA agent is defined using the CASA specifi-
cation language. In the context of modeling agent be-
havior the agent’s beliefs and strategies are most rele-
vant. Therefore, we focus on the specification of facts
and plans. Facts are structured as a list of corresponding
identifiers and values:

FACTS:
FACT <id> <list of values>;

FACT <id> <list of values>;

Plans consist of a name identifying the plan, a descrip-
tion indicating the functionality of the agent, a goal that
the plan is designed to achieve, and the functionality def-
inition corresponding to the guarded horn clause formal-
ism:

PLAN:
{
NAME : <string>;
DESCRIPTION: <string>;
GOAL: ACHIEVE <relation>;
TYPE: <REACTIVE
| DELIBERATIVE
| COMMUNICATIVE>;
PRECONDITION: <list of conditions>;
BODY: <list of actions>;
FAILURE: <list of actions>;
PRIORITY: <numeric value>;

-

In addition to the definition of the body, a failure sec-
tion can be defined that is elaborated when the evaluation
of the body fails. Control structures like if-then-else, wait
conditions, or parallel execution blocks can be applied in
preconditions, the body, and the failure section. CASA
agents are integrated into the MECCA agent management
framework [2] which implements the FIPA ACL (Agent
Communication Language) standard [5]. A CASA agent
reads and writes messages through a specific communi-
cation adaptor from and to the internal message trans-
port channel of the MECCA system. This allows CASA
agents to communicate with any FIPA compliant agent
via the MECCA framework as it is shown in Figure 3.

For the illustration of our UML-based engineering ap-
proach of CASA agents we used a case study of an ap-
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plication taken from a virtual world simulation, which is
described in the next section.

5 Case Study: Dog versus Cat

In our case study we consider two autonomous agents in
a virtual world: a chasing game between dog and cat.
In this application, two actors are inserted into a con-
fined area, where the goals of one character (the dog)
are to get enough food, to avoid collisions while mov-
ing, and to chase the other character (the cat). The cat
has the goals to get enough food, to avoid collisions, and
to escape from the dog if it is being chased. Accord-
ingly, both agents have strong tendency to reach their
goals, however, complex behavior might enable them to
improve their chances of success. As an example, the cat
might use some hiding technique to evade the dog as long
as possible. In [11], hierarchical fuzzy logic controllers
(FLCs) were used to model the animal’s movement. Be-
havior patterns like "If the dog is right behind the cat at
high speed, the cat makes a sharp left turn” can be eas-
ily modeled using fuzzy logic. Simple fuzzy controllers
for processing position, angle of sight, or velocity were
hierarchically organized. The results presented in [10]
show that FLCs are a suitable means for the simulation of
complex behavior of these agents. To allow autonomous
agents to process non sharp values in their chasing game,
our approach makes use of a custom Fuzzy Logic Con-
troller library we developed recently [7]. Using this ex-
tension, fuzzy controllers can be easily used in our CASA
system. The fuzzy rule base is modeled as a special fact
and controller operations like fuzzify, infer and defuzzifi-
cate are modeled as actions. This approach requires the
extension of CASA by new types for events, facts, and ac-
tions, see [7, 10]. Due to different possible strategies for
reaching the goals, dependencies and conflicts between
goals and varying importance weights for goals during
the simulation the design of an agent’s behavior is not
trivial. Figure 4 shows the application using CASA and a
3D graphics library (Java3D), as it was presented in [10].

Figure 4: Dog vs. Cat Application

6 UML-based Agent Models and
their Mapping to CASA

In this section, we give an overview of how to model
agent-based systems with the UML and how to map UML
models to CASA, focusing on the micro view of agents.
At some points, we will extend the UML and adapt it to
support modeling of agent-based systems by introducing
new stereotypes.

