
Towards the Compositional Verification
of Real-Time UML Designs∗

Holger Giese, Matthias Tichy, Sven
Burmester†, and Wilhelm Schäfer

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[hg|mtt|burmi|wilhelm]@upb.de

Stephan Flake
Heinz Nixdorf Institute

University of Paderborn
Fuerstenallee 11

D-33102 Paderborn, Germany

flake@upb.de

ABSTRACT
Current techniques for the verification of software as e.g. model
checking are limited when it comes to the verification of com-
plex distributed embedded real-time systems. Our approach ad-
dresses this problem and in particular the state explosion problem
for the software controlling mechatronic systems, as we provide a
domain specific formal semantic definition for a subset of the UML
2.0 component model and an integrated sequence of design steps.
These steps prescribe how to compose complex software systems
from domain-specific patterns which model a particular part of the
system behavior in a well-defined context. The correctness of these
patterns can be verified individually because they have only simple
communication behavior and have only a fixed number of partic-
ipating roles. The composition of these patterns to describe the
complete component behavior and the overall system behavior is
prescribed by a rigorous syntactic definition which guarantees that
the verification of component and system behavior can exploit the
results of the verification of individual patterns.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
model checking; D.2.11 [Software Engineering]: Software Archi-
tectures—domain-specific architectures, patterns

General Terms
Performance, Design, Reliability, Verification

Keywords
Embedded Systems, Object Constraint Language (OCL), Pattern,
Unified Modelling Language (UML), Real-Time

†supported by the International Graduate School of Dynamic Intel-
ligent Systems.∗This work was developed in the course of the Special Research
Initiative 614 – Self-optimizing Concepts and Structures in Me-
chanical Engineering – University of Paderborn, and was published
on its behalf and funded by the Deutsche Forschungsgemeinschaft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

1. INTRODUCTION
Software has become an intrinsic part of increasingly complex

distributed embedded real-time systems which are also called (dis-
tributed) mechatronic systems. In many cases these systems are
used in a safety-critical environment and implement themselves so-
called safety critical applications. Consequently, the software con-
trolling these systems has to undergo a rigorous verification and
testing process.

Current techniques for the verification of software as e.g. model
checking or theorem proving are limited when it comes to the ver-
ification of complex systems. The main reason for this scalability
problem is the usually enormous state space to be considered when
verifying a complete model of the whole system behavior.

We propose a new approach based on current model checking
techniques to address the scalability problem of these techniques.
This approach suggests to model the software by using the UML
2.0 component model and the corresponding definition of ports and
connectors. However, we provide a formal semantic definition of
these concepts and an integrated sequence of design steps. These
steps prescribe how to compose complex software systems from
domain-specific patterns which model a particular part of the sys-
tem behavior in a well-defined context. Patterns in turn are defined
by roles (later becoming component ports) and their corresponding
connectors.

The correctness of these patterns can be verified individually
based on their well-defined and usually simple communication be-
havior and the limited number of participating roles such that state
explosion is by and large avoided. The composition of these pat-
terns to describe the complete component behavior and the overall
system behavior is prescribed by a rigorous syntactic definition.
This guarantees that the verification of component and system be-
havior can exploit the results of the verification of individual pat-
terns. Thus, the verification does not need to consider the complete
state space of the system behavior model in one verification step.

The formal semantic definition of the UML 2.0 concepts also
takes some domain-specific characteristics into account (like the
pattern definition) which again reduces the possible state space of
the verification process. The domain-specific characteristics ex-
ploited apply to a large class of mechatronics systems and thus the
approach is applicable to a wide variety of such systems. In prin-
ciple, the characteristics assume a very limited number of possi-
ble side-effects when performing a system operation which can be
guaranteed when a strictly hierarchical system architecture is as-
sumed.

38

In the next section we review some related work on model check-
ing and design of real-time systems. Then, the specific domain of
mechatronic systems and the employed shuttle case study are de-
scribed in Section 3. The semantics of the employed behavioral
real-time model is introduced and formally defined in Section 4.
Afterwards, Section 5 presents the proposed design approach for
complex mechatronic systems. Compositional verification of the
simplified example is presented in Section 6. In Section 7, we show
that the employed local verification steps do indeed ensure that the
required constraints also hold for the resulting global system. The
paper closes with some final conclusions and an outlook on future
work.

2. RELATED WORK
A number of different approaches [25, 2, 9, 16] for the object-

oriented development of real-time applications exists. The most
prominent of these approaches that seems to become soon part of
the main UML stream is ROOM [25]. Currently, the UML 2.0
proposal of the main tool vendors [22] includes the basic ROOM
concepts using the notation of UML/RT [26].

To model complex, physical, possibly distributed architectural
objects, components are the appropriate choice in UML 2.0. Com-
ponents are a specialization of UML encapsulated classifiers, which
correspond to UML/RT capsules and the ROOM concept of actors.
Components interact with their environment only through signal-
based boundary objects called ports. UML ports can have multiple
attached UML interfaces denoting the syntactical interface. Each
port plays a particular role in a collaboration that the component
has within its context. Additionally, UML connectors, which cor-
respond to UML/RT connectors and ROOM bindings, are signal-
based communication channels that interconnect multiple ports.

In UML/RT, the notion of a protocol with protocol roles is em-
ployed to describe the behavior expected for a set of ports and their
connector. It is expected that the connected capsules later respect
these protocols. In a sense, a protocol captures the contractual obli-
gations that exist between capsules. The UML 2.0 proposal does
not explicitly support this concept, but instead permits to assign a
behavior to a UML connector as a ”contract” (see [22, p. 111]).

In contrast to this rather loosely related set of concepts, our ap-
proach describes all collaborations via a connector and multiple
ports in form of a reusable pattern. These patterns are further used
to derive the required component behavior in a process that inte-
grates these design activities with verification.

Another thread of development is the UML Profile for Schedu-
lability, Performance, and Time [21], which defines time models
and additionally allows to attach real-time system specific attributes
to classes such as schedulability parameters or quality of service
(QoS) characteristics.

However, non-functional system properties w.r.t. dynamic (real-
time) behavior are only rudimentary supported in the mentioned
real-time approaches for UML. To overcome this deficiency, tem-
poral extensions of the Object Constraint Language (OCL) have
been proposed. OCL has been primarily developed to specify in-
variants attached to classes and pre- and postconditions of opera-
tions. By introducing additional temporal logic operators in OCL
(e.g., eventually, always, or never), modelers are able to specify re-
quired behavior by means of temporal restrictions among actions
and events, e.g., [4]. Temporal extensions of OCL that consider
real-time issues have been proposed for events in OCL/RT [6] and
for states in RT-OCL [11].

Most of the currently existing work on model checking does not
consider time-dependent behavior. To tackle such real-time sys-
tems, we can make use of model checking techniques that have

been extended to verify state transition systems with an explicit
notion of time. In this context, we can distinguish two different
approaches.

On the one hand, common untimed model checking techniques
have been extended to cope with timing aspects. The underlying se-
mantics assume a global clock with discrete time. For timed prop-
erty specification, extensions of the future-oriented branching-time
Computation Tree Logic (CTL, see [8]) have been developed, e.g. ,
RTCTL (real time CTL [10]) or CCTL (clocked CTL [23]). Tools
following this approach are VERUS [5] and RAVEN [23].

On the other hand, a more general approach is based on timed
automata by Alur et al. [1]. In timed automata, time is represented
by (an arbitrary number of) real value clocks which can be used to
measure time differences w.r.t. a global notion of time. Properties
are expressed by Timed CTL (TCTL), an extension of CTL with
dense-time semantics. Tools that base upon timed automata are
KRONOS[27] and UPPAAL[3]. Note that UPPAAL only supports
a limited subset of TCTL dedicated to reachability analysis.

The later employed notion of syntactical refinements permits us
to choose any real-time model checker. We have chosen to use
RAVEN because we do not need the full power of timed automata,
as we assume a minimal time unit for executions of actions and
state transitions which leads to a discretization of time. Addition-
ally, we need to be able to verify general properties and cannot
restrict on reachability analysis. Under these premises, RAVEN ex-
hibits a better scalability than the other discrete time model check-
ers, especially when large delay times appear. For an according
comparison of RAVEN with VERUS, see [24].

Model checking of higher level software models is limited due
to the state explosion problem, which leads to scalability problems
for larger systems even when no time is considered (cf. [7]). A
number of modular and compositional verification approaches have
therefore been proposed.

In [18], similar to our approach the decomposition of a system
is exploited to permit modular model checking of the system. The
notion of decomposition into features in [18] is limited to the se-
quential case and thus does not address the classical state explosion
problem. It cannot be employed for complex mechatronic systems,
because in this domain parallel composition is required.

One particular compositional approach is the assume/guarantee
paradigm [20]. Model checking techniques that permit composi-
tional verification following the assume/guarantee paradigm have
been developed [8, p. 185ff].

Our approach also follows the assume/guarantee paradigm, but
in contrast to current proposals it exploits information available
during the design process in form of pattern role protocols to de-
rive the required additional assumed and guaranteed properties au-
tomatically rather than manually as in [8]. Moreover, we employ
a more restricted notion of refinement which also excludes dead-
locks, whereas in [8] only a subset of CTL restricted to the A path
quantifier (called ACTL) can be applied. Note that ACTL cannot
be used to compositionally exclude deadlocks, because deadlock
freedom is (AG (EX true)) in CTL which is not in ACTL.

3. APPLICATION DOMAIN
Our approach has been developed within the collaborative re-

search center 614 of the German National Science Foundation
(DFG), titled ”Self-optimizing Concepts and Structures in mechan-
ical Engineering” which includes 12 research groups from mechan-
ical engineering, electrical engineering, information and computer
science and mathematics.1

1http://www.sfb614.de

39

The general vision of this collaborative research center is to de-
velop concepts and methods to build mechatronics products with
inherent intelligence, which react autonomously and flexibly to
changing environment and operation conditions.

As a concrete example, a self-optimizing version of the software
for the railcab research project2 has to be developed which aims at
using a passive track system with intelligent shuttles that operate
individually and make independent and decentralized operational
decisions. Shuttles either transport goods or up to approx. 10 pas-
sengers.

The vision of the railcab project is to provide the comfort of in-
dividual traffic concerning scheduling and on-demand availability
of transportation as well as individually equipped cars on the one
hand and the cost and resource effectiveness of public transport on
the other hand.

The infrastructure of this shuttle-based transportation system is
built by satellite-supported positioning and a wireless communica-
tion network to enable communication between shuttles and sta-
tionary installations. The modular railway system further com-
bines sophisticated undercarriages with the advantages of new ac-
tuation techniques as employed in the Transrapid3 to increase pas-
senger comfort while still enabling high speed transportation and
(re-)using the existing railway tracks.

One particular problem is to reduce the energy consumption due
to air resistance by coordinating the autonomously operating shut-
tles in such a way that they build convoys whenever possible. Such
convoys are built on-demand and require a small distance between
the different shuttles such that a high reduction of energy consump-
tion is achieved.

Coordination between speed control units of the shuttles be-
comes a safety-critical aspect and results in a number of hard real-
time constraints, which have to be addressed when building the
control software of the shuttles.

As a running example within this paper we consider a simplified
version of this shuttle coordination problem, namely we assume
that only convoys of two shuttles are formed.

One main requirement of the shuttle controller software in this
example is to ensure that no rear-end collision happens when the
first shuttle has to brake suddenly e.g. in case of an emergency. The
second shuttle should however still keep a minimal distance to the
one ahead of it for the reasons mentioned above. This distance is
computed based on the delay, the speed, the weight, the maximum
force of the brakes etc. and is a compromise between safety and
cost-effectiveness concerning energy consumption.

Controlling the distance cannot be done locally by a shuttle alone
using distance sensors because (1) the distance cannot be always
measured directly (e.g. in a turn) and thus the wireless communi-
cation network has to be used to propagate position and speed, and
(2) reducing the distance in convoy mode means to e.g. reduce the
speed or the brake force in a coordinated fashion between the two
shuttles.

So in any case the controller software of a shuttle has to commu-
nicate with the other one in order to decide what to do when form-
ing a convoy. Then they can decide on a common strategy like re-
ducing velocity, increasing the distance, decreasing brake force or
a combination of all of them. One possible simple solution which
is used in this paper, is that the first shuttle will always brake with
limited force when it is in convoy mode.

This example also illustrates that real-time model checking is
hopeless in the general case, because it means to ensure the cor-

2http://www-nbp.upb.de/en/index.html
3http://www.transrapid.de/en/index.html

rect cooperation between a usually large number of shuttles. This
applies of course in general to complex arbitrarily structured dis-
tributed software systems.

However, by exploiting some domain specific restrictions which
are common to most of these systems our approach becomes feasi-
ble. These restrictions are (1) the usual clock synchronization as-
sumption which is common to many systems and means that time
is progressing equally fast in any system component, (2) a discrete
time model suffices to model all time depending constraints, be-
cause the underlying infrastructure (hardware and possibly a real-
time operating systems) does not react infinitly fast, (3) a layered
system architecture which guarantees that an autonomous unit like
a shuttle reacts in a local environment and the interfaces to its en-
vironment are strictly defined (as e.g. a shuttle trying to form a
convoy has to interact only with one other shuttle and not maybe
with a third one which is a few kilometers away).

Restrictions 1 and 2 allow us to assume a rather simple notation
for time (see next section). Restriction 3 is the reason that usually
only relatively simple patterns have to be constructed, i.e. patterns
with simple coordination protocols between roles, limited numbers
of input signals and a fixed number of roles.

4. REAL-TIME SEMANTICS
We have to formally define the semantics of the employed UML

concepts such that the restrictions and requirements of our applica-
tion domain observed in the last section are fulfilled. The request
for verifiability further requires that the employed concepts have a
rigorous foundation. Therefore, we also present formal definitions
for the employed notion of automata, parallel composition, and re-
finement.

4.1 Statecharts Semantics
We employ time-annotated statecharts to describe required real-

time behavior. For the considered domain of mechatronic systems,
the rather complex micro step semantics of UML statecharts is not
necessary. Instead, in each state machine cycle only a single tran-
sition is fired. Such a semantics has already successfully been em-
ployed in a similar domain [17] for the untimed case. Note that
due to our simplified statechart semantics most of the problems
w.r.t. compositionallity described in the literature can be avoided
(cf. [19]).

For our approach, more emphasis is put on timing aspects to en-
sure that synthesis of hard real-time code is indeed possible [12].
Therefore, we make the additional assumption that each transition
in a statechart has a worst-case execution time that is lower than the
assumed minimal time amount (1 msec in our example). Thus, we
assume that every fired untimed transition can be executed within
one time unit or otherwise has to be manually split into a sequence
of transitions. Instead using a sequence of untimed transitions, an
after() statement might be used.

We use the scheme x.signal to denote a signal from/to a specific
role or port x is received/sent. Whether it is sent or received is
denoted by its appearance as trigger (before the slash) or action
(behind the slash).