Following the UML-based design approach, use case
diagrams are applied to capture the interactions of the
system with the user. In order to take into account the
notion of agency, we distinguish between ordinary users
modeled as actors, agents that are modeled as actors with
square heads, and elements of the environment that are
modeled as clouds. Furthermore, apart from ordinary use
cases, goal cases and reaction cases are introduced ex-
pressed by stereotyped use cases. A goal case serves as
a means of capturing high level goals of an agent. Re-
action cases are used to model how the environment di-
rectly influences agents. An arc between an actor and a
reactive use case expresses that the actor is the source of
events triggering this use case. Figure 5 illustrates our
case study: the dog triggers the reactive use case DogDe-
tected in the cat agent. In the environment, the tree trig-
gers the TreeDetected use case in the cat.

From a use case diagram, an agent class diagram is de-
veloped. In the BDI agent approach, an agent has strate-
gies, goals, and facts. Also, it can react to observed events
in the environment and provides a communication inter-
face.

In our approach, an agent is modeled as an active ob-
ject, implying that it has its own thread of control (see
Figure 6). In order to capture agent related aspects of
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the system we have to make the following extensions:
Facts are modeled as attributes of the agent. In our view,
an agent is composed of strategies and goals with each
strategy dedicated to fulfill a goal. Events from the envi-
ronment perceived by the agent are modeled as ordinary
operations in a method interface of the agent. Note the re-
lationship of reactive use cases and the operations in the
method interface of an agent. A newly introduced com-
partment named FIPA interface allows the modeling of
the FIPA messages the agent can respond to.

<<strategy>> Strategy <<goal>> Goal
{abstract} {abstract}
priorty - Int has_strategy <<agent>> Cat has_goal | yiority : int
suspended : Boolean suspended Boolean
* Facts *
VAN position : Tuple -~

velocity : Float VAN
dogDetected - Boolean
foodDetected  Boolean
obstacleDetected | Boolean

Method Interface
TreeDetection()

<<strategy>> CatAvoidsDog

FIPA Interface
Preconditions FIPA-request

getDogPosition (...)

getMyPosition(..)

Actions
calculateNewDirection( . ) 1 fullfils 1 | <<goal>> AvoidDog
cal iyl

setDirection(...}
setVelocity(...)

Figure 6: Agent Class Diagram for the Cat

Goals and strategies both have a priority attribute by
default. A strategy is a rule and therefore consists of pre-
conditions and actions which are both modeled as oper-
ations. Two named compartments are introduced for this
purpose. Preconditions must return a boolean value.

Following the object-oriented paradigm, we also intro-
duce an instance diagrams for concrete objects of the sys-
tem in the terms of UML object diagrams. We will use
instance diagrams to capture the initial configuration of

the system. Figure 7 illustrates main parts of the instance
diagram for the cat in our case study. The attributes of
the cat, its strategies and its initial goals are set to spe-
cific initial values.

cat:Cat
Facts
position = (2,2,90.0)
wvelocity = 2
dogDetected = false
has_strategy foodDetected = faise has_goal
obstacleDetected = false
strategy: CatAvoidsDog goal: AvoidDog
fullfills

priority = 1.0 priority = 1.0
suspended = false suspended = faise

Figure 7: Agent Instance Diagram for the Cat

In order to capture the dynamics of agents, we again
use diagrams of the UML. The dynamics are defined by
the way how an agent reacts to messages from the en-
vironment and other agents, how it communicates with
other agents and, on a micro level, which actions it takes
in order to achieve its goals.

Strategies can be considered as plans in order to
achieve a certain goal. So far, a strategy consists only
of preconditions and actions, both in form of operations.
For each strategy, a statechart is provided which models
one plan of an agent.
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Figure 8: High Level Plan to Avoid the Dog

We distinguish between high-level and detailed plans.
The high-level plan illustrated in Figure 8 shows the plan
of the cat for avoiding the dog. Initially, the plan is inac-
tive and stored in the CASA plan library. On perception
of a dogDetected event, it is activated. After analyzing
the current situation the cat tries to escape and then the
plan becomes inactive again. This high-level plan can be
viewed as a general template for agent plans. High-level
plans allow the modeling of plans in a visual and easy-to-
understand way.