To specify that a statechart will only remain in a specific state
for at most x time steps, we use the syntactical shortcut atMost: x

msec. It is equivalent to an after(x sec) transition with a special
deadlocking target state and emulates time invariants for states as
employed in timed automata (see [1, 12]).

Modelling the behavior of a pattern role requires that all alterna-
tives of a later realization can be specified. Thus non-determinism
due to multiple alternatively enabled transitions for a single state
naturally follows. A second form of non-determinism occurs when

40

several alternatives for the delay of a transition are required. In-
tervals instead of a concrete single delay value as parameter of an
after() statement are used to denote that the transition may take any
of the specified time units before firing.

The formal semantics of the described time-annotated statecharts
is defined by mapping them to a finite state transition system in
form of extended Kripke structures (called I/O-interval structures
[23]) as employed by the RAVEN model checker. We present here
only a rather simplified version of this finite state transition model
where discrete time is mapped to single states and transitions. This
automata model is sufficient to permit the understanding of the un-
derlying behavior model and to proof that the compositional verifi-
cation is correct. It is to be noted, that the real-time model checker
will of course use a more compact representation of time to reduce
the number of explicit considered states.

Definition 1. An automaton is a 5-tuple M = (S, I,O, T,Q)
with a finite set S of states, input signals I , output signals O, a set
of transitions T ⊆ S × ℘(I) × ℘(O) × S, and the initial state
set Q. A run is a sequence of states s1, s2, . . . , where for each
i ≥ 1 exists (si, A,B, si+1) ∈ T . We further require that for each
s ∈ S there is at least one finite run s1, s2, . . . sn with s1 ∈ Q and
s = sn.

The time semantics of an automaton is simply that each transition
takes exactly one time unit.

For convenience we use in the following Si, Ii, Oi, Ti, and Qi

to denote the corresponding elements of Mi. Two automata M and
M ′ with distinct input and output sets (I∩I′ = ∅ and O∩O′ = ∅)
are further called composable. If also I ∩ O′ = ∅ and O ∩ I ′ = ∅
holds, they are even orthogonal to each other. An automaton M
with I = O is further called closed.

4.2 Property Specification
Properties which should hold for a specific model and which

have to be checked by the model checker are specified by using
the state-oriented real-time OCL variant RT-OCL [11]. RT-OCL is
formally defined by a mapping to the temporal logic CCTL used in
the RAVEN real-time model checker.

To reflect the dependencies which result from local or shared
name spaces within the OCL and RT-OCL constraints, the CCTL
equivalents of RT-OCL constraints (φ) and OCL invariants (ψ) will
use a shared set of atomic propositions P . An automaton Mi and
any of its states s ∈ Si is annotated with all propositions in Pi ⊆ P
which they fulfill using a labelling function Li : S → ℘(Pi). Thus
an automaton Mi = (Si, Ii, Oi, Ti, Qi) is accordingly extended
to a 6-tuple Mi = (Si, Ii, Oi, Ti, Li, Qi). The label set L(Mi)
denotes the set of all by the labelling considered propositions Pi.
L(φ) and L(ψ) denote the subsets of the basic proposition set P
that is employed within the formulas.

Finally, for sake of simplification of the following formal defini-
tions, we omit any syntactical details of CTL and CCTL and write
M |= φ when an automaton M fulfills a constraint or invariant
φ. The special symbol δ is used to denote that a deadlock (a state
without any outgoing transition) can be reached. M |= ¬δ thus
denotes that M does not contain any deadlocks.

4.3 Parallel Composition
In our application domain the composition of multiple compo-

nents requires their parallel execution. As we model time explicitly
and in a discrete manner, the required notion of parallel compo-
sition must result in the synchronous execution [8] of all systems
running in parallel.

The communication is formalized by synchronous communica-
tion such that sending and receiving happens within the same time

step. Consequently, the asynchronous event semantics of state-
charts is modelled by explicitly defined event queues (channels)
given in form of additional automata. These explicit models of the
event queues are required anyway to take the QoS characteristics
of each connection into account.

Definition 2. For two automata M = (S, I,O, T, L,Q) and
M ′ = (S′, I ′, O′, T ′, L′, Q′) which are composable to each other
(I ∩ I ′ = ∅ and O ∩O′ = ∅), we define their parallel composition
denoted by M‖M ′ as the automaton (S′′, I ′′, O′′, T ′′, L′′, Q′′)
with S′′ = S × S′, I ′′ = I ∪ I ′, O′′ = O ∪ O′, Q′′ = Q × Q′,
and ((s1, s

′
1), A

′′, B′′, (s2, s
′
2)) ∈ T ′′ iff (s1, A,B, s2) ∈ T and

(s′1, A
′, B′, s′2) ∈ T ′ exist with A′′ = A ∪A′ and B′′ = B ∪ B′.

Additionally, (A∩O′) = B′ and (A′∩O) = B must hold. S′′ and
T ′′ are further adjusted to exclude all non reachable state combi-
nations and transitions. The labelling L′′ for (s, s′) ∈ S′′ is easily
derived as L′′((s, s′)) = L(s) ∪ L′(s′).

Informally, a transition in T ′′ is a combination of two transitions
in each automaton iff all required local inputs by the other side are
matching ((A ∩ O′) = B′ and (A′ ∩ O) = B) and the non local
input and output signals are simply the union of both automata.

4.4 Automata Refinement
Our restricted notion of components means that they are derived

by refining the role protocols from all the patterns they are partici-
pating in. A component is thus built by parallel composition of port
statecharts and an additional synchronization statechart for further
internal coordination. Thus, we require an appropriate notion for
refinement which is essentially a restricted version of simulation
which additionally preserves reactivity.

Definition 3. An automaton M = (S, I,O, T, L,Q) is a refine-
ment of automaton M ′ = (S′, I ′, O′, T ′, L′, Q′) (M � M ′) iff a
relation Ω exists with Ω ⊆ S×S′ and ∀q ∈ Q ∃q′ ∈ Q′ : (q, q′) ∈
Ω and for all (s1, s

′
1) ∈ Ω must hold:

∀(s1, A,B, s2) ∈ T ∃(s′1, A,B, s′2) ∈ T ′ : (s2, s
′
2) ∈ Ω, (1)

∀(s′1, A
′, B′, s′3) ∈ T ′ ∃(s1, A

′, B′, s3) ∈ T. (2)

For given labelling functions L and L′ we require that they are also
preserved by Ω: (s, s′) ∈ Ω ⇒ L(s) = L′(s′).

The relation Ω initially ensures that for each initial state of the re-
finement an appropriate interpretation in terms of the initial state
of the refined automaton exists. For each transition in the refine-
ment M equation 1 further ensures that a related transition in M′

exists that again leads to an appropriate state pair in Ω. Therefore,
� implies simulation (�). Equation 2 then further ensures that for
each in a state offered pair of I/O signal sets in M′ a corresponding
transition offering the same pair of I/O signal set is provided in its
refinement M . However, the condition does not itself require that
s3 and s′3 build a pair contained in Ω.

To also build a refinement notion that permits the refined be-
havior to extend the original one, a restriction operator | is re-
quired to abstract from additional signals. For an automaton
M = (S, I,O, T, L,Q) we define its I/O and labelling restric-
tion for I ′′/O′′/L′′ denoted by M |I′′/O′′/L′′ as the automaton
(S′, I ′, O′, T ′, L′, Q′) with S′ = S, I ′ = I − I ′′, O′ = O −O′′,
L′(x) = L(x) ∩ L′′, Q′ = Q, and (s′1, A

′, B′, s′2) ∈ T ′ iff
(s1, A,B, s2) ∈ T exists with A′ = A− I ′′ and B′ = B −O′′.

When for two basic automata M = (S, I,O, T, L,Q) and
M ′ = (S′, I ′, O′, T ′, L′, Q′) hold that M |I′/O′/L(M′) is a refine-
ment of M ′ we further name M to be a restricted refinement of M′

41

(M �
I/O

M ′). This restricted refinement adjusts the considered
signals and can be further used to characterize if an automaton is a
correct concretization of another one.

5. DESIGN STEPS
Based on the semantic definition in the previous section, our ap-

proach suggests a particular sequence of integrated design and ver-
ification activities organized into the following steps: (1) design the
patterns and their roles, (2) verify each pattern, (3) design the com-
ponents refining the roles associated to each port, (4) verify each
component, and (5) compose the system using the components and
patterns. Note that steps 1 and 2 have to be repeated for every re-
quired pattern. When steps 3 and 4 have already been performed
with incomplete sets of patterns, additional parallel statecharts that
refine the additional roles have to be added incrementally. Step 5
finally ensures correct semantical composition by a correct syntac-
tical composition.

In the remainder of this section, modelling steps 1, 3, and 5 are
described, whereas verification steps 2 and 4 are presented in Sec-
tion 6.

5.1 Pattern Definition
In our approach a pattern comprises of a set of roles that interact

only via ports and a related connector that connects those ports. We
further have the restriction that for each pattern we have to specify
a protocol automata and OCL invariants for each role. An overall
constraint in form of a RT-OCL formula is also possible. While
usually the connector behavior is omitted, channel delay and re-
liability are of crucial importance for real-time systems and thus
have to be addressed explicitly in form of an additional connector
automaton. A pattern is formally defined as follows:

Definition 4. A pattern P is a 4-tuple (M,Ψ, φ,MP) with a
set M of automata M1, . . . , Mk for each role, a set Ψ of invariants
ψ1, . . . , ψk for each role, the pattern constraint φ, and the connector
automaton MP .

For multiple patterns P1, . . . , Pn we refer to their constraints as φP
i

and connector automata as MP
i .

In our example we consider a pattern for the convoy behavior of
two participants. This DistanceCoordination pattern is intended to
realize safe coordination of the shuttle distance. It consists of two
roles FrontRole and RearRole denoting the relative position within a
convoy. The roles are interconnected via a connector representing
the wireless communication network and its QoS characteristics.
We will further have Shuttle components as visualized in Figure 1
that realize the pattern to ensure a safe coordination of the required
minimal distances.

Figure 1: Patterns ensure appropriate shuttle distances

Figures 2 and 3 show the main parts of the statecharts for the
pattern role protocols. The two roles model the discrete behavior of
two participants (which are in our example the shuttles), where they

default

wait

noConvoy

convoy

frontRole.convoyProposalRejected /

/ frontRole.convoyProposal

wait
frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal

default

frontRole.breakConvoy / frontRole.startConvoy /

Figure 2: Statechart of the RearRole::Main role

noConvoy

wait answerdefault

default

/ rearRole.breakConvoyRejected
rearRole.breakConvoyProposal

/ rearRole.convoyProposalRejected

after ([1, 1000] msec)rearRole.convoyProposal /

convoy
/ rearRole.breakConvoy
rearRole.breakConvoyProposal

/ rearRole.startConvoy

Figure 3: Statechart of the FrontRole::Main role

describe the part of the rear resp. the front position in a potential
convoy.

Initially both roles are in state noConvoy::default, which means
that they are not in a convoy. The rear role non-deterministically
chooses whether to propose forming a convoy or not. After choos-
ing to propose a convoy, a message is sent to the other shuttle
resp. its front role. The front role chooses non-deterministically
to reject or to accept the proposal after max. 1000 msec. In the first
case, both statecharts revert to the noConvoy::default state. In the
second case, both roles switch to the convoy::default state.

Eventually the rear shuttle non-deterministically chooses to pro-
pose a break of the convoy and sends this proposal to the front
shuttle. The front shuttle chooses non-deterministically to reject
or accept that proposal. In the first case, both shuttles remain in
convoy-mode. In the second case, the front shuttle replies by an
approval message, and both roles switch into their respective no-
Convoy::default state.

Additionally, the front shuttle periodically sends position and
speed data to the rear shuttle as modeled in the statecharts Front-
Role::Ping and RearRole::Pong shown in Figures 4 and 5.

wait sendData
after (9 msec)

/ rearRole.frontRoleData

Figure 4: FrontRole::Ping statechart

frontRole.frontRoleData /
waitincoming emergency

after (15 msec)

after ([1, ∞]msec)

Figure 5: RearRole::Pong statechart

This protocol ensures that the rear shuttle receives the required
data of the front shuttle to adjust its distance. After a timeout of 15
msec without receiving data, the rear shuttle assumes that either the
front shuttle or the connector has failed and thus switches into the
emergency state to indicate the problem.

The statechart resulting from the parallel composition of Front-
Role::Main and FrontRole::Ping then describes the protocol M1 for
the FrontRole role. The statechart M2 for the RearRole role is
accordingly built by the parallel composition of statecharts Rear-
Role::Main and RearRole::Pong.

For the connector which represents the wireless network we do
not apply an explicit statechart, but instead specify its QoS char-

42

acteristics such as throughput, maximal delay etc. in the form of
connector attributes. The required automaton MP is automatically
derived from these attributes. In our case study, we assume that
the connector forwards incoming signals with a delay of 1 up to
5 msec. The connector is unsafe in the sense that it might fail at
any time, such that we set our specific QoS characteristic reliable to
false.

To provide fail safe behavior, the following RT-OCL constraint
named φ must hold (cf. Section 3). It demands that (a) a combi-
nation of role states where the front role is in state noConvoy and
the rear role in state convoy is not possible, and (b) data that is sent
must be received within 6 msec (i.e., 5 msec + 1 msec to get to state
incoming) or the connector has failed.

context DistanceCoordination inv:
not (self.oclInState(RearRole::Main::convoy) and

self.oclInState(FrontRole::Main::noConvoy))
and
(self.oclInState(FrontRole::Ping::sendData)
implies

self@post(1,6)->forAll(p:OclPath |
p->exists(c:OclConfiguration |

c->includes(RearRole::Pong::incoming)
or c->includes(Channel::fail))))

We ensure by construction that the emergency state of Rear-
Role::Pong is entered if the connector has failed because of the tim-
out transition labeled after(15 msec) from state wait to emergency
in Figure 5.

For an abstract property CanBrakeFully which each realizing
component has to provide, we additionally require for any imple-
mentation of the rear role that being in state convoy implies that
CanBrakeFully holds. In contrast, for any implementation of the
front role, state convoy requires that CanBrakeFully does not hold.
The following OCL role invariants ψ1 and ψ2 are used to describe
these restrictions which apply to any component which realizes the
specific role. We here abstract from the actual realizing compo-
nents and ports by means of a (non-standard) schema definition
that is syntactically denoted by enclosing angle brackets.

context <component> inv:
<frontRole>.oclInState(convoy) implies

not self.CanBrakeFully

context <component> inv:
<rearRole>.oclInState(convoy) implies

self.CanBrakeFully

The pattern thus consists of the two roles FrontRole and Rear-
Role denoted by M1 resp. M2, the role invariants ψ1 and ψ2 for
FrontRole resp. RearRole, one RT-OCL constraint φ, and a connec-
tor modelling a wireless and thus non reliable network MP . Thus
together we have the 4-tuple P = ({M1,M2}, {ψ1, ψ2}, φ,MP)
that formally represents the DistanceCoordination pattern P .