Refinement of high-level plans leads to detailed level
plans. In order to be able to map UML models on CASA,



we have to restrict plans to be conform to the format of
preconditions followed by actions. We therefore only al-
low statecharts which consist of two compound states,
one modeling preconditions and another one modeling
the body of the formula. In the precondition compound
state, only operations of the precondition compartment of
the strategy can be called.
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GetDogPosition ok @
fentry getDogPosition()
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<<body>> Body

SetDirection

fentry setDirection
AndVelocity()

Fail

Figure 9: Detailed Plan to Avoid the Dog

For the Dog-Cat example, the plan to avoid the dog is
presented in Figure 9. In the precondition state, the cat
receives its own position and the current position of the
dog. If both conditions are known, the cat proceeds to the
plan body, where fuzzy rules are applied to calculate the
cat’s new direction and velocity.

In addition to the presented use of UML-based dia-
grams, we apply statecharts for further agent micro view
aspects like

e processing of events perceived by the agent,

o selection of a strategy if more than one strategy is
applicable for a goal,

e modeling agent behavior with respect to FIPA stan-
dardized communication.

On the macro level of inter-agent behavior, sequence
diagrams can be used to model interaction protocols, as it
is presented in [14].

In the following, we briefly discuss how to extract in-
formation from the previously presented diagrams to gen-
erate CASA code. First, we generate an agent’s initial set
of beliefs and their values. Recalling Figures 6 and 7, we
get the following code for the agent Cat (only in part due
to space limitations):

FACTS:
FACT position 2 2 90.0; // Tuple

FACT obstacleDetected false; // Boolean

Moreover, for each method of the method interface a
reactive plan without preconditions is generated. At run-
time, appropriate goal events perceived by the agent fire
these plans. For instance, a reactive plan “TreeDetection”
without any precondition is generated from the diagram
in Figure 6. In addition, more complex plans can be gen-
erated from the strategies which are explicitly modeled in
class diagrams like in Figure 6. Together with the corre-
sponding instance and statechart diagrams (cf. Figures 6,
8 and 9), the following CASA code can be generated:

PLAN: {

NAME : "CatAvoidsDog";
GOAL: ACHIEVE "AvoidDog";
TYPE: COMMUNICATIVE;

PRECONDITION: PARALLEL
{ ACHIEVE getDogPosition : 1.0; }
{ ACHIEVE getOwnPosition : 1.0; }

BODY: FUZZIFY;

INFER;

DEFUZZIFY;

EXECUTE setDirectionAndVelocity;
FAILURE: // empty
PRIORITY: 1.0;

}

Note that plan priorities are taken from instance dia-
grams, while plan types, pre-conditions, and body are
taken from statecharts. The code presented here is not
complete, e.g., values and local variables for fuzzy op-
erations are still missing. They may either be extracted
from more detailed statecharts or must be completed in
the resulting CASA code.

An agent’s initial goals are extracted from instance di-
agrams. For example, the cat in our case study could
have two initial goals, which are specified in a separate
GOALS-section in CASA:

GOALS: {
ACHIEVE AvoidDog : 1.0;

ACHIEVE DontStarve : 1.0;
}

Code generation of a CASA agent specification is com-
pleted by defining three selection functions which are
necessary in the agent interpreter for selecting events,
plans, and goals. This information is again taken from
instance diagrams and additional statechart diagrams.

7 Conclusion

Based on the observation that the UML does currently
not provide sufficient means for the design of MAS, we
have developed dedicated diagram extensions with re-
spect to the following three development phases: In the
requirements analysis phase, we identify agents and their
relationship to the environment in use case diagrams by
new actor symbols and use case stereotypes. In the de-
sign phase, we have extended class and object diagrams
to model agent types and their related goals and strate-
gies. For modeling dynamic behavior, a restricted for-
mat of statecharts is used, as we are focusing on the



BDI-architecture for the micro view of agents. Finally,
we have shown how executable CASA agent specifica-
tion code can be generated from the presented UML dia-
grams.

Currently, we are investigating whether code gener-
ation can also be applied for other programming lan-
guages, e.g., object-oriented languages like Java, thus
making our approach more flexible.
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