Note for further reading that the role specification of the pre-
sented example pattern contains an error which will be later used
to exemplify our verification approach.

5.2 Component Definition
Components are designed by coordinating and refining each role

automaton based on Definition 3. The refinement has to respect the
role automaton (do not add possible behavior or block guaranteed
behavior) and additionally has to respect the guaranteed behavior
of the roles in form of its invariants. An additional internal state-
chart for coordination is used to describe the required coordination.
Formally, we can thus define a component as follows:

Definition 5. A component C is a triple (M,Ψ,Ms) with a set
M of automata Mr

1 , . . . , M r
h refining the realized pattern roles, the

set Ψ of all associated role invariants ψ1, . . . , ψh, and the compo-
nent internal synchronization automaton Ms.

MC = Ms‖Mr
1 ‖ . . . ‖Mr

h is the overall component automaton,
and the component role invariant ψC is derived by simply combin-
ing the related role invariants (ψ1 ∧ · · · ∧ ψh). For multiple com-
ponents C1, . . . , Cm we refer to their overall component behavior
as MC

j and invariant as ψC
j .

In our example, the shuttle component must conform to the Dis-
tanceCoordination pattern and has to operate as both a RearRole
and as a FrontRole. The non-deterministic choice of proposing and
accepting the forming of a convoy is specified by the additional
statechart Ms for the synchronization of the role refinements (Fig-
ure 6). The port statecharts which refine the pattern roles are shown
in Figures 7 and 8. Note that both roles FrontRole and RearRole re-
fer to distinct instantiations of the coordination pattern at run-time.

H

/ rearRole.buildConvoy
when(convoyUseful)

H wait
/ frontRole.noConvoy
frontRole.isConvoyOk

noConvoy
frontRole.breakConvoy /

/ frontRole.convoyOK
frontRole.isConvoyOK

convoyFront

emergency

rearRole.emergency / when(emergencyHandled) / rearRole.resume

rearRole.breakConvoy /

default

/ rearRole.doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRearrunning

Figure 6: Shuttle synchronization statechart

The shuttle synchronization statechart initiates the building and
breaking of a convoy by sending buildConvoy resp. doBreakCon-
voy to the refined rear role when the guards indicate that it is use-
ful resp. not useful to run in convoy mode. The protocol between
the (refined) frontRole and rearRole causes that the front shuttle re-
ceives isConvoyOK leading the statechart to switch to convoyFront
where it remains until it receives breakConvoy. In case of an emer-
gency (see Figure 9), the statechart switches to the emergency state.
To keep the example simple, the complex procedure required to re-
cover from an emergency state is omitted and we assume a simple
guard emergencyHandled to control possible recovery.

default

default

rejected

rearRole.breakConvoyProposal
/ rearRole.breakConvoy

shuttle.breakConvoy

shuttle.convoyOk
/ rearRole.startConvoy

rearRole.convoyProposal
/ shuttle.isConvoyOK

noConvoy

convoy

/ rearRole.convoyProposalRejected

shuttle.noConvoy /

atMost: 999 msec
wait

Figure 7: Refined FrontRole::Main statechart

It is important that the refined FrontRole::Main is a correct refine-
ment of the pattern role FrontRole::Main. We have a timing behavior
which is either covered by the protocol statechart or will lead to a
deadlock when the assumed message from the shuttle synchroniza-
tion statechart is not received due to the atMost: 999 msec restric-
tion. As we check for deadlocks locally within each component,
the second case is not relevant, and in the first case it is sufficient to
ensure the required notion of refinement (see Section 7.3). For the
refined RearRole::Main statechart, reasoning is analogical.

43

default

/ shuttle.breakConvoy
frontRole.convoyProposalRejected

wait

/ shuttle.breakConvoy
frontRole.breakConvoy

wait default

convoy

noConvoy
shuttle.buildConvoy
/ frontRole.convoyProposal

frontRole.startConvoy /

frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal
shuttle.doBreakConvoy

Figure 8: Refined RearRole::Main statechart

Note the emergency state (see Figure 6), which is triggered by
emergency signals. This signal is sent by a refinement of the Rear-
Role::Pong statechart. Sending this signal is added as an additional
side-effect to the transition which fires if a timeout occurs (see Fig-
ure 9).

wait

incoming

enter propagated

shuttle.resume /
emergency

frontRole.frontRoleData /

after (15 msec)

/shuttle.emergency

Figure 9: Refined RearRole::Pong port statechart

The port statecharts for FrontRole and RearRole are there-
fore built by combining Shuttle::FrontRole::Main and Shut-
tle::FrontRole::Ping to build Mr

1 resp. Shuttle::RearRole::Main and
Shuttle::RearRole::Pong to build Mr

2 . Using the role invariants
from the DistanceCoordination pattern, we can build the required
triple C = ({Mr

1 ,M
r
2 }, {ψ1, ψ2},Ms) for this component.

5.3 System Definition
Our approach assumes that the required system can be built by

a number of components and patterns which overlap at their ports
resp. roles (see Figure 10). This can be formally defined as follows:

Definition 6. A system S is a triple (P , C,map) with a set
P of patterns P1, . . . Pn, a set C of components C1, . . . , Cm,
and a bijective mapping map which assigns to each compo-
nent port the related unique pattern role. The syntactical cor-
rectness of such a system requires that all related automata
MP

1 , . . . ,MP
n ,MC

1 , . . . ,MC
m are connected accordingly by map

such that all roles are realized by the component ports.

(component)

(pattern)

:Shuttle :Shuttle

M1‖MP ‖M2

Mr
1 ‖Ms‖Mr

2

Figure 10: Structural model with related automata

In our example we can thus build arbitrary complex combina-
tions of shuttle components connected via the DistanceCoordination
pattern using multiple instances which are accordingly adjusted to
permit their composition (renaming of signals etc.). Therefore, in-
stead of n patterns and m components, we will usually only have n′

and m′ different patterns resp. components within a single system.

6. COMPOSITIONAL VERIFICATION
In this section, we describe in more detail the design steps 2 and

4 as outlined in the beginning of Section 5.

6.1 Pattern Verification
In design step 2, we verify whether the behavioral requirement

specified by means of RT-OCL hold for a pattern. If the require-
ment holds, the pattern is named correct. Formally, a pattern
P = (M,Ψ, φ,MP) with a set M of automata M1, . . . , Mk

is a correct pattern iff:

M1‖ . . . ‖Mk‖MP |= φ ∧ ¬δ (3)

This can be verified using a real-time model checker which first
builds the model M1‖ . . . ‖Mk‖MP and then checks whether the
constraint φ ∧ ¬δ holds.

For proving the correctness of all n patterns (n′ different ones)
of a system, we will have n′ checks in O(exp(k)), where k is the
maximal number of roles per pattern. The mentioned domain re-
strictions usually guarantee a fixed upper bound for k for arbitrary
n, because the number of roles per pattern will not further increase
when more components and patterns are added. Thus, the required
verification becomes possible when the state space of each single
pattern is not too large.

For our example we generate synchronous automata from the
statecharts for FrontRole::Main, FrontRole::Ping, RearRole::Main,
RearRole::Pong. Additionally, an automaton for the implicit con-
nector with QoS characteristics delay = [1,5] msec and reliable =
false is built that forwards incoming signals to their destination.
Then we check whether φ ∧ ¬δ holds.

It turns out that the pattern constraint does not hold because of
the following possible execution path: Assume that both roles are in
state convoy and rearRole::Main sent breakConvoyProposal to front-
Role::Main. If the front role accepts the proposal it sends the ac-
knowledgement breakConvoy to the rear role and changes to no-
Convoy superstate. In the case that the connector fails to forward
the signal to rearRole::Main, the resulting situation is that front-
Role::Main is in state noConvoy, while rearRole::Main is in state
convoy. This violates the specified pattern constraint φ.

Thus we have to change the model as e.g. illustrated in Fig-
ure 11. Now, FrontRole::Main initiates the breaking of the convoy
by sending the breakConvoyProposal message to RearRole::Main,
and breakConvoy is sent from RearRole::Main to FrontRole::Main.
Therefore a loss of the reply would lead to the acceptable situa-
tion that FrontRole::Main is in convoy mode while RearRole::Main
is in state noConvoy. Note that Figure 11 depicts only the rearRole
automaton and that the frontRole of the pattern has to be adjusted,
too (cf. [15]). As this error is detected before the component is ac-
tually specified, an adjustment of the component behavior and the
synchronization statechart would usually not be necessary.

wait

default

frontRole.breakConvoyProposal
/ frontRole.breakConvoyRejected

convoy
/ frontRole.breakConvoy
frontRole.breakConvoyProposal

noConvoy frontRole.convoyProposalRejected /

/ frontRole.convoyProposaldefault

frontRole.startConvoy

Figure 11: Corrected RearRole::Main statechart

6.2 Component Verification
Besides the patterns also the components have to be verified. In

step 4 of the outlined sequence of design and verification activi-
ties, we therefore have to verify that the role invariants hold for the
component behavior and that it also respects each role automaton
denoted by the following notion of a correct component. A com-

44

ponent C = (M,Ψ,Ms) with a set M of automata Mr
1 , . . . , M r

h

is a correct component if for each of its refined role behaviors Mr
j

and the corresponding original role behavior map(Mr
j) holds:

MC �
I/O

map(Mr
1)‖ . . . ‖map(Mr

h) and MC |= ψC ∧ ¬δ
(4)

We again can use a real-time model checker to prove ψC ∧ ¬δ
for MC . To ensure that MC refines each of the role protocols
associated to its ports, we propose to use syntactical refinement
rules instead of an explicit verification step (see Section 7.3).

Proving the correctness of all m components (m′ different ones)
requires m′ checks in O(exp(h)), where h is the maximal number
of roles per component. Like in the case of patterns, usually a fixed
upper bound for h exists in our domain.

The invariant for the shuttle property CanBrakeFully is automat-
ically derived from the role invariants ψ1 and ψ2 as given in Sec-
tion 5.1. In the resulting invariant, frontRole and rearRole are now
concrete names for navigation to the associated ports according to
map. Generally, the names can be different from the schemas spec-
ified for each role before.

context Shuttle inv:
frontRole.oclInState(convoy) implies

not self.CanBrakeFully
and
rearRole.oclInState(convoy) implies

self.CanBrakeFully

The synchronization statechart fulfills the abstract CanBrakeFully
property for all states except the convoyFront state. Therefore the
two implications above are not contradictionary for shuttle com-
ponents, as due to our design goal never both roles are in convoy
mode at the same time.

6.3 System Verification
Due to the compositional nature of our approach, an additional

6th step to perform verification for the overall system after its com-
position in step 5 is not required. In the remainder of this section,
we define our notion of a semantically correct system and infor-
mally argue why it can be achieved via syntactical correctness only.

For S = (P ,C,map) with a set P of patterns P1, . . . Pn, a set
C of components C1, . . . , Cm, and a bijective mapping map to be
a correct system, semantical correctness holds iff the pattern con-
straints φP

i and component invariants ψC
j also hold for the system

itself:

MP
1 ‖ . . . ‖MP

n ‖MC
1 ‖ . . . ‖MC

m |= φP
1 ∧ · · · ∧ φP

n ∧¬δ and (5)

MP
1 ‖ . . . ‖MP

n ‖MC
1 ‖ . . . ‖MC

m |= ψC
1 ∧ · · · ∧ ψC

m. (6)

In Figure 10 we depicted the different models built for verification.
Common modular approaches result in a disjoint decomposition of
the system. In our approach, however, we have overlapping mod-
els where the specified role protocols of each pattern and parallel
operating protocol refinement of the components refer to the same
port. These sets of ports and roles are employed as maximal non-
deterministic context for the components as well as guaranteed be-
havior of each pattern role.

At the border of these subsets there are always well-defined pro-
tocols both sides agreed upon and respect. Due to the specific char-
acteristics of the considered domain the real-time character of these
protocols ensures that unrestricted blocking effects are excluded.
Thus, deadlock freedom can be proven compositionally only by re-
ferring to the independent composition of all port protocols. It is
to be noted that in non-timed models a similar approach will not be
possible, as worst-case blocking times are not explicitly considered
and therefore cyclic blocking effects have to be taken into account
(see [13]).

For the restricted class of compositional properties (see Defini-
tion 7) we can also use the border built by the ports resp. roles to
also proof the constraints φP

i and invariants ψC
j compositionally.

A system with only correct patterns and only correct
components is semantically correct if all elements are
syntactically correct connected (see Theorem 1 in Sec-
tion 7.2).

The advantage of the compositional approach is that Theorem 1
permits us to verify condition 5 and 6 without building the state
space for MP

1 ‖ . . . ‖MP
n ‖MC

1 ‖ . . . ‖MC
m. Instead, only the syn-

tactical correctness of the overall system and correctness for all pat-
terns and components has to be checked. The parallel composition
of all components and pattern in the overall system can result in one
check in O(exp(n + m)) due to the possibly exponential growing
product state space of the system. For n′ the number of different
patterns and m′ the number of different components the sum of all
checks for our approach is in O(n′ ∗ exp(h) +m′ ∗ exp(k)) for k
the fixed maximal number of roles per pattern and h the fixed max-
imal number of roles per component. The required efforts do only
grow linear with the number of different patterns and components
which make the approach scalable.

We only require that k and h are not too large constants such that
the required local checks remain feasible. Then, we can derive in
our example the correct operation for any arbitrary large finite set
of shuttle components which are correctly interconnected via the
patterns for distance control.

The presented approach results in the restriction that only local
properties for each pattern or component can be proven. When also
the verification of properties which involve more than one compo-
nent is required, we have to describe the parallel composition of all
involved elements within a single pattern or component using ei-
ther the connector or internal synchronization automata. Then, the
for this pattern resp. component proven result will also hold for the
overall system using Theorem 1.

7. FORMALIZATION
This section formally underpins the employed composition veri-

fication approach. The approach yields a verification result for the
overall system without building its complete state space (for more
details see [14]).

7.1 Compositional Constraints
For our approach the interesting class of constraints are the con-

straints, which are preserved under refinement and composition
with disjoint labelling.

Definition 7. A constraint φ is compositional iff for any au-
tomata M1, M ′

1, and M2 with L(M2) ∩ L(φ) = ∅ holds

(M1 |= φ) ⇒ ((M1‖M2 |= φ) ∨ (M1‖M2 |= δ)) and (7)�
(M1 � M ′

1) ∧ (M ′
1 |= φ)

� ⇒ (M1 |= φ) (8)

CTL formulas are preserved by the bisimulation equivalence rela-
tion, while ACTL formulas are preserved by the simulation pre-
order (�) [8]. The presented refinement implies simulation and
thus preserves ACTL formulas also, but in contrast it additionally
preserves deadlock freedom:

Lemma 1. For automata M and M ′ with M � M ′ holds M ′ |=
¬δ ⇒ M |= ¬δ.

PROOF. (sketch) Condition 1 ensures that for any s ∈ S at least
one related s′ ∈ S′ exists with (s, s′) ∈ Ω. From M ′ deadlock
free follows that s′ will have at least one outgoing transition and
due to condition 2 s also. Therefore, M is also deadlock free.

45

Invariants, upper and lower time-bounds, and ACTL formulas
in general are constraints which refer only to all possible paths.
Thus using the fact that a refinement or composition with disjoint
labelling sets only reduces the possible sequences of states with
identical labelling, they are compositional. That deadlock freedom
is also compositional follows by construction for condition 7 and
Lemma 1 for condition 8.

Compositionallity can thus been established for the properties
required so far during our studies such as deadlock freedom, upper
bounds for the maximal delays of message transports, lower bounds
for the minimal delays of message transports, and invariants. For
example, the according CCTL formula with only A path quantifiers
for a maximal delay is for d the maximal delay, p1 the trigger con-
dition, and p2 the required condition: AG(¬p1 ∨ (AF [1,d] p2)). In
contrast, temporal logic formulas that demand explicitly that a spe-
cific state is eventually reached (abstracting from possible effects
of non-determinism) are not preserved.

7.2 Compositional Verification Theorem
We also require the property, that composition preserves refine-

ment for the parallel composition.

Lemma 2. For any automaton M1 and an automaton M2 refin-
ing automaton M ′

2 (M2 � M ′
2) holds M2 � M ′

2 ⇒ (M1‖M2 �
M1‖M ′

2).

PROOF. (sketch) For M = M1‖M2 and M ′ = M1‖M ′
2 we can

form the relation Ω implied by the refinement M2 � M ′
2 and derive

a relation Ω′ required for the refinement M1‖M2 � M1‖M ′
2 as

follows: For all (s1, s
′
2) ∈ S1 × S′

2 and (s2, s
′
2) ∈ Ω add (s1, s2)

to Ω′. Due to the composition of T resp. T ′ from T1 and T2 resp. T ′
2

we can easily prove condition 1 and 2.

For a substitution of a restricted refinement that only adds dis-
joint I/O signals we further have to proof that compositional con-
straints and deadlock freedom are preserved.

Lemma 3. For automata M1, M2, and M ′
2 with M2 �

I/O
M ′

2,
I1∩ (O2 −O′

2) = ∅, O1 ∩ (I2− I ′2) = ∅, and L(M1)∩ (L(M2)−
L(M ′

2)) = ∅ and any compositional constraint φ holds

(M1‖M ′
2 |= φ ∧ ¬δ) ⇒ (M1‖M2 |= φ ∧ ¬δ) (9)

PROOF. Due to φ and ¬δ being compositional and Definition 7
we can for M ′′

2 = M2|I′
2/O′

2/L(M′
2) conclude that M1‖M ′′

2 |=
φ ∧ ¬δ or M1‖M ′′

2 |= δ. Due to Lemma 1 and 2 we even
have M1‖M ′′

2 |= φ ∧ ¬δ. From I1 ∩ (O2 − O′
2) = ∅ and

O1 ∩ (I2 − I ′2) = ∅ follows that M2 adds to M ′′
2 only I/O that does

not interfere with M1 and thus M1‖M2 has the same reachable
state set and transitions and thus M1‖M2 |= ¬δ. As φ is only inter-
preted over states and the labelling is identical for L(φ) ⊆ L(M′

2),
φ must also hold and thus condition 9 is proven.

We have to restrict patterns to such ones where the pattern con-
straints φ are compositional. A proper labelling has further to en-
sure for all pattern roles that L(Mi) ∩ L(Mj) = ∅ for any i �= j.
For different components we also require the label sets to be dis-
joint (L(MC

i) ∩ L(MC
j) = ∅). By choosing appropriate labelling

functions for the synchronization statecharts we can achieve that
accordingly adjusted combinations of the invariants of all port roles
ensure that each component remains in a proper state w.r.t. the re-
quirements of its patterns (see Section 6.2).

Using the above definitions and proven facts we can derive the
following main compositionallity result of our approach.

Theorem 1. A syntactically correct closed system S =
(P , C,map) with a set P of correct patterns P1, . . . Pn and a set C
of correct components C1, . . . , Cm is semantically correct.

PROOF. For any i ∈ [1, n] we can conclude for each correct
pattern Pi = ({M1, . . . ,Mk},Ψi, φi,M

P
i) that it fulfills its con-

straint φi and is deadlock free: M1‖ . . . ‖Mk‖MP
i |= φi ∧¬δ. As

all MG
j :=M1‖ . . . ‖Mk‖MP

j have disjoint signal and labelling
sets and no label used in φi is in the labels set of the other models
(L(MG

j)∩L(φi) = ∅) we can combine them for all j ∈ [1, n]−{i}
in parallel while preserving φi and have: MG

1 ‖ . . . ‖MG
n |= φi ∧

¬δ. Let MB
j be the parallel composition of all role automata rela-

tion to component Cj , then holds MC
j �

I/O
MB

j for all correct

components Ci. By replacing MB
j by MC

j in an appropriate re-
ordered term for MG

1 ‖ . . . ‖MG
n |= φi ∧ ¬δ we thus can due to

Lemma 3 conclude MP
1 ‖ . . . ‖MP

n ‖MC
1 ‖ . . . ‖MC

m |= φi ∧ ¬δ.
Condition 5 for a semantically correct system can thus be obtained
simply by using the above derivation for all i ∈ [1, n].
To proof condition 6 we can simply derive for any i from MC

i a
correct component that MC

i |= ψC
i holds. Invariants are compo-

sitional and therefore we have MP
1 ‖ . . . ‖MP

n ‖MC
1 ‖ . . . ‖MC

m |=
ψC

i due to condition 2 of Definition 3 and the above result of dead-
lock freedom. By iteration over all i ∈ [1, m] we thus can also
obtain condition 6.

Therefore, we can conclude that the pattern constraints as well as
each role invariant also hold for the resulting composed system. It
is to be noted that instead of invariants ψ also compositional tem-
poral logic formulas might be employed to restrict the component
behavior. In our experiments so far, however, invariants have been
sufficient, because dynamic issues are addressed using the protocol
statecharts.

7.3 Refining Pattern Roles
In general a valid transformation that ensures our notion of re-

finement (�) also has to preserve deadlock freedom. As we require
not only that Mr

i refines map(Mr
i) but that MC refines Mr

i . This
is a rather hard problem as we have to take into account all other
port automata and Ms. We can however avoid this problem by as-
suming that the resulting MC will be checked for deadlocks. Thus
we require only a transformation that ensures refinement if no dead-
lock occurs. We can therefore restrict our attention to the task of de-
riving Mr

i from Mi using a set of transformation rules which later
ensure either for all j ∈ [1, h] that Mr

1 ‖ . . . ‖Mr
h‖Ms

i �
I/O

Mj

holds or Mr
1 ‖ . . . ‖Mr

h‖Ms
i |= δ. We name all such transforma-

tions to be valid ones (cf. [14]).

S1
e1

Sn

S2

�/en

�/en

Sn

S2

/en

⇒ S1
e1/�

�/�

/e2

�/e2

· · ·

...

�/e2

...

· · ·

Figure 12: A transformation which preserves refinement

In Figure 12 one possible valid transformation is presented. We
use ei to denote externally visible signals relevant for the coordi-
nation within the pattern. It assumes that we have an initial edge
leading from state s1 to any of the states of the arbitrary subgraph
visualized as a cloud. The states within the cloud can only be con-
nected by internal transitions and the resulting automaton will non-
deterministically choose an internal transitions before one of the
transitions to s2, . . . , sn with resp. send event e2, . . . , en is chosen.
Such a local operating subgraph can be replaced by any arbitrary
subgraph which may interact with Ms by sending and receiving

46

any internal signals denoted by ✷ as long as it guarantees that for
each path through the new subgraph to one of the states s2, . . . , sn

a path with similar delay exists in the original cloud which leads to
the same state. The added signals can be employed to coordinate
the required or possible decisions with Ms as required.

8. CONCLUSION AND FUTURE WORK
The presented approach is based on a restricted notion of patterns

suitable for the considered domain of mechatronic systems. These
patterns further enable to derive the required component behavior
by means of refinement steps for each role. Finally, the required
overall system can be built by only composing components via our
restricted notion of patterns. The approach further permits to ver-
ify the system without building the intractable large state space of
the overall system. Instead, each design artifact (patterns and com-
ponents) can be first verified in ”isolation” using existing real-time
model checking tools. The overall correctness can be derived by
only ensuring the syntactically correct composition of the system.

As the presented approach only employs standard UML model-
ing and specification techniques with minor domain-specific exten-
sions, the developer is not confronted with non-standard software
engineering notations such as temporal logics.

The possible clear separation between pattern and component
design also enables the evolution of the system. The patterns form
a contract between a component and its environment which permits
to exchange a given component by another one that also fulfills the
contract. Another option also studied within the mentioned case
study is that the components themselves are allowed to adjust their
run-time behavior as long as they stay within the given contract.
Thus, component behavior which includes self-adaptation and self-
optimization becomes possible.

Similar to the DistanceCoordination pattern we investigate other
domain specific patterns which are collected in a library. This
brings significant ease in system design by reusing domain specific
design solutions.

While in the current state we can only report our experiences
with the proposed sequence of design steps and the employed tools,
we plan to further provide tool support for all presented activities
within the Fujaba UML CASE tool [17]. This includes automating
the translation process and integrating the RAVEN model checker.

Acknowledgements
We thank Björn Axenath, Ekkart Kindler, Daniela Schilling, and
Yuhong Zhao for their comments on earlier versions of the paper.

9. REFERENCES
[1] R. Alur, C. Courcoubetis, and D.L. Dill. Model Checking for

Real-Time Systems. In IEEE Symposium on Logic in Computer
Science (LICS), pages 414–425, Washington, D.C., 1990.

[2] Maher Awad, Juha Kuusela, and Jurgen Ziegler. Object-Oriented
Technology for Real-Time Systems: A Practical Approach Using
OMT and Fusion. Prentice Hall, 1996.

[3] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen,
Paul Pettersson, and Wang Yi. UPPAAL implementation secrets. In
Proc. of 7th International Symposium on Formal Techniques in
Real-Time and Fault Tolerant Systems, 2002.

[4] J. Bradfield, J. Kuester Filipe, and P. Stevens. Enriching OCL Using
Observational mu-Calculus. In R.-D. Kutsche and H. Weber, editors,
Fundamental Approaches to Software Engineering (FASE 2002),
Grenoble, France, volume 2306 of LNCS. Springer, April 2002.

[5] S. Campos, E.M. Clarke, and M. Minea. The Verus Tool: A
Quantitative Approach to the Formal Verification of Real-Time
Systems. In Conference on Computer Aided Verification (CAV),
volume 1254 of LNCS, pages 452–455. Springer, June 1997.

[6] M.V. Cengarle and A. Knapp. Towards OCL/RT. In L.-H. Eriksson
and P.A. Lindsay, editors, Formal Methods – Getting IT Right,
International Symposium of Formal Methods Europe, Copenhagen,
Denmark, volume 2391 of LNCS, pages 389–408. Springer, 2002.

[7] William Chan, Richard J. Anderson, Paul Beame, Steve Burns,
Francesmary Modugno, David Notkin, and Jon D. Reese. Model
Checking Large Software Specifications. IEEE Transactions on
Software Engineering, 24(7):498–520, 1998.

[8] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, January 2000.

[9] Bruce Powel Douglass. Real-Time UML: Developing Efficient
Objects for Embedded Systems. The Addison-Wesley Object
Technology Series. Addison-Wesley, October 1999. Second Edition.

[10] E. Emerson, A. Mok, A. Sistla, and J. Srinivasan. Quantitative
Temporal Reasoning. Journal of Real-Time Systems, 4(4):331–352,
1992.

[11] Stephan Flake and Wolfgang Mueller. An OCL Extension for
Real-Time Constraints. In Object Modeling with the OCL: The
Rationale behind the Object Constraint Language, volume 2263 of
LNCS, pages 150–171. Springer, February 2002.

[12] H. Giese and S. Burmester. Real-Time Statechart Semantics.
Technical Report tr-ri-03-239, Computer Science Department,
University of Paderborn, June 2003.

[13] Holger Giese. Contract-based Component System Design. In Jr.
Ralph H. Sprague, editor, Thirty-Third Annual Hawaii International
Conference on System Sciences (HICSS-33), Maui, Hawaii, USA.
IEEE Computer Press, January 2000.

[14] Holger Giese. A formal calculus for the compositional pattern-based
design of correct real-time systems. Technical Report tr-ri-03-240,
Computer Science Department, University of Paderborn, July 2003.

[15] Holger Giese, Stephan Flake, Wilhelm Schäfer, Matthias Tichy, Sven
Burmester, and Daniela Schilling. Towards the compositional
verification of real-time uml designs. Technical Report tr-ri-03-241,
Computer Science Department, University of Paderborn, July 2003.

[16] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley, January 2000.

[17] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating UML
Diagrams for Production Control Systems. In Proc. of the 22nd

International Conference on Software Engineering (ICSE), Limerick,
Irland, pages 241–251. ACM Press, 2000.

[18] Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying
Cross-Cutting Features as Open Systems. In William G. Griswold,
editor, Proceedings of the Tenth ACM SIGSOFT Symposium on the
Foundations of Softare Engineering (FSE-10), Charleston, South
Carolina, USA, November 2002. ACM Press.

[19] Gerald Lüttgen, Michael von der Beeck, and Rance Cleaveland. A
Compositional Approach to Statecharts Semantics. In Proceedings of
the Eighth International Symposium on Foundations of Software
Engineering for Twenty-first Century Applications, November 2000,
San Diego, CA USA, pages 120–129, 2000.

[20] J. Misra and M. Chandy. Proofs of Networks of Processes. IEEE
Transactions on Software Engineering, 7(4):417–426, 1981.

[21] Object Management Group. UML Profile for Schedulability,
Performance, and Time Specification. OMG Document ptc/02-03-02,
September 2002. URL: http://cgi.omg.org/docs/ptc/02-03-02.pdf.

[22] Object Management Group. UML Superstructure Submission V2.0.
OMG Document ad/03-04-01, April 2003. URL:
http://www.omg.org/cgi-bin/doc?ad/2003-04-01.

[23] Jürgen Ruf. RAVEN: Real-Time Analyzing and Verification
Environment. Journal on Universal Computer Science (J.UCS),
Springer, 7(1):89–104, February 2001.

[24] Jürgen Ruf and Thomas Kropf. Analyzing Real-Time Systems. In
Design, Automation and Test in Europe (DATE), Paris, France. IEEE
Computer Society Press, March 2000.

[25] Bran Selic, Garth Gullekson, and Paul Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, Inc., 1994.

[26] Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex
Real-Time Systems. Techreport, ObjectTime Limited, 1998.

[27] S. Yovine. Kronos: A verification tool for real-time systems.
International Journal of Software Tools for Technology Transfer,
1:123–133, October 1997.

47

